Skip to main content
Log in

Dopaminergic modulation of synaptic plasticity in rat prefrontal neurons

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

The prefrontal cortex (PFC) is thought to store the traces for a type of long-term memory — the abstract memory that determines the temporal structure of behavior often termed a “rule” or “strategy”. Long-term synaptic plasticity might serve as an underlying cellular mechanism for this type of memory. We therefore studied the induction of synaptic plasticity in rat PFC neurons, maintained in vitro, with special emphasis on the functionally important neuromodulator dopamine. First, the induction of long-term potentiation (LTP) was facilitated in the presence of tonic/background dopamine in the bath, and the dose-dependency of this background dopamine followed an “inverted-U” function, where too high or too low dopamine levels could not facilitate LTP. Second, the induction of long-term depression (LTD) by low-frequency stimuli appeared to be independent of background dopamine, but required endogenous, phasically-released dopamine during the stimuli. Blockade of dopamine receptors during the stimuli and exaggeration of the effect of this endogenously-released dopamine by inhibition of dopamine transporter activity both blocked LTD. Thus, LTD induction also followed an inverted-U function in its dopamine-dependency. We conclude that PFC synaptic plasticity is powerfully modulated by dopamine through inverted-U-shaped dose-dependency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fuster JM. Memory in the Cerebral Cortex. Boston: A Bradford Book. The MIT Press, 1995.

    Google Scholar 

  2. Goto Y, Yang CR, Otani S. Functional and dysfunctional synaptic plasticity in prefrontal cortex: roles in psychiatric disorders. Biol Psychiatry 2010, 67: 199–207.

    Article  PubMed  Google Scholar 

  3. von Bohlen und Halbach O, Dermietzel R. Neurotransmiters and Neuromodulators. 2nd ed. Weinheim, Germany: WILEYVCH Verlag Gmbh & Co., 2006.

    Google Scholar 

  4. Lee SP, So CH, Rashid AJ, Varghese G, Cheng R, Lança AJ, et al. Dopamine D1 and D2 receptor co-activation generates a novel phospholipase-mediated calcium signal. J Biol Chem 2004, 279: 35671–35678.

    Article  CAS  PubMed  Google Scholar 

  5. Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 2004, 74: 1–57.

    Article  CAS  PubMed  Google Scholar 

  6. Goto Y, Otani S, Grace AA. The Yin and Yang of dopamine release: a new perspective. Neuropharmacology 2007, 53: 583–587.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Funahashi S. Space representation in the prefrontal cortex. Prog Neurobiol 2013, 103: 131–155.

    Article  PubMed  Google Scholar 

  8. Lett TA, Voineskos AN, Kennedy JL, Levine B, Daskalakis ZJ. Treating working memory deficits in schizophrenia: a review of the neurobiology. Biol Psychiatry 2014, 75: 361–370.

    Article  PubMed  Google Scholar 

  9. Barch DM, Dowd EC. Goal representations and motivational drive in schizophrenia: the role of prefrontal-striatal interactions. Schizophr Bull 2010, 36: 919–934.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Touzani K, Puthanveettil SV, Kandel ER. Consolidation of learning strategies during spatial working memory task requires protein synthesis in the prefrontal cortex. Proc Natl Acad Sci U S A 2007, 104: 5632–5637.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Keil A, Muller MM, Ray WJ, Gruber T, Elbert T. Human gamma band activity and perception of a gestalt. J Neurosci 1999, 19: 7152–7161.

    CAS  PubMed  Google Scholar 

  12. Gurden H, Tassin JP, Jay TM. Integrity of the mesocortical dopaminergic system is necessary for complete expression of in vivo hippocampal-prefrontal cortex long-term potentiation. Neuroscience 1999, 94: 1019–1027.

    Article  CAS  PubMed  Google Scholar 

  13. Takahata R, Moghaddam B. Target-specific glutamate regulation of dopamine neurons in the ventral tegmental area. J Neurochem 2000, 75: 1775–1778.

    Article  CAS  PubMed  Google Scholar 

  14. Matsuda Y, Marzo A, Otani S. The presence of background dopamine signal converts long-term depression to potentiation in rat prefrontal cortex. J Neurosci 2006, 26: 4803–4810.

    Article  CAS  PubMed  Google Scholar 

  15. Kolomiets B, Marzo A, Caboche J, Vanhoutte P, Otani S. Background dopamine concentration dependently facilitates long-term potentiation in rat prefrontal cortex through postsynaptic activation of extracellular signal-regulated kinases. Cereb Cortex 2009, 19: 2708–2718.

    Article  CAS  PubMed  Google Scholar 

  16. Roitman MF, Stuber GD, Phillips PE, Wightman RM, Carelli RM. Dopamine operates as a subsecond modulator of food seeking. J Neurosci 2004, 24: 1265–1271.

    Article  CAS  PubMed  Google Scholar 

  17. Garris PA, Ciolkowski EL, Pastore P, Wightman RM. Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J Neurosci 1994, 14: 6084–6093.

    CAS  PubMed  Google Scholar 

  18. Seamans J, Durstewitz D, Christie BR, Stevens CF, Sejnowski TJ. Dopamine D1/D2 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proc Natl Acad Sci U S A 2001, 98: 301–306.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Chen L, Bohanick JD, Nishihara M, Seamans JK, Yang CR. Dopamine D1/5 receptor-mediated long-term potentiation of intrinsic excitability in rat prefrontal cortical neurons: Ca2+-dependent intracellular signaling. J Neurophysiol 2007, 97: 2448–2464.

    Article  CAS  PubMed  Google Scholar 

  20. Schultz W. Multiple dopamine functions at different time courses. Annu Rev Neurosci 2007, 30: 259–288.

    Article  CAS  PubMed  Google Scholar 

  21. Yagishita S, Hayashi-Takagi A, Ellis-Davies GC, Urakubo H, Ishii S, Kasai H. A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science 2014, 345: 1616–1620.

    Article  CAS  PubMed  Google Scholar 

  22. Young CE, Yang CR. Dopamine D1-like receptor modulates layer and frequency-specific short-term synaptic plasticity in rat prefrontal cortical neurons. Eur J Neurosci 2005 21: 3310–3320.

    Article  PubMed  Google Scholar 

  23. Van Eden CG, Hoorneman EM, Buijs RM, Matthijssen MA, Geffard M, Uylings HB. Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopical level. Neuroscience 1987, 22: 849–862.

    Article  PubMed  Google Scholar 

  24. Otani S, Blond O, Desce JM, Crépel F. Dopamine facilitates long-term depression of glutamatergic transmission in rat prefrontal cortex. Neuroscience 1998, 85: 669–676.

    Article  CAS  PubMed  Google Scholar 

  25. Otani S, Auclair N, Desce JM, Roisin MP, Crépel F. Dopamine receptors and groups I and II mGluRs cooperate for long-term depression induction in rat prefrontal cortex through converging postsynaptic activation of MAP kinases. J Neurosci 1999, 19: 9788–9802.

    CAS  PubMed  Google Scholar 

  26. Huang YY, Simpson E, Kellendonk C, Kandel ER. Genetic evidence for the bidirectional modulation of synaptic plasticity in the prefrontal cortex by D1 receptors. Proc Natl Acad Sci U S A 2004, 101: 3236–3241.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Bai J, Blot K, Tzavara E, Nosten-Bertrand M, Giros B, Otani S. Inhibition of dopamine transporter activity impairs long-term depression in rat prefrontal cortex through over-stimulation of D1 receptors. Cereb Cortex 2014, 24: 945–955.

    Article  PubMed  Google Scholar 

  28. Morris SH, Knevett S, Lerner EG, Bindman LJ. Group I mGluR agonist DHPG facilitates the induction of LTP in rat prelimbic cortex in vitro. J Neurophysiol 1999, 82: 1927–1933.

    CAS  PubMed  Google Scholar 

  29. Sanchez CJ, Bailie TM, Wu WR, Liand N, Sorg BA. Manipulation of dopamine D1-like receptor activation in the rat medial prefrontal cortex alters stress- and cocaineinduced reinstatement of conditioned place preference behavior. Neuroscience 2003, 119: 497–505.

    Article  CAS  PubMed  Google Scholar 

  30. Schmidt HD, Pierce RC. Systemic administration of a dopamine, but not a serotonin or norepinephrine, transporter inhibitor reinstates cocaine seeking in the rat. Behav Brain Res 2006, 175: 189–194.

    Article  CAS  PubMed  Google Scholar 

  31. Nicholls RE, Alarcon JM, Malleret G, Carroll RC, Grody M, Vronskaya S, et al. Transgenic mice lacking NMDARdependent LTD exhibit deficits in behavioral flexibility. Neuron 2008, 58: 104–117.

    Article  CAS  PubMed  Google Scholar 

  32. Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR. PD 098059 is a specific inhibitor of the activation of mitogenactivated protein kinase kinase in vitro and in vivo. J Biol Chem 1995, 270: 27489–27494.

    Article  CAS  PubMed  Google Scholar 

  33. Valjent E, Pagès C, Hervé D, Girault JA, Caboche J. Addictive and non-addictive drugs induce distinct and specific patterns of ERK activation in mouse brain. Eur J Neurosci 2004, 19: 1826–1836.

    Article  PubMed  Google Scholar 

  34. Feenstra MGP, Teske G, Botterblom MHA, De Bruin JPC. Dopamine and noradrenaline release in the prefrontal cortex of rats during classical aversive and appetitive conditioning to a contextual stimulus: interference by novelty effects. Neurosci Lett 1999, 272: 179–182.

    Article  CAS  PubMed  Google Scholar 

  35. Feenstra MGP. Dopamine and noradrenaline release in the prefrontal cortex in relation to unconditioned and conditioned stress and reward. Prog Brain Res 2000, 126: 133–163.

    Article  CAS  PubMed  Google Scholar 

  36. Mingote S, de Bruin JP, Feenstra MG. Noradrenaline and dopamine efflux in the prefrontal cortex in relation to appetitive classical conditioning. J Neurosci 2004, 24: 2475–2480.

    Article  CAS  PubMed  Google Scholar 

  37. Korz V, Frey JU. Bidirectional modulation of hippocampal long-term potentiation under stress and no-stress conditions in basolateral amygdala-lesioned and intact rats. J Neurosci 2005, 25: 7393–7400.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Otani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otani, S., Bai, J. & Blot, K. Dopaminergic modulation of synaptic plasticity in rat prefrontal neurons. Neurosci. Bull. 31, 183–190 (2015). https://doi.org/10.1007/s12264-014-1507-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-014-1507-3

Keywords

Navigation