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Contemporary mechanistic models of several psychiatric disorders propose abnormalities in the structure and function of distinct neural
networks. The cerebellum has both anatomic and functional connections to the prefrontal cortex, the subcortical limbic structures and
monoamine-producing brainstem nuclei. Conspicuously, however, the cerebellum has been underemphasized in neuropsychiatric re-
search. A growing confluence of scientific data indicate that the cerebellum may not be irrelevant, which suggests that an integrated
model of neuropsychiatric disorders should include a role for the cerebellum and its relevant neural connections. This review summa-
rizes the published data describing and characterizing the putative role of the cerebellum in normal and abnormal mood regulation, with
specific attention to states of psychosis, depression and mania. The available evidence suggests that a functional role for the cerebellum
should be considered in future neuropsychiatric studies.

Les modèles mécanistes contemporains de divers troubles psychiatriques mettent en cause des anomalies au niveau de la structure et
de la fonction de réseaux neuronaux distincts. Le cervelet contient des connexions anatomiques et fonctionnelles avec le cortex
préfrontal, les structures limbiques sous-corticales et les noyaux du tronc cérébral produisant des monoamines. Par ailleurs, il est fla-
grant que les recherches en neuropsychiatrie ne se sont pas suffisamment attardées au cervelet. La masse de plus en plus importante
de données scientifiques convergentes indiquant que le cervelet pourrait avoir de l’importance dans ce contexte signale qu’un modèle
intégré des troubles neuropsychiatriques devrait traiter du rôle du cervelet ainsi que de ses connexions neuronales pertinentes. La
présente étude vise à résumer les données publiées décrivant et caractérisant le rôle présumé du cervelet dans la régulation normale et
anormale de l’humeur avec accent particulier sur les états de psychose, de dépression et de manie. Les données disponibles semblent
indiquer qu’il faudrait envisager le rôle fonctionnel du cervelet dans les études futures en neuropsychiatrie.
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Introduction

A comprehensive neurobiologic model for the major psychi-
atric disorders is not currently available. Contemporary clas-
sification systems remain symptom based, despite the grow-
ing body of literature on abnormalities in structural and
functional neuroanatomy.1 In the late 19th century, Babinski
observed that patients with cerebellar lesions could not prop-
erly execute complex motor tasks and named the resulting
condition “dysmetria.” Andreasen et al2 have reported that

disruption of neural circuits linking the cortex, thalamus and
cerebellum (the cortico-thalamic-cerebellar-cortical circuit, or
CTCCC) may presage the complex psychopathology of 
schizophrenia. They hypothesized that the CTCCC monitors
and coordinates the fluid execution of mental activity, a
process that appears to be aberrant in schizophrenia. Struc-
tural and functional cerebellar abnormalities have been de-
scribed in several disorders other than schizophrenia, includ-
ing anxiety disorders, depression and mania.3

We conducted a MEDLINE search of all English articles
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published between 1966 and 2004 using the key words “bipo-
lar disorder,” “depression,” “schizophrenia,” “cerebellum”
and “cerebellar.” The search was supplemented by a manual
review of relevant references. Priority was given to con-
trolled data; where such were unavailable, uncontrolled
studies were included if sample size was reasonable (more
than 10).

This review summarizes published data describing and
characterizing the role of the cerebellum in normal and ab-
normal mood states, with specific attention to states of psy-
chosis, depression and mania. We propose that the CTCCC
model, heretofore applied to the pathophysiology of schizo-
phrenia, may also be applicable to a pathophysiologic under-
standing of affective states and other psychiatric disorders.

The cerebellum

Neuroanatomy

The cerebellum overlies the posterior aspect of the pons and
projects bidirectional fibres to brainstem structures via 3
paired peduncles. The midline (vermis) and lateral hemi-
spheres are demarcated by fissures into smaller lobes and
lobules. Inside, 4 pairs of intrinsic nuclei — dentate (most lat-
eral), emboliform, globose and fastigial — can be found un-
der the grey cortical mantle within a medullary core of white
matter.4

Traditionally, the emphasis of studies on cerebellar func-
tion has been on the coordination of somatic motor function,
control of muscle tone and equilibrium. The cerebellum,
however, receives input directly or indirectly (via projections
from cortical association areas and the midbrain) from nearly
all sensory receptors; its output systems emanate from the
cerebellar nuclei, and their influences upon cortical function
are mediated primarily through brainstem nuclei at multiple
levels.5

Connections between the cerebellum and the nonmotor
cortical and subcortical areas have been documented through
both electrophysiologic studies and anatomic tracing tech-
niques.5 The cerebellum shares bidirectional connections with
a large portion of the limbic lobe and the associated subcorti-
cal nuclei, the amygdaloid complex, the septal nuclei, and
various hypothalamic and thalamic nuclei, regions of interest
to psychiatry through their association with emotional pro-
cessing.6 Furthermore, the cerebellum also communicates
with the monoamine-producing brainstem nuclei, which
supply the limbic system and the cerebrum with serotonin,
norepinephrine and dopamine.

In animal studies, axonal transport mechanisms have been
used to document synaptic contact between the fastigial nu-
cleus of the cerebellum and the ventral tagmental area, the
periaqueductal gray, the locus ceruleus and the pontine
raphe.7,8 Conversely, the ventral tagmental area and the mam-
millary body have been shown to project back to the monkey
cerebellum.9,10

Functionally, electrical stimulation of the cerebellum, par-
ticularly stimulation of the vermis area 3 (V3) and the fasti-
gial nucleus, modulates the physiology of limbic lobe struc-

tures. Evoked responses in the orbitomesial cortex, anterior
cingulate gyrus, amygdala, hippocampal and dentate gyri,
pyriform and preamygdaloid cortical regions and hypothala-
mus have been recorded through stimulation of the cerebel-
lum.11–13 Thus, the cerebellum earns its Latin name of “minia-
ture brain,” as it appears armed with the connections to
“instruct” and “report” to a large proportion of the regions of
the brain, including those involved in cognition, affect and
mood regulation.

Emotional processing

The first accounts of cerebellar atrophy and agenesis, which
appeared early in the 19th century, described patients with
intellectual, emotional, social and other behavioural re-
sponses that were distorted to the point of irreversible char-
acter and personality alteration.14 By the mid 20th century,
descriptions of dementia and psychosis in patients suffering
from cerebellar degeneration began to appear,15 leading
Snider to hypothesize that cerebellar activity must also influ-
ence the “non-motor centres of the cerebrum.”16

Cerebellar stimulation

Therapeutic interventions involving the cerebellum began
appearing in the 1970s, in particular the implanting of elec-
trodes over the superior surface of the cerebellum in an at-
tempt to control epilepsy.17 In addition to improvements in
seizure control, these researchers noted emotional improve-
ments in aggression, anxiety and depression. Conversely,
when recording from the cerebellar fastigial nucleus of an
emotionally disturbed patient, Heath et al18 described an as-
sociation between increased neuronal discharges and the pa-
tient’s experience of fear and anger. Similarly, when Nashold
and Slaughter19 stimulated the cerebellar dentate nucleus and
superior cerebellar peduncle, the subject experienced an un-
pleasant sensation of fear. In 11 patients with severe emo-
tional dyscontrol, the implantation of bilateral electrodes for
stimulation over the superior aspect of the cerebellar cortex
resulted in “extraordinary” improvements in behaviour.20 Al-
though these studies were limited in number and were not
controlled, they provide evidence that direct stimulation of
the cerebellum has the potential to alter moods or induce dif-
ferent moods in humans.

Cerebellar lesions

When Schmahmann and Sherman21 subsequently analyzed
the behavioural impairment of 20 adult patients with lesions
confined to the cerebellum, they noted that behavioural
changes were most prominent in patients whose lesions were
localized to the posterior lobe of the cerebellum and vermis.
The clinical presentation included a combination of passivity
and flattening or blunting of emotion, sometimes occurring
simultaneously with disinhibited, inappropriately jocular,
silly or child-like behaviour. The authors named this newly
defined clinical entity “cerebellar cognitive affective syn-
drome” and postulated that it resulted from impaired cere-



bellar modulation of neural circuits that link prefrontal, pos-
terior parietal, superior temporal and limbic cortices with the
cerebellum.21

Interestingly, these displays of passivity and flattening or
blunting of emotion and a disinhibition of restraint are
phenotypically similar to the depressed and manic states 
in mood disorders. This presentation may also resemble
some of the classical symptoms of schizophrenia, although
schizophrenia is also associated with more severe cognitive
impairments.

Similarly, children with mutism resulting from cerebellar
tumours also display altered moods.22 In particular, lesions of
the vermis produced behavioural changes that extended be-
yond the cognitive domain, including a flattening of affect
and a silly, disinhibited, regressive quality to the children’s
interactions, with some exhibiting a reduced tolerance of oth-
ers and a general tendency to avoid physical and eye contact.

Disruption of the cerebellar circuitry may thus impair the
processing of emotional responses to challenging stimuli.
Furthermore, the finding that single lesions of the cerebellum
can impart such a marked change in the personality of af-
fected individuals highlights the role of cerebellar intercon-
nectivity in affective and cognitive processing.

Schizophrenia

Rationale

Clinical observations of affective and cognitive changes aris-
ing from cerebellar lesions and stimulation permit the hy-
pothesis that the cerebellum may not be irrelevant in some
neuropsychiatric states.23 There is evidence that patients with
schizophrenia have an altered corticocerebellar connectiv-
ity.2,24 Andreasen et al2 and Wiser et al24 proposed that disrup-
tion of the CTCCC may underlie the combination of symp-
toms observed in schizophrenia. Analogous to the cerebellar
role in facilitating rapid and smooth execution of motor tasks,
they further proposed that the CTCCC performs a similar
function in the monitoring and coordination of the fluid exe-
cution of mental activity resulting in normal cognitive func-
tion. Conversely, disruption in the activity of this circuit
leads to the disordered cognition and clinical symptoms
characteristic of schizophrenia.25

Structural neuroimaging studies

During the 1980s and early 1990s, with the growing availabil-
ity of computed tomography (CT), reports of cerebellar ver-
mian atrophy or hypoplasia in patients with schizophrenia
began appearing in the literature,26–28 although such reports
could not be confirmed by others29 (Table 1).

Structural magnetic resonance imaging (MRI) analyses us-
ing quantitative anthropometric techniques have yielded
more consistent reports of cerebellar atrophy in schizophre-
nia,30,32,33,35 with some authors attempting to delineate a subset
of patients with reduced or atrophied cerebella. Global reduc-
tions in cerebellar volume have been associated specifically
with perinatal brain insults,31 schizophrenia in men,37 child-

hood-onset schizophrenia,39 very-late-onset schizophrenia,36

chronic schizophrenia32 and psychotic symptoms.48 Other au-
thors have noted atrophy delimited to the vermis.33,35,37

As was the case with CT studies, not all investigators using
MRI have found reduced cerebellar volumes in schizophre-
nia. Some have reported a larger vermis in the brains of pa-
tients with schizophrenia,34 as well as increased grey matter.38

Other MRI studies have failed to locate any consistent change
in the cerebellar structure in schizophrenia.49

Although the structural mapping studies have been equiv-
ocal, the weight of evidence supports extending the study of
cerebellar activity in schizophrenia. For example, the finding
that unaffected first-degree relatives of probands with schizo-
phrenia have reduced cerebellar volumes,50 along with the
observation of reduced cerebellar volumes in neuroleptic-
naïve patients with schizophrenia,35 suggests that cerebellar
atrophy may be a hereditary trait rather than a psychotropic-
associated epiphenomenon.

Functional imaging studies

Results from memory tasks involving both words and faces
in patients with schizophrenia provide further support for
the CTCCC model. The CTCCC regions that are activated in
healthy control subjects during recall (the prefrontal, thala-
mic and cerebellar areas) displayed less or no activation in
patients with schizophrenia. Recent functional MRI (fMRI)
investigations using a variety of additional cognitive tests
(Wisconsin Card Sorting Test,41 Working Memory [n-back]
Task42 and Periodic Sequence-Learning Task43) have similarly
reported decreased activation of the cerebellum (Table 1).

Differences in cerebellar perfusion between patients with
schizophrenia and control subjects have been noted even in
the absence of cognitive or affective challenges. These results
may be reversible, with a decrease in cerebellar blood perfu-
sion46 and activation47 after administration of atypical antipsy-
chotics. Reports of aberrant cerebellar activity, with concomi-
tant medication effects, suggests that disturbances in
cerebellar activation, and concomitant changes in blood vol-
ume and perfusion, are partly state, partly trait and partly
medication mediated. Future investigations should strive to
further delineate and characterize the relative influence of
each factor.

Cellular abnormalities in the cerebellum

Postmortem studies have also revealed altered cerebellar
structure, specifically a smaller anterior vermal lobe,51 which
appears to correlate with occipital asymmetry.52 Postmortem
analyses of cerebellar cytoarchitecture have revealed a reduc-
tion in the density of vermal Purkinje cells in the brains of pa-
tients with schizophrenia53 and, more recently, a reduction in
the size of the Purkinje cells,54 although other investigators
have failed to replicate these results.55

At the subcellular level, evidence is accumulating that cere-
bellar abnormalities in schizophrenia might arise from im-
paired synaptic architecture.56–60 Synaptophysin, complexin I
and complexin II are integral proteins in the construction of
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functional synapses; as such, a reduction in their expression
has been taken as indicative of impaired synaptic connectiv-
ity. Whereas synaptophysin is found in both inhibitory (γ-
aminobutyric acid [GABA]-ergic) and excitatory (glutamater-
gic) synapses, complexin I prefers the former and complexin
II associates preferentially with the latter. On the basis of the
finding that mRNA and protein levels of synaptophysin and
complexin II, but not complexin I, were reduced, the authors
proposed that it was the excitatory neurons in the cerebel-
lum, in particular, that were affected by or responsible for the
observed cerebellar phenotypes in schizophrenia.57 However,
there is also evidence that inhibitory neurotransmission is
impaired, for example, reports that both reelin, a glycopro-
tein secreted preferentially by GABAergic interneurons, and
glutamic acid decarboxylase, a prerequisite enzyme for
GABA synthesis, were reduced in the cerebellum of patients
with schizophrenia.56 The concept of impaired cerebellar
synapse formation in schizophrenia is further supported by

findings of reduced levels of synaptosomal-associated pro-
tein 25 (SNAP-25, a synaptic protein involved in the docking
of synaptic vesicles) against a background of unaffected lev-
els of cytoskeletal proteins.59 Perhaps the underlying source
of impaired synaptogenesis is an increase in expression of an
axonal chemorepellant, such as semaphorin 3A. Comparing
gene expression in the cerebellum of patients with schizo-
phrenia and healthy subjects, Eastwood et al60 showed that
this particular chemorepellant is elevated in expression and
is associated with the downregulation of genes involved in
synaptic formation and maintenance in the brains of patients
with schizophrenia.

Major depressive disorder

Using a positron emission tomography analysis of regional
blood flow, Reiman et al61 investigated the neuroanatomic
correlates of externally generated emotions. These authors

Table 1: Neuroimaging studies of the cerebellum in schizophrenia

Study Subjects Procedure Results

Structure

Weinberger et al27 35 SZFE, 17 SZC, 23 AD, 27
OP, 26 HC

CT Cb atrophy 12% (SZC), 9% (AD) >> OP, SZFE,
HC

Nasrallah et al26 55 SZ, 24 BPM, 27 HC CT Cb atrophy: BPM > SZ > HC

Lippmann et al28 54 SZ, 18 BPV, 79 HC CT CbV: SZ, BPV < HC

Yates et al29 108 SZ, 50 AD, 74 HC CT No differences noted in CbV, CbH or CbT

Uematsu and Kaiya30 40 SZ, 17 HC MRI No differences, but CbV size predicted response

Nasrallah et al31 30 SZ MRI ⇓  CbV associated with perinatal brain injury

DeLisi et al32 50 SZ, 20 HC MRI ⇑  rate of shrinkage of R CbH (SZ v. HC)

Nopoulos et al33 65 SZ, 65 HC MRI ⇓  CbV (SZ v. HC)

Levitt et al34 15 SZ, 15 HC MRI ⇑  CbV (SZ v. HC)

Ichimiya et al35 20 SZNN, 20 HC MRI ⇓  CbV (SZNN v. HC)

Barak et al36 21 VLOSZ, 21 HC CT ⇑  Cb atrophy (VLOSZ v. HC)

Okugawa et al37 30 SZC, 18 HC MRI ⇓  CbV (SZC v. HC) in men only

Suzuki et al38 45 SZ, 42 HC MRI ⇑  Cb GM (SZ v. HC)

Keller et al39 50 SZ, 50 HC MRI ⇑  loss of CbT during adolescence (SZ v. HC)

Function: challenge

Andreasen et al2 14 SZ, 13 HC 15O PET PFC-Th-Cb network visible for HC, absent for
SZ

Crespo-Facorro et al40 14 SZ, 13 HC 15O PET Novel memory task: ⇓  CbT (SZ v. HC)

Recalling practised words: ⇓  L CbH (SZ v.HC)

Riehemann et al41 9 SZNN, 9 HC fMRI Wisconsin Card Sorting: ⇓  Cb (SZNN v. HC)

Meyer-Lindenberg et al42 13 SZMF, 13 HC fMRI Working memory activation: CbT, PHc (SZMF)
v. dlPFC, ACC (HC)

Kumari et al43 6 SZ, 6 HC fMRI Procedural learning: Cb activated in HC, but not
in SZ

Function: rest

Loeber et al44 10 HC, 10 BPV, 10 SZ DSC fMRI CbT blood volume: BPV > HC > SZ

Kim et al45 30 SZ, 30 HC 15O PET CbT CBF: SZ > HC

Miller et al46
30 SZMF ⇒  SZAA*

15O PET With risperidone: ⇑  CbT

Stephan et al47 6 SZMF ⇒  SZAA,* 6 HC fMRI With olanzapine: ⇑  R CbH (SZAA)

Note: ACC = anterior cingulate cortex; AD = affective disorders; BPM = bipolar disorder — manic; BPV = bipolar disorder — varied (all phases of illness); Cb =
cerebellum; CBF = cerebral blood flow; CbH = cerebellum hemisphere; CbT = cerebellum total; CbV = cerebellum vermis; CT = computed tomography; dlPFC =
dorsolateral prefrontal cortex; DSC-fMRI = dynamic susceptibility contrast fMRI; fMRI = functional MRI; GM = gray matter; HC = healthy control; L = left; MRI =
magnetic resonance imaging; OP = psychiatric disorder, not affective, not schizophrenic; PET = positron emission tomography; PFC = prefrontal cortex; PHc =
parahippocampal cortex; R = right; SZ = schizophrenia; SZAA = schizophrenia — treated with atypical antipsychotic; SZC = schizophrenia — chronic; SZFE =
schizophreniform — first episode; SZMF = schizophrenic — medication free; SZNN = schizophrenic — neuroleptic naïve; Th = thalamus; VLOSZ = very late onset
schizophrenia.
*Patients were scanned twice, first when medication free, then while undergoing treatment with atypical antipsychotics.



imaged the brains of healthy volunteers as they watched film
clips designed to evoke a variety of emotional states, includ-
ing happiness, sadness and disgust. In addition to finding ac-
tivation of the limbic and paralimbic areas, the group noted
activation of the cerebellar hemispheres. Using a similar tech-
nique, Lane et al62 extended these results by demonstrating
that sadness, but not happiness, increased activation of the
anterior cerebellar vermis.

In contradistinction to the relevant body of morphometric
studies examining cerebellar structure in schizophrenia, there
are very few studies examining cerebellar size in unipolar de-
pression. Early MRI studies63,64 showed reduced cerebellar size
in patients with unipolar depression, whereas a more recent
quantitative MRI investigation failed to find any statistically
significant differences.65 The most recent MRI investigation65

did reveal, however, that in patients who did not respond to
fluoxetine treatment, total cerebellar tissue volume decreased
as baseline depression scores increased (Table 2).

In an effort to discern the differential brain activation pat-
tern that results from evoking sadness in healthy control sub-
jects and patients with unipolar depression, Beauregard et al68

performed fMRI scans while both groups viewed an emo-
tionally laden film. Transient sadness produced significant
activation in both groups, not only in the medial and inferior
prefrontal cortices and the middle temporal cortex, but also
in the cerebellum. Furthermore, the patients with depression
displayed greater activation of the left medial prefrontal cor-

tex and the right anterior cingulate gyrus, but less activation
of the cerebellum.

In a positron emission tomography investigation, cerebral
blood flow was compared in subjects with acute depression
and healthy controls, before and after a transient mood chal-
lenge. In line with the results obtained with fMRI, the pa-
tients with depression displayed less activation of the cere-
bellum and thalamus.70

To test whether subjects who recover from depression
show abnormal brain activity, Smith et al69 acquired fMRI
data during a conditioning paradigm with a noxious pain
stimulus. Although similar patterns of brain activation dur-
ing painful stimulation were found for both patients and
healthy controls, subjects who had recovered from depres-
sion displayed less cerebellar activation than the control sub-
jects during anticipation of the noxious stimulus. These find-
ings suggest that depression may impart a permanent and
irreversible change in cerebellar function.

These findings of cerebellar hypoactivity in response to an
emotional challenge are comparable to reduced cerebellar ac-
tivation to cognitive challenges in schizophrenia.41–43 This ap-
parent reduction in cerebellar dynamic range may result if
the cerebellum is tonically hyperactive and thus near the ceil-
ing of maximal activation. Dolan et al78 were the first to report
an increase in baseline cerebellar vermal blood flow in a sub-
set of patients with depression and cognitive impairment.
More recent data suggest that this tonic increase in cerebellar
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Table 2: Neuroimaging studies of the cerebellum in mood disorders

Study Subjects Procedure Unipolar Bipolar

Structure

DelBello et al66 30 BPM, 15 HC MRI ⇓  V3 (BPM v. HC)

Brambilla et al67 22 BPV, 22 HC MRI ⇓  CbT (BPF v. HC)

Shah et al63 27 MDD, 36 HC MRI ⇓  CbV (MDD v. HC)

Escalona et al64 30 MDD, 35 HC MRI ⇓  CbT (MMD v. HC)

Pillay et al65 38 MDD, 20 HC MRI ⇔ CbT (MDD v. HC)

Function: challenge

Beauregard et al68 7 MDD, 7 HC fMRI ⇓  L CbH (MDD v. HC)

Smith et al69 10 MDE, 8 HC fMRI ⇓  CbT (MDE v. HC)

Liotti et al70 10 MDE, 7 MDD, 8 HC 15O PET ⇓  CbT (MDE, MDD v. HC)

⇓  CbV (MDE v. MDD)

Curtis et al71 5 BPV, 5 SZ, 5 HC fMRI ⇑  CbV (BPV v. HC, SZ)

Kruger et al72 9 BPE, 11 BPD 15O PET ⇓  CbV (BPD v. BPE)

⇑  R Cb (BPE v. BPD)

Function: rest

Videbech et al73 42 MDD, 47 HC 15O PET ⇑  CbT (MDD v. HC)

Kimbrell et al74 38 MDV, 37 HC 18FDG PET ⇑  R,L CbH (MDD v. HC)

⇑  CbV (MDD v. MDE)

Ketter et al75 43 BPV, 43 HC 18FDG PET ⇑  CbT (BPV v. HC)

⇔ Cb (BPD v. BPE)

Osuch et al76 25 MDD, 27 BPD 18FDG PET ⇑  L Cb (BPD v. MDD)

Davies et al77 7 MDD ⇒  MDE* 99mTc SPECT ⇑  R Cb (MDD v. MDE)

Note: BPD = biopolar disorder — depressed; BPE = bipolar disorder — euthymic; BPF = biopolar disorder — familial; BPM = bipolar disorder — manic; BPV =
bipolar disorder — varied (all phases of illness); Cb = cerebellum; CbH = cerebellum hemisphere; CbT = cerebellum total; CbV = cerebellum vermis; FDG = fluoro-
deoxyglucose; fMRI = functional MRI; HC = healthy control; L = left; MDD = major depressive disorder — depressed; MDE = major depressive disorder —
euthymic; MDV = major depressive disorder, various severities of depression; MRI = magnetic resonance imaging; PET = positron emission tomography; R = right;
SZ = schizophrenia; SPECT = single-photon emission computed tomography; V3 = vermis area 3; ⇔ = no differences.
*Patients were scanned twice, before and after treatment of acute depression.
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activity is characteristic of major depression, regardless of
mood state or medication history.73,74

Similar to the findings in schizophrenia, in which cerebellar
blood flow decreases following antipsychotic treatment,44,46 an
association between successful treatment of depression and a
decrease in cerebellar perfusion has been reported.77 Thus, a
positive treatment outcome in patients with both mood and
psychotic disorders may be associated with a reduction in
cerebellar activity and blood flow (Table 2).

Preliminary studies appear to indicate that patients with
unipolar depression and schizophrenia may share similar
structural (volumetric reductions) and functional (baseline
hyperactivity) abnormalities in the cerebellum. However, the
available results from investigations in unipolar depression
are extremely limited and prevent definitive conclusions.
Moreover, the high prevalence of depressive symptoms
among people with schizophrenia79 may account for some of
the observed similarities. Future imaging investigations
should strive to clarify the role of cerebellar structural and
functional abnormalities in unipolar depression, and their re-
lation to clinical outcomes and changes in metabolism.

Bipolar disorders

Because cerebellar atrophy has been documented in depres-
sion and schizophrenia, it is important to investigate the
structural and functional aspects of the cerebellum in bipolar
disorders.68 An early report of cerebellar atrophy in mania80

was followed by several studies confirming this initial obser-
vation.26–28 In 2 of the 3 studies,27,28 which controlled for alcohol
use in both patient and healthy control groups, atrophy of the
vermis was reported, whereas Dewan et al81 were not able to
find any differences in cerebellar atrophy or cerebellar grey
and white matter densities.

A subsequent MRI investigation of the cerebellum in pa-
tients with bipolar disorder did not reveal any gross morpho-
logic differences between the patient group and healthy con-
trols.66 However, when the patients with bipolar disorder
were subdivided into first-manic-episode and multiple-
manic-episode groups, the researchers found that the V3 re-
gion was significantly smaller in the multiple-episode group.
Further analysis revealed that among multiple-episode pa-
tients it was the number of previous depressive episodes, not
substance abuse or duration of lithium exposure, that con-
tributed to the reduction in V3 volume.66

The only other morphometric MRI study examining the
cerebellum in bipolar disorder67 did not reveal any statisti-
cally significant difference in total cerebellar or vermal size
between patients with bipolar disorder and healthy controls.
However, the authors did find a smaller vermis in patients
with at least 1 first-degree relative possessing a history of
mood disorders. Furthermore, there was a significant trend
for an inverse correlation between number of prior affective
episodes and size of the V3 region. These results corroborate
the earlier MRI finding,66 leading to the possibility that atro-
phy of this particular region of the vermis may be associated
with duration or course of illness.67

Loeber et al44 employed dynamic susceptibility contrast

MRI and reported that patients with bipolar disorder have
lower cerebellar blood volumes than healthy controls and pa-
tients with schizophrenia, even after adjustment for anatomic
volume differences. The cerebellar region reported most fre-
quently in neuroimaging studies of patients with bipolar dis-
order, the vermis, showed the largest reduction in blood vol-
ume. With atypical antipsychotic medication, however, this
relative decrease in blood volume appeared to show a rever-
sal toward age- and sex-matched norms.82

In another study, Kruger et al72 investigated blood flow
changes in patients with bipolar disorder (both with depres-
sion and in remission) and in healthy individuals during a
sadness induction protocol. Baseline differences were noted
between the 2 groups, with the bipolar cohort displaying less
cerebellar blood flow. Interestingly, when challenged with
the sadness induction protocol, different, nonoverlapping re-
gions of the cerebellum were activated in the 2 groups;
specifically, among the patients with bipolar disorder, a
greater fraction of cerebellar tissue was activated.

In contrast to findings of decreases in blood volume and
flow, Ketter et al75 reported increases in metabolism in the
cerebellar and posterior cortical areas, occurring indepen-
dently of illness phase, in a relatively large study of treat-
ment-resistant patients with bipolar disorder.

Preliminary investigations into cerebellar structure and
function in bipolar disorder have consistently noted differ-
ences relative to healthy control subjects; however, definitive
conclusions are not yet possible. Provisional studies have re-
ported a smaller cerebellum, with decreased blood volume
and increased glucose metabolism. Seemingly discrepant
findings of decreased blood volume and increased glucose
metabolism may reflect the clinical heterogeneity of the bipo-
lar populations studied. Thus, it may be possible that cerebel-
lar hypermetabolism is a finding particular to treatment-
resistant subjects with bipolar disorder.

In summary, preliminary results in patients with unipolar
and bipolar depression suggest aberrant cerebellar function
and, possibly, size. The studies indicate that both patient
populations may have abnormalities in cerebellar function
under both baseline and challenge conditions. Given the
small number and inadequate replication of these studies,
caution should be exercised in interpreting their results.

Summary and discussion

Results from a number of neuropsychiatric investigations
have documented abnormalities in cerebellar function and
structure. Moreover, pharmacologic and psychosocial thera-
peutic interventions for patients with these disorders have
been reported to coincide with changes in cerebellar function.
Recent scrutiny of the cerebellum in neuropsychiatric investi-
gations has been facilitated by technologic advances in imag-
ing instruments that were formerly (in the mid to late 1990s)
unable to fully capture the cerebellum. A growing awareness
of the putative role of the cerebellum in higher cognitive
function has promoted the practice of using this brain region
for standardizing global brain activity.

The finding of simultaneous alteration in activation of the
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cerebellum, the thalamus and parts of the frontal cortex has
led some authors to propose the CTCCC model to explain the
diverse symptoms of schizophrenia. Thus, reduced “monitor-
ing” of cortical activity by the cerebellum may initiate a dys-
regulation of certain neural circuits involved in emotional
and cognitive function. It remains possible that overlapping
aberrations in cerebellar function could contribute to the phe-
nomenology observed in mood disorders. Research into the
putative cerebellar role in mood disorders has been conspicu-
ously absent.

The analysis of gene expression in the cerebellum is allow-
ing researchers to look at cellular changes that accompany
psychiatric illnesses at the molecular levels. The results of al-
tered cerebellar gene expression in psychiatric illnesses will
invite the study of genetic polymorphism in the general pop-
ulation, allowing an endophenotypic classification of psychi-
atric conditions. Basic research on the cellular pathways at
work in the cerebellum also offers additional insight in the
search for novel targets for pharmacologic intervention. Puta-
tive models of neural networks implicated in the pathophysi-
ology of mood disorders83 and schizophrenia47 provide a neu-
roanatomic framework for such future endeavours.

It is tempting to speculate that atrophy of the cerebellum
may be a nonspecific response to psychologic stress. After re-
porting altered resting blood flow to the vermis in adolescents
with prior childhood sexual abuse, Anderson et al84 proposed
that early trauma may interfere with the development of the
vermis, producing neuropsychiatric symptoms more com-
monly observed with drug use. Like the hippocampus, the ver-
mis has a protracted period of postnatal development and may
produce granule cells postnatally.85 Since the vermis has the
highest density of glucocorticoid receptors during develop-
ment,86 even exceeding that of the hippocampus, it may be par-
ticularly vulnerable to the effects of stress hormones,87 which
are frequently elevated in subjects with psychiatric conditions.88

To recapitulate, an ideal model for neuropsychiatric disor-
ders does not exist. With minimal equivocation, current mod-
els fall short of providing a comprehensive explanation for
the diverse phenomenology observed in persistent mental ill-
ness such as mood and psychotic disorders. It is possible that
cerebellar abnormalities noted in the extant literature are
epiphenomena relating to abnormalities elsewhere. The alter-
native hypothesis, that the cerebellum may be relevant secon-
darily or play an integral role in aberrant neural network sys-
tems, remains to be confirmed or refuted.
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