The role of neurotensin in central nervous system pathophysiology: What is the evidence? ======================================================================================== * Fannie St-Gelais * Claudia Jomphe * Louis-Éric Trudeau ## Abstract The peptide neurotensin has been studied for more than 30 years. Although it is widely distributed in the central and peripheral nervous systems, neurotensin has been more intensely studied with regard to its interactions with the central dopamine system. A number of claims have been made regarding its possible implication in many diseases of the central nervous system, including schizophrenia. In this review, we describe briefly the basic biology of this neuropeptide, and then we consider the strengths and the weaknesses of the data that suggest a role for neurotensin in schizophrenia, drug abuse, Parkinson’s disease, pain, central control of blood pressure, eating disorders, cancer, neurodegenerative disorders and inflammation. ## Introduction Neurotensin (NT) is a 13-amino-acid peptide originally isolated in 1973 from bovine hypothalami.1 This neuropeptide is found in the central nervous system (CNS), as well as in the gastrointestinal tract. However, this review will focus on the CNS effects of NT. Like many other neuropeptides, NT acts as a neuromodulator in the nervous system where the close association between NT and dopamine (DA) systems has been well documented (for review, see Binder et al2). The neuromodulation of DA transmission by NT raises the possibility that the neurotensinergic system could be implicated in diseases where the common determinant is a deregulation of DAergic transmission, such as schizophrenia, drug abuse and Parkinson’s disease.2 In this review, we will attempt to provide a summary of current knowledge about NT with special emphasis on the evidence suggesting its implication in CNS diseases. ### Biosynthesis, maturation, release and degradation of NT Like all neuropeptides, NT is synthesized as part of a larger inactive precursor that also contains neuromedin N (NN), a 6-amino-acid NT-related peptide.3,4 In the rat, the NT/NN precursor consists of 169 amino acid residues4 containing 4 pairs of dibasic residues (Lys-Arg). The endoproteolytic processing of this precursor at pairs of basic residues is mediated by members of the prohormone convertase (PC) family.5 The major PC involved in this process in the brain is likely to be PC2, because its expression colocalizes with all regions immunoreactive for NT.6,7 Although expression of PC1 and PC5A in the brain is more limited, these endoproteolytic enzymes also have the capacity to process the NT/NN precursor6,8,9 and could contribute to the regional differences observed in the relative proportions of NT and NN among brain structures.10 Once processed as an active peptide, NT is stored in dense-core vesicles11,12 and released in a calcium-dependent manner.13–15 NT transmission is terminated primarily by cleavage of NT in the C-terminal hexapeptide sequence that accounts for the biological activity of the peptide.16 Several endopeptidases belonging to the family of metallopeptidases have also been shown to contribute to the physiological inactivation of NT, such as neutral endopeptidase 24.11 (EC3.4.24.11),17 angiotensin-converting enzyme,18 endopeptidase 24.15 (EC3.4.24.15)19 and endopeptidase 24.16 (EC3.4.24.16).20 However, endopeptidase 24.16 is considered the main endopeptidase contributor to the inactivation of NT, because it is expressed ubiquitously.21–23 ### NT localization in the CNS NT-producing neurons and their projections are widely distributed in the CNS, which explains the wide range of effects of this peptide. In the rat brain, a number of NT-containing neural circuits have been suggested (Fig. 1): (1) from cells in the central nucleus of the amygdala to the bed of the stria terminalis,24 to the substantia nigra pars compacta,25 to the substantia nigra pars reticulata,26 to the ventromedial nucleus of the hypothalamus; 27 (2) from the hippocampus projecting through the cingulate cortex to the frontal cortex;28 (3) from the arcuate and paraventricular nuclei of the hypothalamus to the neurointermediate lobe of the pituitary gland;29 (4) from cells in the ventral tegmental area (VTA) to the nucleus accumbens, the diagonal band of Broca, the prefrontal cortex and the amygdala; 30,31 (5) from cells in the endopyriform nucleus and prepyriform cortex to the anterior olfactory nucleus, the nucleus of the diagonal band of Broca and the dorsomedial thalamic nucleus; 32,33 (6) from cells in the periaqueductal grey matter (PAG), the parabrachial nucleus and the nucleus of the solitary tract to the nucleus raphe magnus;34 (7) from cells in the preoptic region and the rostral part of the lateral hypothalamus, the rostral part of the lateral septum, the bed nucleus of the stria terminalis, the ventromedial ventral pallidum, the dorsal raphe nucleus and the diagonal band of Broca to the VTA;35 (8) from the subiculum to the mammillary bodies;36 (9) from the dorsal lateral portion of the bed nucleus of the stria terminalis to the parabrachial nucleus; 37 (10) from the striatum to the substantia nigra pars reticulata; 38 and (11) from the central nucleus of the amygdala and the bed nucleus of the stria terminalis to the retrorubral field.39 In addition to neurotensinergic pathways to and from the VTA, high concentrations of NT have also been observed in regions associated with DAergic projections, such as the caudate nucleus, globus pallidus and putamen40,41 (for a review, see Binder et al2). At the spinal cord level, NT-containing cells have been found in the substantia gelatinosa.41 ![Fig. 1](http://jpn.ca/https://www.jpn.ca/content/jpn/31/4/229/F1.medium.gif) [Fig. 1](http://jpn.ca/content/31/4/229/F1) Fig. 1 Sagittal representation of neurotensinergic pathways in the rodent brain. BST = bed nucleus of the stria terminalis; dBB = diagonal band of Broca; DR = dorsal raphe nucleus; GP = globus pallidus; hip = hippocampus; hyp = hypothalamus; LS = lateral septum; MB = mamillary bodies; n. solitary tract = nucleus of the solitary tract; PAG = periacqueductal grey; PB = parabrachial nucleus; PFC = prefrontal cortex; RMg = raphe magnus nucleus; RRF = retrorubral field; SNc = substantia nigra pars compacta; SNr substantia nigra pars reticulata; sub = subiculum; TD = dorsal thalamic nucleus; VP = ventral pallidum; VTA = ventral tegmental area. ### Pharmacology of NT receptors Both central and peripheral actions of NT depend on recognition of the peptide by specific receptors at the plasma membrane of target cells. Three different NT receptors, referred to as NTS1, NTS2 and NTS3/sortilin, have been cloned so far42 (for review, see Hermans and Maloteaux43 and Mazella44). NTS1 and NTS2 belong to the G-protein-coupled receptor superfamily45–48 and were initially distinguished pharmacologically on the basis of their affinities for NT and their differential sensitivity to the histamine antagonist levocabastine.49 Indeed, the type 1 NT receptor is often referred to as the high-affinity binding site (Kd = 0.1–0.3 nmol/L) and is insensitive to levocabastine.49 In rat brain, NTS1 transcripts are located primarily in neurons from the septum, substantia nigra, VTA, zona incerta, suprachiasmatic nucleus, as well as prefrontal, entorhinal and retrosplenial cortices.50,51 NTS1-containing nerve terminals were seen by immunohistochemical studies in the caudate putamen, bed nucleus of the stria terminalis, olfactory tubercle, as well as the lateral septum, amygdala, lateral habenula and nucleus accumbens.52,53 NTS1 is functionally coupled to the phospholipase C and the inositol phosphate (IP) signalling cascade (for review, see Vincent et al42 and Hermans and Maloteaux43). Other possible signalling could occur through activation of cyclic guanosine monophosphate (cGMP), cyclic adenosine monophosphate (cAMP), arachidonic acid production,54,55 mitogen-activated protein (MAP) kinase phosphorylation56–58 and inhibition of Akt activity.59 NTS1 undergoes agonist-dependent internalization when exposed to its natural agonist NT. This phenomenon is well documented in neurons and in NTS1-expressing cell lines (for review, see Beaudet et al,60 and also Hermans et al,61 Vandenbulcke et al62 and Nguyen et al63). The effects mediated by NTS1 are usually blocked by its selective nonpeptide antagonist SR48692,64 or by the broad-spectrum antagonist SR142948A65 that recognizes both NTS1 and NTS2. The generation of mice lacking NTS1 receptors66,67 has allowed the attribution to NTS1 of the hypothermic, impaired motor coordination and gastrointestinal motility effects of NT. A role for NTS1 in analgesia has also been suggested,68,69 but this is still controversial.66 The NT type 2 receptor (NTS2) has a lower affinity for NT (Kd = 3–10 nmol/L) than NTS1 and is sensitive to levocabastine. Unlike its high-affinity counterpart, NTS2 expression is more diffusely distributed throughout the brain. In the rat brain, high densities of NTS2 mRNA and protein were detected in many regions documented to receive a dense neurotensinergic innervation, such as the bed nucleus of the stria terminalis, olfactory bulb, substantia nigra, VTA and PAG.70–72 However, some of the highest concentrations of NTS2 receptors were found in areas devoid of neurotensinergic inputs such as the cerebral cortex, hippocampus and cerebellum,72 suggesting that endogenous ligands other than NT may activate this receptor.73 At the cellular level, NTS2 expression was initially detected in both neurons70,74 and astrocytes,70,75,76 although recent immunostaining experiments have reported signal only in neurons throughout the brain,72 a puzzling observation. The pharmacological and signalling properties of NTS2 are still controversial. In particular, it is unclear whether NT acts as an agonist, inverse agonist or antagonist at this site. Depending upon the species from which the NTS2 was isolated47 and the cell system used to evaluate signalling (oocytes, Chinese hamster ovary cells, COS-7 cells and HEK293 cells), different results have been reported. The only common result is the agonist action of SR48692,74,77–80 which was originally described as an antagonist with a higher affinity for NTS1 than NTS2 receptors.64, In addition, both NT and levocabastine exert a species-dependent agonist (mouse)47 or antagonist (human) profile.78,79 Indeed, in cell lines expressing human NTS2, SR48692 activated Ca2+ mobilization or IP formation, whereas both NT and levocabastine antagonized this response. The species-dependent pharmacological properties of NTS2 could be linked to differences in the constitutive activity of this ghrelin-family receptor. 79,81 The most convincing data supporting an agonist role of NT at rodent and human NTS2 receptors is the ability of NT to produce ligand-induced internalization of receptor–ligand complexes.80,82,83 This internalization of NTS2 is apparently associated with activation of extracellular signal–regulated kinases 1/2 (ERK1/2) but not Ca2+mobilization.83 The type 3 NT receptor (NTS3), which was originally identified as the intracellular sorting protein sortilin, is unique among neuropeptide receptors in that it is a single transmembrane domain receptor of the type I family.84 NTS3/sortilin, like NTS1, binds NT with high affinity once converted to its mature form upon cleavage by furin.85 This receptor is found in neurons, glia and adipocytes.76,86,87 In the rat brain, regions expressing both high levels of NTS3/sortilin mRNA and protein include the piriform cortex, hippocampus, islands of Calleja, medial and lateral septal nuclei, amygdaloid nuclei, thalamic nuclei, supraoptic nucleus, substantia nigra and Purkinje cell layer of the cerebellar cortex.88 NTS3/sortilin has the ability to bind a variety of other ligands in addition to NT, such as the receptor-associated protein (RAP)89,90 and lipoprotein lipase (LpL).91 It is thus possible that NTS3/sortilin also subserves non-NT-related functions in the mammalian CNS. To date, very little is known about the physiological role of the NTS3/sortilin receptor. The strongest evidence that NTS3 can behave as a true NT receptor lies in the recent demonstration that this protein may be involved in the NT-induced migration of human microglial cells via the stimulation of both MAP and phosphatidylinositol (PI)3-kinase-dependent pathways. 92 NTS3/sortilin may also be involved in the growth of certain cancer cell lines93 and in the modulation of NT signalling via mediation of NT uptake and degradation.86,94,95 In closing, let us mention that a candidate fourth NT receptor has been proposed, although little is currently known about its physiological relevance. This receptor, named SorLA/LR11, is, like NTS3, a single transmembrane domain receptor of the type 1 family.96 In the CNS this receptor is expressed in neurons,97 but its role in the effects of NT remains to be determined. It has been suggested that it regulates the processing of the amyloid precursor protein.98 ## Major physiological roles of NT in the CNS In this review, we focus our attention on the roles of NT in the CNS. However, it is important to point out that this peptide is also highly expressed peripherally where it acts as a modulator of the gastrointestinal and cardiovascular systems.99–102 ### Action of NT on the DA system #### Neurotensinergic innervation of DAergic neurons There is strong anatomical evidence for the interaction between NT and the DAergic system. Midbrain DAergic neurons located in the VTA, substantia nigra and retrorubral field are densely innervated by NT-containing axons.35,41 The origin of the NT plexus that innervates DA neurons is not fully established, but some of the neurotensinergic input to the VTA originates from the lateral preoptic area and the rostral part of the lateral hypothalamus.35 The origins of the neurotensinergic fibres innervating the substantia nigra and retrorubral field remain controversial. #### Effect of NT on DAergic neuron firing rate and DA release NT increases the firing rate of mesencephalic DAergic neurons and has a depolarizing effect, at least in part via NTS1 activation.103–105 This increase in firing rate is Ca2+-dependent and requires IP3 receptor activation.106 Because NT modulates the activity of DAergic neurons, it is thus not surprising that NT also modulates DA release. NT has been shown to modulate DA release from striatal, nucleus accumbens and retinal slices.107–110 Depending on the experimental model, and the brain area where it is injected, NT can induce an increase or a decrease in DA release. Using electrochemical detection and a carbon fibre electrode, NT, when applied intracerebroventricularly, was found to increase DA levels in the nucleus accumbens. 111 However, using microdialysis, perfusion of NT in the nucleus accumbens was found to lead to a local decrease in DA release by a γ-aminobutyric acid-A (GABAA)-receptor-dependent mechanism.112 Moreover, microdialysis of antibodies against NT in the cerebral ventricles leads to an increase in DA release in the nucleus accumbens.113 NT could also act to facilitate DA release in the accumbens by decreasing the ability of the dopamine D2 receptor (D2R) to mediate presynaptic inhibition at DAergic axon terminals.114 Finally, NT injected in the VTA causes an increase in DA release in the nucleus accumbens.115 This is likely to be explained by the ability of NT to increase the firing rate of DAergic neurons. However, the possible contribution of a decrease in somatodendritic autoreceptor function remains to be evaluated. #### Regulation of DA receptor function In addition to its action on the excitability of DAergic neurons, NT can also act to regulate the function of DA receptors. Indeed, there is biochemical and electrophysiological evidence suggesting an interaction with D2R. First, binding experiments showed that NT induces a modest decrease in the affinity of D2R for its agonists.116–119 In-vivo and in-vitro studies showed that NT increases the dissociation constant (Kd) of D2R without affecting Bmax. These results suggest that the function of D2R receptors is affected by NT, but the number of functional receptors remains unchanged.120–124 The interaction between NT and D2R was also measured by evaluating DA release in the striatum. Perfusion of NT in this region decreases the ability of DA agonists to inhibit basal DA levels, an observation that is compatible with the existence of some functional interaction between NT and D2R. However, whether this interaction occurs directly on DAergic axon terminals is unclear.125 Modification of D2R function by NT was also evaluated electrophysiologically. Indeed, patch clamp recordings suggest that NT and D2R may regulate in an opposing fashion a similar potassium conductance in DAergic neurons, thus providing a possible explanation for an NT–D2R interaction:126 NT would increase cellular excitability by inhibiting potassium channels, whereas a D2 agonist would decrease excitability by activating the same channels. According to such a model, NT would thus simply prevent the D2 agonist from activating the potassium channels by independently inhibiting them. However, extracellular recordings of the firing of midbrain DAergic neurons showed that NT is able to reduce the inhibitory effect of the D2R agonist, even at concentrations of NT that do not increase firing. 127–129 This observation argues against the idea that the interaction depends on the regulation of a common potassium channel by the 2 receptors. ### Action of NT on other neurotransmitter systems In addition to its widely studied interaction with the DAergic system, NT also affects other neurotransmitter systems. #### Evidence for the effect of NT on cholinergic transmission In the CNS, cholinergic neurons are found in the midbrain, striatum and magnocellular complex of the basal forebrain. 130,131 There is evidence for the expression of NT receptors by cholinergic neurons in the basal forebrain and also for neurotensinergic innervation of this structure, suggesting a direct modulation of these neurons by NT.132–134 Anatomical data also suggest that some cholinergic neurons may be modulated indirectly by NT. For example, an indirect modulation of cholinergic neurons is mediated by NT receptors located on DAergic neurons innervating the striatum.135 The effect of NT on acetylcholine (ACh) release was also studied, and it was shown that NT increases K+-evoked ACh release in striatal brain slices.136 However, a contradictory result has been obtained by in-vivo microdialysis in the striatum, where no effect of NT on ACh release was detected.137 The effect of NT on ACh release in the cortex also seems to be complex. It was reported that NT depresses ACh release in frontal cortex slices, has no effect in the occipital cortex and has a potentiating effect in the parietal cortex.138 Electrophysiological experiments showed that in cholinergic neurons of the basal forebrain magnocellular complex, NT produces depolarization and rhythmic bursting.139–141 The same result has been obtained in cholinergic neurons of the medial septum and vertical limb of the diagonal band nuclei.142 NT-induced excitation has been associated in nucleus basalis of Meynert cholinergic neurons with a reduction in inwardly rectifying K+ conductances.143 #### Effect of NT on serotonergic neurotransmission There are anatomical data suggesting an interaction between NT and serotonergic neurons. Indeed, neurons of the rostral part of the raphe synthesize NT, whereas NT receptors are widely expressed in most of the raphe.72,144–146 Much of the raphe nuclei also receives significant neurotensinergic innervation. 147,148 There is physiological evidence for the presence of NTS1 on serotonergic neurons. Indeed, a subpopulation of serotonergic neurons located in the nucleus raphe magnus and in the dorsal raphe respond to NT by an increase in their firing rate, an effect that is blocked by SR48692.149,150 The functional role of NT in the raphe remains to be determined, but it may participate in the modulation of some of the known functions of the serotonergic system including nociception,151 sleep–wakefulness cycle regulation152 and stress-related responses.153 #### Effect of NT on GABAergic neurotransmission The activity of GABAergic neurons evaluated either by measuring firing rate or by sampling extracellular GABA can be increased by NT in the hippocampus, striatum, prefrontal cortex and globus pallidus.137,154–156 Other studies have shown that NT decreases GABA release both in the substantia nigra and the ventral thalamus by a D2R-dependent mechanism.157 These effects were counteracted by SR48692, suggesting that they were mediated by NTS1. Such an increase in GABA release could result in a number of indirect effects. For example, NT-mediated GABA release in the striatopallidal pathway inhibits pallidal GABAergic neurons projecting to the subthalamic nucleus, resulting ultimately in an increase in glutamate release.158 #### Effect of NT on glutamate neurons NT increases glutamate release in some brain regions, such as the striatum, globus pallidus, frontal cortex and the substantia nigra.157–160 Considering that an excess of glutamate can induce excitotoxicity within the context of conditions such as stroke, Alzheimer’s disease and Parkinson’s disease, it is interesting to note that NT can enhance glutamate excitotoxicity in both mesencephalic and cortical neurons.161,162 In addition to enhancing glutamate release, NT can modify the function of glutamate receptors. Indeed, NT amplifies *N*-methyl-d-aspartate (NMDA)-mediated signals by a protein kinase C (PKC)-dependent mechanism. 162 It is well known that stimulation of the NMDA receptor mediates glutamate-induced excitotocixity, leading to apoptotic cell death or necrosis.163,164 NT can increase the number of apoptotic cells induced by glutamate exposure.162 ### Neuroendocrine effects of NT One of the major central functions of NT is to regulate neuroendocrine systems (for review, see Rostene and Alexander165). A number of essential nuclei implicated in hormone secretion and regulation, such as the arcuate nucleus, the parvocellular division of the paraventricular nucleus and the periventricular nucleus of the hypothalamus, as well as the pituitary, receive neurotensinergic projections and express NT binding sites.29,166 NT influences neurons that synthesize and secrete gonadotropin-releasing hormone, somatostatin and corticotrophin-releasing factor (CRF).167 In addition to neurotensinergic projections arriving from other regions, NT is synthesized in some hypothalamic secretory cells located for the most part in the arcuate and paraventricular nuclei. 168,169 It appears that NT produced locally contributes to the regulation of the release of some neuromodulators and hormones such as CRF, galanin, enkephalin, cholecystokinin and growth hormone–releasing hormone170–172 and could thus be implicated in stress-related functions. Compatible with this, long-term delivery of SR48692 to the paraventricular nucleus of the hypothalamus attenuated stress-induced elevations of the release of corticosterone and adrenocorticotropic hormone (ACTH).173 In addition, there is a mutual regulation between NT and neuroendocrine systems, because androgen, estrogen, glucocorticoid and thyroid hormone affect NT synthesis in the hypothalamus and anterior pituitary.174–177 ### Action on non-neuronal cells In addition to its action on neurons, NT has been reported to affect glial cells such as astrocytes and microglia. Evidence for the effects of NT on astrocytes is provided by the fact that these cells express NT-binding sites in many brain areas such as the midbrain, cortex, striatum, brain stem and spinal cord.178 The subtype of NT receptor expressed by these cells is presently unclear. A functional study of cultured VTA astrocytes showed that the calcium increase induced by NT was partly sensitive to SR48692 and was not mimicked by the NTS2 agonist levocabastine.179 This result suggests that astrocytes express NTS1 but also that another undefined receptor could be present on these cells. Other studies, using embryonic rat midbrain and postnatal cerebral cortex cell cultures, showed that NTS2 was expressed by a subpopulation of glial cells and that NTS2 expression was increased in reactive astrocytes. 75,76,174 Compatible with the idea that NT receptors are expressed by a subpopulation of astrocytes, it was reported that whereas NT-induced intracellular Ca2+ mobilization can be detected in about 30% of primary mesencephalic astrocytes, this response is absent from purified adherent astrocytes from the same region.106 Single-cell reverse transcription-polymerase chain reaction (RT-PCR) experiments from acutely dissociated astrocytes, as well as double in situ hybridization experiments at different developmental time points, would be useful to clarify the expression pattern of NT receptors in astrocyte subpopulations. The physiological role of NT receptors in astrocytes remains largely unknown. However, because there are increasing data suggesting the involvement of astrocyte-derived messengers in regulating neuronal activity and synaptic transmission,180,181 future work is required to directly investigate the hypothesis that NT induces the release of chemical messengers from astrocytes, thus indirectly regulating neurons in the mesencephalon or other structures. Interestingly, it was shown recently that although NT-induced Ca2+ mobilization in astrocytes is not necessary for the excitatory effect of NT on midbrain DAergic neurons in culture, this excitation is enhanced when neurons are grown together with NT-responsive astrocytes.106 Finally, NT also affects the activity of microglial cells. More specifically, NT elicits the migration of a microglial cell line by an NTS3-dependent process. It was also shown that ERK1/2 and PI3-kinase intracellular pathways are implicated in this effect.92 Such results suggest that NT plays a role in cellular responses to inflammation or brain lesion, because microglia motility is very important for these processes. ## Role of NT in schizophrenia? On the basis of a growing literature suggesting the existence of anatomical and physiological interactions between NT and the mesolimbic DA system, Charles Nemeroff published an influential paper 25 years ago entitled “Neurotensin: Perchance an endogenous neuroleptic?”182 This much-cited paper introduced the bold suggestion that NT could act to inhibit DA neurotransmission, in much the same way as antipsychotic (or neuroleptic) drugs. Nemeroff also proposed that perhaps schizophrenia symptoms result in part from a deficit in brain NT, leading to excessive DA neurotransmission. Here we will briefly reconsider this hypothesis and ask whether there are sufficient data to support it. First, what is the evidence supporting an intimate relation between DA and NT? As stated previously, NT is indeed found to be abundantly expressed in the ventral midbrain in an intricate network of thin fibres. In addition, NT-binding sites and NT receptors are expressed in high numbers by DA neurons. These basic observations certainly are in agreement with the idea that NT is a key regulator of the DA system. However, it is important to remember that NT is also abundant in a number of additional nuclei in the brain and, unless a deficit in NT was restricted to the ventral midbrain or to the regions receiving the densest DA projections, a disease implicating a decrease in NT would be expected to be accompanied by a large variety of symptoms not restricted to those found in schizophrenia. A first argument in favour of the role of NT as an endogenous antipsychotic-like compound is that animal studies have shown quite convincingly that injections of NT in the VTA or in projection areas such as the nucleus accumbens cause effects that are similar to those of single administration of antipsychotic drugs. For example, when injected in the VTA, both NT and antipsychotic drugs increase the firing rate of DA neurons.103,183 Similarly, both NT (indirectly) and antipsychotics (directly) inhibit D2R function when injected in the nucleus accumbens. 114,116–119,121,122,124,125 At the behavioural level, both agents cause sedative-like effects and muscle relaxation, as well as hypothermia and vacuous chewing movements (for review, see Dobner et al184 and Kinkead and Nemeroff185). Dissimilarities have also been reported, so it would be fair to conclude that the match is not perfect. However, some of the reported differences could be dose related. For example, at low doses NT may decrease D2 receptor function, thus leading to a partial disinhibition of DA signalling. However, at higher doses, NT apparently has additional effects that are unrelated to a decrease in D2 receptor function. For example, it directly depolarizes DA neurons by activating cationic channels, an effect that antipsychotic drugs do not have.186 A second and arguably the most direct argument for a role of NT in schizophrenia is that a number of published studies, all of them emanating from Nemeroff and collaborators, report that cerebrospinal fluid (CSF) NT levels are lower in a subgroup of subjects with schizophrenia than in controls.187–193 What in fact has been observed is that CSF NT levels are lower in a subgroup of nonmedicated patients with schizophrenia who are most severely affected, with an inverse correlation between symptom severity and NT levels. In addition, in some of the studies, a partial normalization of CSF NT levels was noted in response to antipsychotic drug treatment, although there was no correlation between recovery of NT levels and extent of improvement of symptoms.189 It should also be noted that in one postmortem study, an increase in cortical NT levels was detected in patients with schizophrenia.194 Although the finding of reduced CSF NT levels appears to be a reproducible observation, no reports replicating this work have yet to come from other laboratories. The results have to be interpreted with caution. First, all the data come from CSF measurements, and the relation between CSF and brain NT levels is unclear, in part because part of the signal could reflect spinal cord levels of NT. Second, the finding of reduced CSF NT levels is limited to a subgroup of patients; group comparisons have failed to find an overall decrease in CSF NT levels when all patients were considered. Finally, although the hypothesis of a link between compromised brain NT and schizophrenia is attractive, an alternative hypothesis is that NT levels are lower in some nonspecific manner in the most severely affected nonmedicated patients because of a generalized decrease in cognitive activity. If this is true, then perhaps the CSF and brain levels of a number of markers of neuronal activity will be found to be lower in the most severely affected patients. Antipsychotic drug treatment would then act indirectly to increase NT levels by promoting partial recovery of cognitive activity by reducing positive symptoms. But then again, the possibility that antipsychotic drugs act at least in part by restoring brain NT levels is not unreasonable, because most antipsychotic drugs have been reported to increase the expression of NT mRNA in the ventral and dorsal striatum195–198 (but see Mijnster et al199). If this hypothesis is correct, then one would expect that NT receptor antagonists could actually have negative effects on the symptoms of patients with schizophrenia. Although NT receptor antagonists have been explored for many years by pharmaceutical companies, to date, the results of only 1 clinical trial reporting the effect of an NT receptor antagonist (SR48692) on schizophrenia have been published. In that report, no significant effect of the antagonist was found.200 On the basis of the original hypothesis of an NT deficit in schizophrenia, some have proposed that NT receptor agonists hold more promise as potential antipsychotic drugs.201–204 A limited number of such agonists have been developed, and some are reportedly able to cross the blood–brain barrier.205–209 No clinical trial using such agonists in the treatment of schizophrenia has yet been reported, but animal studies have shown that NT or some of these systemically active agonists can display an antipsychotic-like profile.201–203,205,209–214 For example, a number of animal studies, many of which have studied the pre-pulse inhibition (PPI) of the startle reflex as a model of sensorimotor gating deficits in schizophrenia, have confirmed possible links between NT and DA in such schizophrenia-relevant paradigms. Injection of NT in the nucleus accumbens, but not in the VTA, reduces the ability of amphetamine to perturb PPI in the rat55,202,215 (but see Feifel et al216). This observation is compatible with the idea stated above that NT acts in the DA target structures to reduce DA signalling. In addition, a centrally active NT agonist administered subcutaneously produced a similar effect55,217 (but see Rompre218 for a psychotimulant-like effect of centrally administered NT, suggesting that at certain doses NT could also act to enhance DA-dependent behaviours). Although not tested in a PPI paradigm, a recently developed NTS1 ligand, KH28, was reported to reduce amphetamine-induced hyperlocomotion.214 Compatible with the idea that a deficit in NT could influence PPI, the NT receptor antagonist SR142948A prevented the ability of the antipsychotic haloperidol to reduce isolation-rearing-induced perturbation of PPI.219 Finally, PPI is disrupted in NT-knockout mice.220 Such results, though far from proving a link between NT and schizophrenia, nonetheless can be taken as arguing in favour of the biological plausibility of this hypothesis. Beyond clinical trials with NT agonists, it will not be easy to pursue further in human patients the hypothesis of a link between NT and schizophrenia. There is currently no approach to measuring brain NT levels in living humans, and no association between schizophrenia and mutations or polymorphisms in NT or NT receptor genes has been reported.221 ## Implication of NT in drug abuse? A possible implication of NT in drug abuse has been studied for close to 25 years.222 The primary drive for this hypothesis is based on the similarities between some of the effects of NT and of psychostimulant drugs. This work has been somewhat controversial, in large part because the effect of NT depends on many parameters such as the dose used, the injection procedure and localization, as well as the experimental model or species used. As mentioned in previous sections, injection of NT in the nucleus accumbens tends to reduce some behavioural effects of psychostimulant drugs. However, the psychostimulant-like actions of NT occur when the peptide is injected in the VTA.223 For example, intra-VTA injections of NT in the rat increase locomotor activity and elevate DA release in the nucleus accumbens.223–227 This is compatible with the localization of excitatory NT receptors on VTA DA neurons that give rise to the mesocorticolimbic pathway,228 as mentioned previously. NT could thus produce psychostimulant-like effects when injected in the VTA simply by enhancing the firing of DA neurons, leading to elevations of extracellular DA in the nucleus accumbens. NT can also increase the firing of substantia nigra DA neurons104 and cause an elevation of glutamate levels in this structure.128,157 Moreover, NT presents other psychostimulant characteristics. When injected in the rat VTA, NT acts as a primary reinforcer in the conditioned place preference paradigm229 and can be self-administered.230 In rats, NT potentiates brain-stimulation reward.231–234 When injected intracerebroventricularly, NT also sensitizes rats to the locomotor-activating effects of amphetamine235 and increases the sensitivity of mice to ethanol.236,237 Moreover, systemic administration of the NT receptor antagonists SR48692 and SR142948A reduces sensitization to amphetamine, suggesting that endogenous NT could play some role in this drug-induced long-term plasticity. 238–240 Whether NT specifically in the VTA is critically involved is less clear. In fact, psychostimulants such as cocaine and amphetamine cause an increase in NT mRNA expression in the striatum and the nucleus accumbens,241–244 areas where NT has been shown to decrease the effects of psychostimulants. Interestingly, an increase in NT immunoreactivity after methamphetamine or cocaine administration has also been reported in the substantia nigra,245,246 but no data are available for the VTA. Amphetamine and metamphetamine also increase NT levels in the medial prefrontal cortex.247 Finally, it should be noted that rhesus monkeys can reportedly not be trained to self-administer the centrally active NT receptor agonist NT69L intracerebroventricularly.248 In addition, NT reduces bar pressing for food rewards.249 Together, these results nonetheless suggest that NT may play a role in the effects of psychostimulants, but the mechanism involved is unclear. If the major cellular mechanism of the psychostimulant effect of NT is increased DA neuron firing, an open question is the specific mechanism involved. As stated previously, NT can activate cationic channels and inhibit potassium channels, thus directly depolarizing DA neurons. This could perhaps be sufficient to explain the increase in firing rate. However, inhibition of somatodendritic D2 autoreceptors by NT could also be involved. Experiments directly addressing this issue are required. A final and obviously critical question is whether NT is involved in direct drug effects or drug addiction mechanisms in humans. Currently, very few data have been published. In one study, no association was found between a polymorphism in the proneurotensin gene and alcohol dependence in a Finnish population.250 In summary, although accumulating animal research argues in favour of the implication of NT in drug abuse mechanisms, essentially no data are available in humans. The possibility of using NT receptor ligands as possible pharmacological tools to treat drug addiction205 can thus be considered promising but perhaps a bit premature. ## Implication of NT in Parkinson’s disease? Parkinson’s disease (PD) results from a progressive loss of nigrostriatal DAergic neurons. The decrease in striatal DAergic innervation due to this loss is responsible for motor disturbances characteristic of the disease such as akinesia, muscular rigidity and tremor. The close relation between NT and the DAergic system suggests that NT could be associated with PD. Numerous studies have tried to determine whether PD is associated with changes in the neurotensinergic system. Biochemical and histological studies of brain tissues from patients who died from PD showed a decrease in the number of NT-binding sites in the substantia nigra, VTA, caudate nucleus, putamen and globus pallidus compared with healthy subjects.251–254 Using in situ hybridization, it was also possible to show more specifically that NTS1 mRNA was decreased in the substantia nigra of subjects with parkinsonism.255 PD can be partly mimicked in animal models by destroying the nigrostriatal pathway using toxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 6-hydroxydopamine (6-OHDA). In these PD animal models, there is a decrease in the number of NT-binding sites in the striatum and substantia nigra.228,256–258 In the substantia nigra, the decrease in the number of NT-binding sites is surely the result of the loss of DAergic neurons that express NT receptors. However, the interpretation of the decrease in NT-binding sites in the striatum is not that straightforward. Indeed, contradictory results concerning the exact localization (presynaptic or postsynaptic) of NT receptors have been obtained in the striatum. In some studies, it was reported that almost all NT receptors within the striatum were located on DAergic terminals,259,260 whereas others reported that NT receptors were mostly expressed by striatal intrinsic neurons.29,256,261 Another study showed that the decrease in NT receptors in the monkey striatum treated with MPTP is smaller than the decrease in DA concentration, suggesting only a partial localization of NT receptors on nigrostriatal projections.257 The same result was obtained comparing the presence of NT receptors and the DA content in postmortem brain tissues from patients with PD.251,254 The decrease in striatal NT-binding sites may not be only due to the loss of NT receptors on DAergic neurons but could also be the result of an effect on striatal neurons themselves. More anatomical studies should be done to determine whether NT receptors expressed by striatal medium spiny neurons are specifically decreased in PD. In addition to the quantification of NT-binding sites, the concentration of tissue NT has also been measured in order to determine changes induced by PD on the neurotensinergic system. It has been shown that plasma NT concentration is higher in patients with parkinsonism compared with control patients and also higher in untreated patients compared with levodopa-treated patients.262 Studies of postmortem brains further showed that NT levels remain unchanged in PD compared with healthy subjects in the caudate nucleus, putamen and globus pallidus, while they were higher in the substantia nigra compacta and reticulata263,264 and decreased in the hippocampus. 264 Whether the increase in NT concentration in the substantia nigra is causally related to PD or whether it results indirectly from the loss of DA neurons or from drug therapy is not easy to determine. Indeed, because most patients with PD are subjected to drug therapy, it is difficult to evaluate plasma NT concentration in nonmedicated patients. However, it is interesting to compare PD to incidental Lewy body disease. The presence of Lewy bodies in the brain is correlated with substantia nigra cell death, even if the decrease is smaller than in PD,265,266 and is considered to represent the PD presymptomatic phase.267 These patients do not show any pathological symptoms and so do not receive medication. Interestingly, there is an increase in NT content in the postmortem brain of patients with Lewy body disease, even though the effect is not as large as in PD.268 At the very least, this finding suggests that the increase in NT in PD is probably not secondary to pharmacotherapy. NT levels were also measured in PD animal models and, surprisingly, the opposite results have been obtained. In 6-OHDA-lesioned rats, NT-immunoreactivity is increased in the striatum and globus pallidus, whereas no change occurs in the substantia nigra.269,270 In MPTP-lesioned monkeys, no change in NT concentration was found in the striatum.271 In this same model, a previous study did not show any change in NT in the substantia nigra and striatum.272 Although the relation between NT and PD has not been fully elucidated, one can speculate that the increase in NT levels observed in the human brain with PD is the result of an adaptive mechanism in reaction to the loss of NT receptors and DAergic neurons. This increase in NT concentration could represent an attempt of the system to increase DAergic drive by stimulating the remaining NT receptors on DAergic neurons. Within this context, an obvious question is whether NT agonists could be useful as adjunctive treatment of PD. Some studies have indeed shown that exogenous NT can display antiparkinsonian properties in 6-OHDA-lesioned animals. In fact, intracerebroventricular administration of NT or some of its analogues results in attenuation of muscular rigidity and tremors observed in these animals.273,274 In addition, in 6-OHDA-lesioned rats, the NT agonist NT-69L has an antiparkinson-like effect, because it blocks rotating behaviour induced by d-amphetamine and apomorphine.275 The exact mechanism of this NT-induced antiparkinson-like effect has not yet been determined. Based on the previously mentioned ability of NT to decrease D2R receptor function in the striatum, the use of NT receptor antagonists in the treatment of PD has also been considered. Administration of the NTS1 antagonist SR48692 has been shown to enhance striatal DAergic transmission.125 However, a clinical trial with SR48692 in patients with PD showed no improvement of symptoms.276 In conclusion, although no data are currently available to support a direct, causal role of NT in PD, some interesting correlative evidence has been obtained and some promising recent studies on animal models support the potential role of NT agonists in the symptomatic treatment of PD. ## Implication of NT in pain mechanisms? The implication of NT in analgesia has been studied for many years.277 A high density of NT receptors is present throughout the PAG and the rostral ventromedial medulla, 2 structures implicated in descending nociceptive circuits. 52,151,278,279 NT has analgesic effects that are naloxone independent and consequently not dependent on opioids.280 The antinociceptive effect of NT has been reported after injection of the peptide in many brain areas, as well as intracisternally, 281 intrathecally,282 intracerebroventricularly283 or directly in areas rich in NT innervation such as the amygdala, medial preoptic area, thalamus, PAG and nucleus raphe magnus.284 The location of the injection site can modify the intensity of the response to NT. Indeed, when injected in the central part of the amygdala, NT induces analgesia and increases hotplate response latency more effectively than if injected intracerebroventricularly. 285 Compatible with the possible implication of endogenous NT in pain suppression mechanisms, a microdialysis study showed that NT is endogenously released in the PAG in mice after unilateral hindpaw inflammation using Complete Freund’s Adjuvant.286 Analgesic effects of NT have been widely reported, but in most of these studies relatively high concentrations of NT were used. Studies performed using lower, perhaps more physiological, concentrations suggest that NT may actually induce hyperalgesia instead of analgesia. Such a phenomenon is observed when picomolar range concentrations (0.03–0.3 pmol/L) of NT are injected in the rostral ventromedial medulla, although injections at higher doses in the same nucleus induce analgesia.284,287–289 In addition, infusion of SR48692 in the rostral ventromedial medulla or intraperitoneal injection of this compound facilitates analgesia, therefore suggesting a hyperalgesia function for endogenous NT.287,289,290 Both NTS1 and NTS2 appear to be implicated in NT-induced analgesia. The first studies of NT receptor subtypes mediating analgesia showed that the analgesic effect of NT was mediated by a subtype of receptor that is pharmacologically distinct from the previously characterized high-affinity levocabastine-insensitive receptor and low-affinity levocabastine-sensitive receptors.291,292 Different results were obtained when suitable antagonists for the different receptors became available. Indeed, SR48692, a relatively selective antagonist of NTS1 when used at low doses, had no effect on NT-induced analgesia, which suggested that another NT receptor subtype, presumably NTS2, was responsible for the phenomenon.293 A subsequent study showed that levocabastine, an NTS2 agonist, displays an analgesic effect.294 However, another study showed that SR48692 inhibits NT-induced analgesia with complex multiphasic dose–response characteristics,289 suggesting the implication of more than one NT receptor subtype. A recent study also argues for the implication of NTS1, in addition to NTS2, in the analgesic effect of NT.69 Indeed, it was shown using the tail-flick test that, in addition to NT, the 2 NTS2 agonists levocabastine and JMV-431 both induce an antinociceptive response. However, the antinociceptive effect of NT was partly abolished by co-administration of SR48692, suggesting that, in addition to NTS2, NTS1 also plays a modest role. Using NTS1-knockout mice, it was also possible to show that this receptor indeed plays a role in at least some kinds of painful stimuli, because these mice present a defect in NT-induced analgesia in the hot-plate test,68 whereas no modification occurs in another nociceptive test, such as the phenyl-p-benzoquinone (PBQ)-induced writhings.66 Concerning hyperalgesia, it has been shown that endogenous NT facilitates visceral pain response, because in NT-knockout mice and in SR48692-treated rats there is attenuation of visceral nociception.290 The fact that both NTS1 and NTS2 are implicated in the central role of NT in pain control is compatible with the fact that both receptors are expressed in the PAG and raphe nuclei.72,151 Taken together, the published data are thus compatible with a role of NT in pain mechanisms. Further evaluation of the possible use of NT agonists or antagonists as analgesic compounds thus seems warranted. Compatible with this, the NT analogue NT69L has been reported to cause a rapid and persistent antinociceptive effect as determined by the hot-plate test.295 ## Possible implication of NT in other diseases NT is widely distributed in the brain and is known to affect many neurotransmitter systems. Growing evidence suggests that NT is associated with different pathologies in addition to those directly related to the DAergic system discussed up to now. ### Implication of NT in the central control of blood pressure Hypotension was the first reported physiological effect of NT.1 A possible role of this peptide in hypertension would thus not be surprising. In anesthetized rats, NT injected intracerebroventricularly induces hypotension, whereas a smaller decrease in blood pressure is observed in nonanesthetized rats.296,297 The NT receptor antagonist SR142948A is more effective than SR48692 in blocking this effect.102 The nucleus of the solitary tract plays an important role in the central control of arterial pressure, because it receives signals from baroreceptors and chemoreceptors of the cardiovascular system. NT injected into the nucleus of the solitary tract causes a decrease in blood pressure.298,299 NT69, an NT receptor agonist that crosses the blood–brain barrier, induces hypotension. 248 The opposite results were reported with conscious rats, in which an intracerebroventricular injection of NT induces hypertension.300–302 The results obtained in these different studies are thus conflicting, and the cause of this discrepancy remains unknown. However, we can speculate that differences in the site of injection or in anesthesia may account for this. Nonetheless, the results presented here are clearly compatible with some role for NT in central regulation of blood pressure. In addition to these results obtained using NT injections, it has been shown that in spontaneously hypertensive rats, there is a decrease in NT concentrations in many brain areas implicated in blood pressure regulation, such as the hypothalamus, medulla oblongata, pons, pituitary and spinal cord.303 Interestingly, suprachiasmatic nucleus NT contents are greatly decreased in hypertensive patients compared with controls.304 The use of NT receptor knockout mice would perhaps help to clarify the implication of NT in arterial pressure, but changes in blood pressure have apparently not yet been evaluated in such animals. ### NT and eating disorders Food intake is controlled in part centrally by the hypothalamus, which is the site of integration of multiple signals such as hormones, neurotransmitters and peptides. Among them, NT is known to reduce food intake. Indeed, NT injected in the VTA or in the ventromedial part of the hypothamalus induces a decrease in food intake.305,306 There are also changes in NT expression in animals with eating disorders. Indeed, NT expression is increased in the hypothalamus of anorexic animals. 307 NT interacts with other food intake regulators such as leptin, a hormone produced by adipose tissues that reduces food intake. Administration of leptin increases hypothalamic NT expression in healthy rats308 as well as in hypothalamic cell lines in vitro.309 In addition, the NTS1 antagonist SR48692 appears to reverse leptin’s action on satiety.310 The expression of NT is also downregulated in animal models lacking leptin.311 Other evidence for a role of NT in food intake comes from results obtained with NTS1-deficient mice (NTS1−/−), which show a small increase in body weight compared with control animals.66 Pharmacological studies also support a role of NT in body weight homeostasis. The NT analogue NT69L reduces body weight and food intake in healthy and obese rats.312 These results are promising with regard to the possible use of NT ligands as therapeutic drugs in eating disorders. ### NT and cancer NT expression arises early in embryonic development, and it has been suggested that it could thus play a role in cell cycle regulation.313,314 Compatible with this hypothesis, NT has been associated with the progression and differentiation of tumours in the periphery and central nervous systems.315 The implication of NT in cancer has been studied extensively in the periphery, where it has been shown that the size of some colon or lung tumours increases in the presence of NT316,317 and becomes smaller in the presence of the NTS1 antagonist SR48692.317,318 The presence of NTS1 has been reported in human tumours of the ovary, pancreas and prostate and Ewing’s sarcomas, as well as centrally in meningiomas and astrocytomas. 315,319–321 The transcription of the NTS1 gene is also apparently increased in human colonic adenomas.322 In dividing human neuroblastoma (CHP 212) and murine neuroblastoma (N1E-115) cells, it has been reported that during prolonged NT agonist stimulation, NTS1 receptors are recycled to the cell surface, thus allowing constant cell sensitization and long-term activation of mitogen-activated protein kinases p42 and p44,323 which is compatible with a potential role in oncogenic regulation. A possible implication of NTS3 in cancer has also been explored. Indeed, NTS3 and NTS1 are present in almost all cancer cells from the prostate, pancreas and colon.58,93 However, no data have yet shown the presence of NTS3 in central tumours. Little is known about the signalling pathways activated by NTS3, but the receptor is present inside the cell in close proximity to the nucleus.95 This characteristic gives NTS3 a good profile for being a candidate in mediating NT-induced proliferative signals. Considering the strong evidence in favour of a role of NT in peripheral tumours, it would seem that additional efforts should be directed toward a better comprehension of the role of NT in cancers of the CNS. ### NT and neurodegenerative disorders and stroke There is currently little evidence for a role of endogenous NT in neurodegenerative disorders or stroke. A possible implication of NT in neurodegenerative disorders is nonetheless suggested by the finding that in the suprachiasmatic nucleus of patients with Alzheimer’s disease, there is a significant decrease in NT-containing neurons.324 Because of the lack of conclusive evidence, it is nonetheless difficult to know whether NT can directly contribute to neurodegenerative diseases. However, NT enhances glutamate-induced excitotoxicity through NTS1 activation, as suggested by the blockade of this effect with SR48692.161 In sharp contrast, others have suggested that NT reduces neuronal death and infarct volume in experimental ischemia models.325,326 This protective effect of NT could be partly explained by the ability of this peptide to induce hypothermia, a condition that is well known to be neuroprotective against ischemia-induced central infarcts.327 ### NT and inflammation Findings both in and outside the nervous systems have long supported a role of NT in inflammation, acting as a proinflammatory cytokine. It was first described that peripheral NT elicits inflammatory symptoms such as vasodilatation, enhanced vascular permeability, mast cell degranulation, and enhancement of directional migration and phagocytosis of neutrophils.328 NT was later shown to enhance the production of interleukin-1 (IL-1) by activated alveolar macrophages.329 In the gastrointestinal tract, a tissue rich in NTS1, NT has been involved in the pathophysiology of colonic inflammation.330 NT is also known to stimulate IL-8 secretion and IL-8 gene expression in human colonocyte cells.331 Although NT is usually thought to be proinflammatory, an opposite effect has been recently described in chronic inflammatory damage induced by dextran sodium sulfate in mice. In this model, NTS1 activation has been shown to stimulate intestinal wound healing through a cyclooxygenase (COX)-2 dependent pathway.332 The first evidence for the involvement of NT in immune responses in the CNS was provided by the finding that the endotoxin lipopolysaccharide is able to induce the expression of NT mRNA in corticotropin-releasing hormone neurons of the paraventricular nucleus of the hypothalamus.333 On the basis of this work, it has been speculated that NT may be released in the pituitary portal blood to trigger pituitary responses associated with mobilization of the immune system. More recently, it has been shown that NT also induces expression of several cytokines/chemokines including IL-1 and macrophage inflammatory protein (MIP)-2 in microglia cells, which are otherwise known to express only the NTS3 receptor, 334 thus supporting the involvement of NTS3 in CNS inflammation. Finally, it is interesting to note that descending inhibition and facilitation during peripheral inflammation are due in part to inflammation-induced changes in the rostral ventromedial medulla that involve NT and glutamate receptors. 335 In spite of the scarce evidence for a role for NT in CNS inflammation, speculation has arisen about the possibility that an NT proinflammatory stimulus acting through microglia cells could contribute to brain inflammation in degenerative diseases such as PD and Alzheimer’s diseases. ## Future challenges and conclusions Together, the results presented in this review demonstrate that although endogenous NT has not been shown conclusively to be causally involved in any one CNS disorder, there is a trail of evidence arguing for its implication in many. Among those, drug dependence, pain and cancer appear to be the most promising. Future work using genetically modified animals, gene downregulation strategies and new centrally active pharmacological ligands should continue to advance our understanding of the role of NT in health and disease. ## Footnotes * Medical subject headings: central nervous system; dopamine; neurotensin; Parkinson disease; pathophysiology; schizophrenia. * **Competing interests:** None declared. * **Contributors:** All authors contributed to the conception and design of the review, analyzed the data, wrote and reviewed the article, and gave final approval for publication. * Received December 1, 2005. * Revision received January 26, 2006. * Revision received January 30, 2006. * Accepted January 30, 2006. ## References 1. Carraway R, Leeman SE. The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami. J Biol Chem 1973;248:6854–61. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjExOiIyNDgvMTkvNjg1NCI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMxLzQvMjI5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 2. Binder EB, Kinkead B, Owens MJ, et al. Neurotensin and dopamine interactions. Pharmacol Rev 2001;53:453–86. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoicGhhcm1yZXYiO3M6NToicmVzaWQiO3M6ODoiNTMvNC80NTMiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 3. Dobner PR, Barber DL, Villa-Komaroff L, et al. Cloning and sequence analysis of cDNA for the canine neurotensin/neuromedin N precursor. Proc Natl Acad Sci U S A 1987;84:3516–20. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMDoiODQvMTAvMzUxNiI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMxLzQvMjI5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 4. Kislauskis E, Bullock B, McNeil S, et al. The rat gene encoding neurotensin and neuromedin N. Structure, tissue-specific expression, and evolution of exon sequences. J Biol Chem 1988;263:4963–8. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjExOiIyNjMvMTAvNDk2MyI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMxLzQvMjI5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 5. Steiner DF, Smeekens SP, Ohagi S, et al. The new enzymology of precursor processing endoproteases. J Biol Chem 1992;267:23435–8. [FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6MzoiUERGIjtzOjExOiJqb3VybmFsQ29kZSI7czozOiJqYmMiO3M6NToicmVzaWQiO3M6MTI6IjI2Ny8zMy8yMzQzNSI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMxLzQvMjI5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 6. Villeneuve P, Lafortune L, Seidah NG, et al. Immunohistochemical evidence for the involvement of protein convertases 5A and 2 in the processing of pro-neurotensin in rat brain. J Comp Neurol 2000;424: 461–75. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1002/1096-9861(20000828)424:3<461::AID-CNE5>3.0.CO;2-J&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10906713&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 7. Villeneuve P, Feliciangeli S, Croissandeau G, et al. Altered processing of the neurotensin/neuromedin N precursor in PC2 knock down mice: a biochemical and immunohistochemical study. J Neurochem 2002;82:783–93. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1046/j.1471-4159.2002.00988.x&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12358783&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000177369300006&link_type=ISI) 8. Rovere C, Barbero P, Kitabgi P. Evidence that PC2 is the endogenous pro-neurotensin convertase in rMTC 6–23 cells and that PC1- and PC2-transfected PC12 cells differentially process pro-neurotensin. J Biol Chem 1996;271:11368–75. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEyOiIyNzEvMTkvMTEzNjgiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 9. Villeneuve P, Seidah NG, Beaudet A. Immunohistochemical evidence for the implication of PC1 in the processing of proneurotensin in rat brain. Neuroreport 2000;11:3443–7. [PubMed](http://jpn.ca/lookup/external-ref?access_num=11095496&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 10. Kitabgi P, Masuo Y, Nicot A, et al. Marked variations of the relative distributions of neurotensin and neuromedin N in micropunched rat brain areas suggest differential processing of their common precursor. Neurosci Lett 1991;124:9–12. [PubMed](http://jpn.ca/lookup/external-ref?access_num=1857550&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 11. Bayer VE, Towle AC, Pickel VM. Vesicular and cytoplasmic localization of neurotensin-like immunoreactivity (NTLI) in neurons postsynaptic to terminals containing NTLI and/or tyrosine hydroxylase in the rat central nucleus of the amygdala. J Neurosci Res 1991; 30:398–413. [PubMed](http://jpn.ca/lookup/external-ref?access_num=1686786&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 12. Zupanc GK. Peptidergic transmission: from morphological correlates to functional implications. Micron 1996;27:35–91. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0968-4328(95)00028-3&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=8756315&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1996UZ72900005&link_type=ISI) 13. Iversen LL, Iversen SD, Bloom F, et al. Calcium-dependent release of somatostatin and neurotensin from rat brain in vitro. Nature 1978; 273:161–3. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1038/273161a0&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=643079&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 14. Maeda K, Frohman LA. Neurotensin release by rat hypothalamic fragments in vitro. Brain Res 1981;210:261–9. [PubMed](http://jpn.ca/lookup/external-ref?access_num=6261874&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 15. Kitabgi P, De Nadai F, Cuber JC, et al. Calcium-dependent release of neuromedin N and neurotensin from mouse hypothalamus. Neuropeptides 1990;15:111–4. [PubMed](http://jpn.ca/lookup/external-ref?access_num=2080018&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 16. Vincent B, Vincent JP, Checler F. Neurotensin and neuromedin N undergo distinct catabolic processes in murine astrocytes and primary cultured neurons. Eur J Biochem 1994;221:297–306. [PubMed](http://jpn.ca/lookup/external-ref?access_num=7909519&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1994NF04200032&link_type=ISI) 17. Almenoff J, Wilk S, Orlowski M. Membrane bound pituitary metalloendopeptidase: apparent identity to enkephalinase. Biochem Biophys Res Commun 1981;102:206–14. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-291X(81)91508-4&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=7030340&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1981MH11000029&link_type=ISI) 18. Skidgel RA, Engelbrecht S, Johnson AR, et al. Hydrolysis of substance p and neurotensin by converting enzyme and neutral endopeptidase. Peptides 1984;5:769–76. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0196-9781(84)90020-2&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=6208535&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1984TE51500019&link_type=ISI) 19. Orlowski M, Michaud C, Chu TG. A soluble metalloendopeptidase from rat brain. Purification of the enzyme and determination of specificity with synthetic and natural peptides. Eur J Biochem 1983;135:81–8. [PubMed](http://jpn.ca/lookup/external-ref?access_num=6349998&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1983RG99300011&link_type=ISI) 20. Checler F, Vincent JP, Kitabgi P. Purification and characterization of a novel neurotensin-degrading peptidase from rat brain synaptic membranes. J Biol Chem 1986;261:11274–81. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEyOiIyNjEvMjQvMTEyNzQiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 21. Checler F, Barelli H, Kitabgi P, et al. Neurotensin metabolism in various tissues of central and peripheral origins: ubiquitous involvement of a novel neurotensin degrading metalloendopeptidase. Biochimie 1988;70:75–82. 22. Checler F, Barelli H, Vincent JP. Tissue distribution of a novel neurotensin-degrading metallopeptidase. An immunological approach using monospecific polyclonal antibodies. Biochem J 1989;257:549–54. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6InBwYmlvY2hlbWoiO3M6NToicmVzaWQiO3M6OToiMjU3LzIvNTQ5IjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzEvNC8yMjkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 23. Dauch P, Masuo Y, Vincent JP, et al. Endopeptidase 24-16 in murines: tissue distribution, cerebral regionalization, and ontogeny. J Neurochem 1992;59:1862–7. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1111/j.1471-4159.1992.tb11021.x&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=1402928&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1992JU68300033&link_type=ISI) 24. Uhl GR, Snyder SH. Neurotensin: a neuronal pathway projecting from amygdala through stria terminalis. Brain Res 1979;161:522–6. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(79)90681-4&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=369661&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1979GH63600013&link_type=ISI) 25. Vankova M, Arluison M, Leviel V, et al. Afferent connections of the rat substantia nigra pars lateralis with special reference to peptide-containing neurons of the amygdalo-nigral pathway. J Chem Neuroanat 1992;5:39–50. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0891-0618(92)90032-L&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=1376607&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1992HF28400004&link_type=ISI) 26. Gonzales C, Chesselet MF. Amygdalonigral pathway: an antero-grade study in the rat with Phaseolus vulgaris leucoagglutinin (PHA-L). J Comp Neurol 1990;297:182–200. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1002/cne.902970203&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=2370319&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1990DM62800002&link_type=ISI) 27. Inagaki S, Yamano M, Shiosaka S, et al. Distribution and origins of neurotensin-containing fibers in the nucleus ventromedialis hypothalami of the rat: an experimental immunohistochemical study. Brain Res 1983;273(2):229–35. [PubMed](http://jpn.ca/lookup/external-ref?access_num=6351959&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 28. Roberts GW, Crow TJ, Polak JM. Neurotensin: first report of a cortical pathway. Peptides 1981;2(Suppl 1):37–43. 29. Goedert M, Lightman SL, Mantyh PW, et al. Neurotensin-like immunoreactivity and neurotensin receptors in the rat hypothalamus and in the neurointermediate lobe of the pituitary gland. Brain Res 1985;358:59–69. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(85)90948-5&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=3000519&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 30. Kalivas PW, Miller JS. Neurotensin neurons in the ventral tegmental area project to the medial nucleus accumbens. Brain Res 1984;300: 157–60. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(84)91351-9&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=6733462&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1984ST65000018&link_type=ISI) 31. Seroogy KB, Mehta A, Fallon JH. Neurotensin and cholecystokinin coexistence within neurons of the ventral mesencephalon: projections to forebrain. Exp Brain Res 1987;68:277–89. [PubMed](http://jpn.ca/lookup/external-ref?access_num=3319664&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1987K461500005&link_type=ISI) 32. Inagaki S, Shinoda K, Kubota Y, et al. Evidence for the existence of a neurotensin-containing pathway from the endopiriform nucleus and the adjacent prepiriform cortex to the anterior olfactory nucleus and nucleus of diagonal band (Broca) of the rat. Neuroscience 1983;8: 487–93. [PubMed](http://jpn.ca/lookup/external-ref?access_num=6343913&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 33. Inagaki S, Kubota Y, Shinoda K, et al. Neurotensin-containing pathway from the endopiriform nucleus and the adjacent prepiriform cortex to the dorsomedial thalamic nucleus in the rat. Brain Res 1983; 260:143–6. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(83)90776-X&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=6337684&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 34. Beitz AJ. The sites of origin brain stem neurotensin and serotonin projections to the rodent nucleus raphe magnus. J Neurosci 1982; 2:829–42. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Njoiam5ldXJvIjtzOjU6InJlc2lkIjtzOjc6IjIvNy84MjkiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 35. Zahm DS, Grosu S, Williams EA, et al. Neurons of origin of the neurotensinergic plexus enmeshing the ventral tegmental area in rat: retrograde labeling and in situ hybridization combined. Neuroscience 2001;104:841–51. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0306-4522(01)00118-X&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11440814&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000169933100022&link_type=ISI) 36. Kiyama H, Shiosaka S, Sakamoto N, et al. A neurotensin-immunoreactive pathway from the subiculum to the mammillary body in the rat. Brain Res 1986;375:357–9. [PubMed](http://jpn.ca/lookup/external-ref?access_num=3089537&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 37. Moga MM, Saper CB, Gray TS. Bed nucleus of the stria terminalis: cytoarchitecture, immunohistochemistry, and projection to the parabrachial nucleus in the rat. J Comp Neurol 1989;283:315–32. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1002/cne.902830302&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=2568370&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1989AA22400001&link_type=ISI) 38. Castel MN, Morino P, Frey P, et al. Immunohistochemical evidence for a neurotensin striatonigral pathway in the rat brain. Neuroscience 1993;55:833–47. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0306-4522(93)90445-L&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=8105419&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 39. Zahm DS, Gruber C, Veh RH, et al. Inputs to the central extended amygdala recipient region of the nigral complex in the rat [poster]. Abstract Viewer/Itinerary Planner. Washington: Society for Neuroscience; 2005. Program no. 301.11. Available: [http://sfn.scholarone.com/itin2005/](http://sfn.scholarone.com/itin2005/) [accessed 2006 Mar 8]. 40. Uhl GR, Kuhar MJ, Snyder SH. Neurotensin: immunohistochemical localization in rat central nervous system. Proc Natl Acad Sci U S A 1977;74:4059–63. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czo5OiI3NC85LzQwNTkiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 41. Jennes L, Stumpf WE, Kalivas PW. Neurotensin: topographical distribution in rat brain by immunohistochemistry. J Comp Neurol 1982; 210:211–24. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1002/cne.902100302&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=6754769&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1982PK33100001&link_type=ISI) 42. Vincent JP, Mazella J, Kitabgi P. Neurotensin and neurotensin receptors. Trends Pharmacol Sci 1999;20:302–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0165-6147(99)01357-7&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10390649&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000081380700008&link_type=ISI) 43. Hermans E, Maloteaux JM. Mechanisms of regulation of neurotensin receptors. Pharmacol Ther 1998;79:89–104. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0163-7258(98)00009-6&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9749878&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000074981100001&link_type=ISI) 44. Mazella J. Sortilin/neurotensin receptor-3: a new tool to investigate neurotensin signaling and cellular trafficking? Cell Signal 2001;13:1–6. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0898-6568(00)00130-3&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11257441&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000167292400001&link_type=ISI) 45. Tanaka K, Masu M, Nakanishi S. Structure and functional expression of the cloned rat neurotensin receptor. Neuron 1990;4:847–54. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0896-6273(90)90137-5&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=1694443&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1990DK18500004&link_type=ISI) 46. Chalon P, Vita N, Kaghad M, et al. Molecular cloning of a levocabastine-sensitive neurotensin binding site. FEBS Lett 1996;386: 91–4. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0014-5793(96)00397-3&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=8647296&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1996UM44200001&link_type=ISI) 47. Mazella J, Botto JM, Guillemare E, et al. Structure, functional expression, and cerebral localization of the levocabastine-sensitive neurotensin/ neuromedin N receptor from mouse brain. J Neurosci 1996; 16:5613–20. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Njoiam5ldXJvIjtzOjU6InJlc2lkIjtzOjEwOiIxNi8xOC81NjEzIjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzEvNC8yMjkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 48. Vita N, Laurent P, Lefort S, et al. Cloning and expression of a complementary DNA encoding a high affinity human neurotensin receptor. FEBS Lett 1993;317:139–42. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0014-5793(93)81509-X&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=8381365&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1993KL01500031&link_type=ISI) 49. Schotte A, Leysen JE, Laduron PM. Evidence for a displaceable nonspecific [3H]neurotensin binding site in rat brain. Naunyn Schmiedebergs Arch Pharmacol 1986;333:400–5. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1007/BF00500016&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=3022160&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 50. Elde R, Schalling M, Ceccatelli S, et al. Localization of neuropeptide receptor mRNA in rat brain: initial observations using probes for neurotensin and substance P receptors. Neurosci Lett 1990;120:134–8. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0304-3940(90)90187-E&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=1705671&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1990EM89400035&link_type=ISI) 51. Nicot A, Rostene W, Berod A. Neurotensin receptor expression in the rat forebrain and midbrain: a combined analysis by in situ hybridization and receptor autoradiography. J Comp Neurol 1994;341:407–19. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1002/cne.903410310&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=8195468&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1994MY12500009&link_type=ISI) 52. Boudin H, Pelaprat D, Rostene W, et al. Cellular distribution of neurotensin receptors in rat brain: immunohistochemical study using an antipeptide antibody against the cloned high affinity receptor. J Comp Neurol 1996;373:76–89. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1002/(SICI)1096-9861(19960909)373:1<76::AID-CNE7>3.0.CO;2-A&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=8876464&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1996VE37600007&link_type=ISI) 53. Fassio A, Evans G, Grisshammer R, et al. Distribution of the neurotensin receptor NTS1 in the rat CNS studied using an amino-terminal directed antibody. Neuropharmacology 2000;39:1430–42. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0028-3908(00)00060-5&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10818259&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 54. Gailly P. Ca2+ entry in CHO cells, after Ca2+ stores depletion, is mediated by arachidonic acid. Cell Calcium 1998;24:293–304. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0143-4160(98)90053-7&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9883283&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000077254700006&link_type=ISI) 55. Canonico PL, Speciale C, Sortino MA, et al. Involvement of arachidonate metabolism in neurotensin-induced prolactin release in vitro. Am J Physiol 1985;249:E257–63. 56. Poinot-Chazel C, Portier M, Bouaboula M, et al. Activation of mitogen-activated protein kinase couples neurotensin receptor stimulation to induction of the primary response gene Krox-24. Biochem J 1996;320:145–51. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6InBwYmlvY2hlbWoiO3M6NToicmVzaWQiO3M6OToiMzIwLzEvMTQ1IjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzEvNC8yMjkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 57. Ehlers RA, Zhang Y, Hellmich MR, et al. Neurotensin-mediated activation of MAPK pathways and AP-1 binding in the human pancreatic cancer cell line, MIA PaCa-2. Biochem Biophys Res Commun 2000;269:704–8. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1006/bbrc.2000.2335&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10720480&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000086204500012&link_type=ISI) 58. Martin S, Navarro V, Vincent JP, et al. Neurotensin receptor-1 and - 3 complex modulates the cellular signaling of neurotensin in the HT29 cell line. Gastroenterology 2002;123:1135–43. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1053/gast.2002.36000&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12360476&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 59. Liu F, Yang P, Baez M, et al. Neurotensin negatively modulates Akt activity in neurotensin receptor-1-transfected AV12 cells. J Cell Biochem 2004;92:603–11. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1002/jcb.20098&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15156571&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000221835800017&link_type=ISI) 60. Beaudet A, Mazella J, Nouel D, et al. Internalization and intracellular mobilization of neurotensin in neuronal cells. Biochem Pharmacol 1994;47:43–52. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-2952(94)90436-7&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=8311845&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1994MV68000008&link_type=ISI) 61. Hermans E, Vanisberg MA, Geurts M, et al. Down-regulation of neurotensin receptors after ligand-induced internalization in rat primary cultured neurons. Neurochem Int 1997;31:291–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0197-0186(96)00155-6&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9220462&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1997XJ08800016&link_type=ISI) 62. Vandenbulcke F, Nouel D, Vincent JP, et al. Ligand-induced internalization of neurotensin in transfected COS-7 cells: differential intracellular trafficking of ligand and receptor. J Cell Sci 2000;113:2963–75. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NToiam9jZXMiO3M6NToicmVzaWQiO3M6MTE6IjExMy8xNy8yOTYzIjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzEvNC8yMjkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 63. Nguyen HM, Cahill CM, McPherson PS, et al. Receptor-mediated internalization of (3H)-neurotensin in synaptosomal preparations from rat neostriatum. Neuropharmacology 2002;42:1089–98. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0028-3908(02)00054-0&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12128010&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000177485700011&link_type=ISI) 64. Gully D, Canton M, Boigegrain R, et al. Biochemical and pharmacological profile of a potent and selective nonpeptide antagonist of the neurotensin receptor. Proc Natl Acad Sci U S A 1993;90:65–9. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czo3OiI5MC8xLzY1IjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzEvNC8yMjkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 65. Gully D, Labeeuw B, Boigegrain R, et al. Biochemical and pharmacological activities of SR 142948A, a new potent neurotensin receptor antagonist. J Pharmacol Exp Ther 1997;280:802–12. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoianBldCI7czo1OiJyZXNpZCI7czo5OiIyODAvMi84MDIiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 66. Remaury A, Vita N, Gendreau S, et al. Targeted inactivation of the neurotensin type 1 receptor reveals its role in body temperature control and feeding behavior but not in analgesia. Brain Res 2002; 953:63–72. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0006-8993(02)03271-7&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12384239&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000178916100010&link_type=ISI) 67. Leonetti M, Brun P, Clerget M, et al. Specific involvement of neurotensin type 1 receptor in the neurotensin-mediated in vivo dopamine efflux using knock-out mice. J Neurochem 2004;89:1–6. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1046/j.1471-4159.2003.02231.x&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15030383&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000220356800001&link_type=ISI) 68. Pettibone DJ, Hess JF, Hey PJ, et al. The effects of deleting the mouse neurotensin receptor NTR1 on central and peripheral responses to neurotensin. J Pharmacol Exp Ther 2002;300:305–13. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoianBldCI7czo1OiJyZXNpZCI7czo5OiIzMDAvMS8zMDUiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 69. Sarret P, Esdaile MJ, Perron A, et al. Potent spinal analgesia elicited through stimulation of NTS2 neurotensin receptors. J Neurosci 2005; 25:8188–96. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Njoiam5ldXJvIjtzOjU6InJlc2lkIjtzOjEwOiIyNS8zNi84MTg4IjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzEvNC8yMjkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 70. Walker N, Lepee-Lorgeoux I, Fournier J, et al. Tissue distribution and cellular localization of the levocabastine-sensitive neurotensin receptor mRNA in adult rat brain. Brain Res Mol Brain Res 1998;57:193–200. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0169-328X(98)00074-6&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9675417&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 71. Lepee-Lorgeoux I, Betancur C, Rostene W, et al. Differential ontogenetic patterns of levocabastine-sensitive neurotensin NT2 receptors and of NT1 receptors in the rat brain revealed by in situ hybridization. Brain Res Dev Brain Res 1999;113:115–31. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0165-3806(99)00009-7&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10064881&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 72. Sarret P, Perron A, Stroh T, et al. Immunohistochemical distribution of NTS2 neurotensin receptors in the rat central nervous system. J Comp Neurol 2003;461:520–38. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1002/cne.10718&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12746866&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000183271900008&link_type=ISI) 73. Sarret P, Beaudet A, Vincent JP, et al. Regional and cellular distribution of low affinity neurotensin receptor mRNA in adult and developing mouse brain. J Comp Neurol 1998;394:344–56. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1002/(SICI)1096-9861(19980511)394:3<344::AID-CNE6>3.0.CO;2-1&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9579398&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 74. Botto JM, Sarret P, Vincent JP, et al. Identification and expression of a variant isoform of the levocabastine-sensitive neurotensin receptor in the mouse central nervous system. FEBS Lett 1997;400:211–4. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0014-5793(96)01391-9&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9001400&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 75. Nouel D, Faure MP, St Pierre JA, et al. Differential binding profile and internalization process of neurotensin via neuronal and glial receptors. J Neurosci 1997;17:1795–803. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Njoiam5ldXJvIjtzOjU6InJlc2lkIjtzOjk6IjE3LzUvMTc5NSI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMxLzQvMjI5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 76. Nouel D, Sarret P, Vincent JP, et al. Pharmacological, molecular and functional characterization of glial neurotensin receptors. Neuroscience 1999;94:1189–97. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0306-4522(99)00354-1&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10625058&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000083735000016&link_type=ISI) 77. Yamada M, Yamada M, Lombet A, et al. Distinct functional characteristics of levocabastine sensitive rat neurotensin NT2 receptor expressed in Chinese hamster ovary cells. Life Sci 1998;62:PL375–80. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0024-3205(98)00192-1&link_type=DOI) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000073527200011&link_type=ISI) 78. Vita N, Oury-Donat F, Chalon P, et al. Neurotensin is an antagonist of the human neurotensin NT2 receptor expressed in Chinese hamster ovary cells. Eur J Pharmacol 1998;360:265–72. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0014-2999(98)00678-5&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9851594&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000077069200017&link_type=ISI) 79. Richard F, Barroso S, Martinez J, et al. Agonism, inverse agonism, and neutral antagonism at the constitutively active human neurotensin receptor 2. Mol Pharmacol 2001;60:1392–8. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoibW9scGhhcm0iO3M6NToicmVzaWQiO3M6OToiNjAvNi8xMzkyIjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzEvNC8yMjkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 80. Sarret P, Gendron L, Kilian P, et al. Pharmacology and functional properties of NTS2 neurotensin receptors in cerebellar granule cells. J Biol Chem 2002;277:36233–43. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEyOiIyNzcvMzkvMzYyMzMiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 81. Holst B, Holliday ND, Bach A, et al. Common structural basis for constitutive activity of the ghrelin receptor family. J Biol Chem 2004; 279:53806–17. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEyOiIyNzkvNTEvNTM4MDYiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 82. Botto JM, Chabry J, Sarret P, et al. Stable expression of the mouse levocabastine-sensitive neurotensin receptor in HEK 293 cell line: binding properties, photoaffinity labeling, and internalization mechanism. Biochem Biophys Res Commun 1998;243:585–90. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1006/bbrc.1997.8071&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9480852&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000072130300044&link_type=ISI) 83. Gendron L, Perron A, Payet MD, et al. Low-affinity neurotensin receptor (NTS2) signaling: internalization-dependent activation of extracellular signal-regulated kinases 1/2. Mol Pharmacol 2004;66:1421–30. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoibW9scGhhcm0iO3M6NToicmVzaWQiO3M6OToiNjYvNi8xNDIxIjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzEvNC8yMjkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 84. Mazella J, Zsurger N, Navarro V, et al. The 100-kDa neurotensin receptor is gp95/sortilin, a non-G-protein-coupled receptor. J Biol Chem 1998;273:26273–6. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEyOiIyNzMvNDEvMjYyNzMiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 85. Munck Petersen C, Nielsen MS, Jacobsen C, et al. Propeptide cleavage conditions sortilin/neurotensin receptor-3 for ligand binding. EMBO J 1999;18:595–604. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiZW1ib2pubCI7czo1OiJyZXNpZCI7czo4OiIxOC8zLzU5NSI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMxLzQvMjI5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 86. Chabry J, Gaudriault G, Vincent JP, et al. Implication of various forms of neurotensin receptors in the mechanism of internalization of neurotensin in cerebral neurons. J Biol Chem 1993;268:17138–44. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEyOiIyNjgvMjMvMTcxMzgiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 87. Morris NJ, Ross SA, Lane WS, et al. Sortilin is the major 110-kDa protein in GLUT4 vesicles from adipocytes. J Biol Chem 1998;273:3582–7. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEwOiIyNzMvNi8zNTgyIjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzEvNC8yMjkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 88. Sarret P, Krzywkowski P, Segal L, et al. Distribution of NTS3 receptor/ sortilin mRNA and protein in the rat central nervous system. J Comp Neurol 2003;461:483–505. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1002/cne.10708&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12746864&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000183271900006&link_type=ISI) 89. Petersen CM, Nielsen MS, Nykjaer A, et al. Molecular identification of a novel candidate sorting receptor purified from human brain by receptor-associated protein affinity chromatography. J Biol Chem 1997;272:3599–605. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEwOiIyNzIvNi8zNTk5IjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzEvNC8yMjkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 90. Tauris J, Ellgaard L, Jacobsen C, et al. The carboxy-terminal domain of the receptor-associated protein binds to the Vps10p domain of sortilin. FEBS Lett 1998;429:27–30. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0014-5793(98)00559-6&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9657377&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 91. Nielsen MS, Jacobsen C, Olivecrona G, et al. Sortilin/neurotensin receptor-3 binds and mediates degradation of lipoprotein lipase. J Biol Chem 1999;274:8832–6. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjExOiIyNzQvMTMvODgzMiI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMxLzQvMjI5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 92. Martin S, Vincent JP, Mazella J. Involvement of the neurotensin receptor-3 in the neurotensin-induced migration of human microglia. J Neurosci 2003;23:1198–205. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Njoiam5ldXJvIjtzOjU6InJlc2lkIjtzOjk6IjIzLzQvMTE5OCI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMxLzQvMjI5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 93. Dal Farra C, Sarret P, Navarro V, et al. Involvement of the neurotensin receptor subtype NTR3 in the growth effect of neurotensin on cancer cell lines. Int J Cancer 2001;92:503–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1002/ijc.1225&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11304684&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000168233500007&link_type=ISI) 94. Navarro V, Martin S, Sarret P, et al. Pharmacological properties of the mouse neurotensin receptor 3. Maintenance of cell surface receptor during internalization of neurotensin. FEBS Lett 2001;495:100–5. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0014-5793(01)02367-5&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11322955&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000168396400019&link_type=ISI) 95. Morinville A, Martin S, Lavallee M, et al. Internalization and trafficking of neurotensin via NTS3 receptors in HT29 cells. Int J Biochem Cell Biol 2004;36:2153–68. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/j.biocel.2004.04.013&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15313463&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000223833700010&link_type=ISI) 96. Jacobsen L, Madsen P, Jacobsen C, et al. Activation and functional characterization of the mosaic receptor SorLA/LR11. J Biol Chem 2001;276:22788–96. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEyOiIyNzYvMjUvMjI3ODgiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 97. Motoi Y, Aizawa T, Haga S, et al. Neuronal localization of a novel mosaic apolipoprotein E receptor, LR11, in rat and human brain. Brain Res 1999;833:209–15. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0006-8993(99)01542-5&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10375696&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000081322700009&link_type=ISI) 98. Andersen OM, Reiche J, Schmidt V, et al. Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci U S A 2005;102:13461–6. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMjoiMTAyLzM4LzEzNDYxIjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzEvNC8yMjkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 99. Wang XM, Evers BM. Characterization of early developmental pattern of expression of neurotensin/neuromedin N gene in foregut and midgut. Dig Dis Sci 1999;44:33–40. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1023/A:1026637730050&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9952220&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000078213800005&link_type=ISI) 100.Botsios DS, Vasiliadis KD. Factors enhancing intestinal adaptation after bowel compensation. Dig Dis 2003;21:228–36. [PubMed](http://jpn.ca/lookup/external-ref?access_num=14571096&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 101.Onuoha GN, Alpar EK, Chukwulobelu R, et al. Distributions of VIP, substance P, neurokinin A and neurotensin in rat heart: an immunocytochemical study. Neuropeptides 1999;33:19–25. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1054/npep.1999.0026&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10657467&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 102.Schaeffer P, Laplace MC, Bernat A, et al. SR142948A is a potent antagonist of the cardiovascular effects of neurotensin. J Cardiovasc Pharmacol 1998;31:545–50. [PubMed](http://jpn.ca/lookup/external-ref?access_num=9554803&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 103.Pinnock RD. Neurotensin depolarizes substantia nigra dopamine neurones. Brain Res 1985;338:151–4. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(85)90258-6&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=4027584&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1985ALV3100017&link_type=ISI) 104.Mercuri NB, Stratta F, Calabresi P, et al. Neurotensin induces an inward current in rat mesencephalic dopaminergic neurons. Neurosci Lett 1993;153:192–6. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0304-3940(93)90320-K&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=7687049&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1993LB60600018&link_type=ISI) 105.Farkas RH, Chien PY, Nakajima S, et al. Properties of a slow nonselective cation conductance modulated by neurotensin and other neurotransmitters in midbrain dopaminergic neurons. J Neurophysiol 1996;76:1968–81. [PubMed](http://jpn.ca/lookup/external-ref?access_num=8890307&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1996VL11700049&link_type=ISI) 106.St-Gelais F, Legault M, Bourque MJ, et al. Role of calcium in neurotensin-evoked enhancement in firing in mesencephalic dopamine neurons. J Neurosci 2004;24:2566–74. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Njoiam5ldXJvIjtzOjU6InJlc2lkIjtzOjEwOiIyNC8xMC8yNTY2IjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzEvNC8yMjkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 107.Okuma Y, Fukuda Y, Osumi Y. Neurotensin potentiates the potassium-induced release of endogenous dopamine from rat striatal slices. Eur J Pharmacol 1983;93:27–33. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0014-2999(83)90027-4&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=6628546&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 108.De Quidt ME, Emson PC. Neurotensin facilitates dopamine release in vitro from rat striatal slices. Brain Res 1983;274:376–80. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(83)90722-9&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=6626967&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1983RG39000026&link_type=ISI) 109.Hetier E, Boireau A, Dubedat P, et al. Neurotensin effects on evoked release of dopamine in slices from striatum, nucleus accumbens and prefrontal cortex in rat. Naunyn Schmiedebergs Arch Pharmacol 1988;337:13–7. [PubMed](http://jpn.ca/lookup/external-ref?access_num=3368012&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1988M010600003&link_type=ISI) 110.Bauer B, Ehinger B, Tornqvist K, et al. Neurotransmitter release by certain neuropeptides in the chicken retina. Acta Ophthalmol (Copenh) 1985;63:581–7. [PubMed](http://jpn.ca/lookup/external-ref?access_num=2866656&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 111.Blaha CD, Phillips AG. Pharmacological evidence for common mechanisms underlying the effects of neurotensin and neuroleptics on in vivo dopamine efflux in the rat nucleus accumbens. Neuroscience 1992;49:867–77. [PubMed](http://jpn.ca/lookup/external-ref?access_num=1436486&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 112.Tanganelli S, O’Connor WT, Ferraro L, et al. Facilitation of GABA release by neurotensin is associated with a reduction of dopamine release in rat nucleus accumbens. Neuroscience 1994;60:649–57. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0306-4522(94)90493-6&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=7936192&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1994NN29500006&link_type=ISI) 113.Wagstaff JD, Bush LG, Gibb JW, et al. Endogenous neurotensin antagonizes methamphetamine-enhanced dopaminergic activity. Brain Res 1994;665:237–44. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(94)91343-9&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=7895059&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 114.Legault M, Congar P, Michel FJ, et al. Presynaptic action of neurotensin on cultured ventral tegmental area dopaminergic neurones. Neuroscience 2002;111:177–87. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0306-4522(01)00614-5&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11955721&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000175698600014&link_type=ISI) 115.Kalivas PW, Duffy P. Effect of acute and daily neurotensin and enkephalin treatments on extracellular dopamine in the nucleus accumbens. J Neurosci 1990;10:2940–9. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Njoiam5ldXJvIjtzOjU6InJlc2lkIjtzOjk6IjEwLzkvMjk0MCI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMxLzQvMjI5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 116.Von Euler G, Meister B, Hokfelt T, et al. Intraventricular injection of neurotensin reduces the binding of dopamine D-2 receptors in the rat forebrain. Acta Physiol Scand 1989;137:309–10. [PubMed](http://jpn.ca/lookup/external-ref?access_num=2618764&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 117.Tanganelli S, Li XM, Ferraro L, et al. Neurotensin and cholecystokinin octapeptide control synergistically dopamine release and dopamine D2 receptor affinity in rat neostriatum. Eur J Pharmacol 1993;230:159–66. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0014-2999(93)90798-M&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=8422898&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 118.Fuxe K, Von Euler G, Agnati LF, et al. Intramembrane interactions between neurotensin receptors and dopamine D2 receptors as a major mechanism for the neuroleptic-like action of neurotensin. Ann N Y Acad Sci 1992;668:186–204. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1111/j.1749-6632.1992.tb27350.x&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=1361113&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 119.Li XM, Ferraro L, Tanganelli S, et al. Neurotensin peptides antagonistically regulate postsynaptic dopamine D2 receptors in rat nucleus accumbens: a receptor binding and microdialysis study. J Neural Transm Gen Sect 1995;102:125–37. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1007/BF01276508&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=8748677&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 120.Von Euler G, Meister B, Hokfelt T, et al. Intraventricular injection of neurotensin reduces dopamine D2 agonist binding in rat forebrain and intermediate lobe of the pituitary gland. Relationship to serum hormone levels and nerve terminal coexistence. Brain Res 1990;531:253–62. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(90)90781-6&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=1981163&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 121.Von Euler G, Mailleux P, Vanderhaeghen JJ, et al. Neurotensin reduces the affinity of dopamine D2 receptors in membranes from post mortem human caudate-putamen. Neurosci Lett 1990;109:325–30. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0304-3940(90)90016-3&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=2139501&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 122.Von Euler G, van der Ploeg I, Fredholm BB, et al. Neurotensin decreases the affinity of dopamine D2 agonist binding by a G proteinindependent mechanism. J Neurochem 1991;56:178–83. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1111/j.1471-4159.1991.tb02578.x&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=1824779&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1991EP04300024&link_type=ISI) 123.Agnati LF, Fuxe K, Battistini N, et al. Further evidence for the existence of interactions between receptors for dopamine and neurotensin. Dopamine reduces the affinity and increases the number of [3H]-neurotensin binding sites in the subcortical limbic forebrain of the rat. Acta Physiol Scand 1985;124:125–8. [PubMed](http://jpn.ca/lookup/external-ref?access_num=2990164&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 124.Liu Y, Hillefors-Berglund M, von Euler G. Modulation of dopamine D3 receptor binding by N-ethylmaleimide and neurotensin. Brain Res 1994;643:343–8. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(94)90045-0&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=7913398&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 125.Diaz-Cabiale Z, Fuxe K, Narvaez JA, et al. Neurotensin-induced modulation of dopamine D2 receptors and their function in rat striatum: counteraction by a NTR1-like receptor antagonist. Neuroreport 2002;13:763–6. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1097/00001756-200205070-00006&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11997683&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000175442400008&link_type=ISI) 126.Farkas RH, Chien PY, Nakajima S, et al. Neurotensin and dopamine D2 activation oppositely regulate the same K+ conductance in rat midbrain dopaminergic neurons. Neurosci Lett 1997;231:21–4. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0304-3940(97)00530-2&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9280158&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1997XR52700006&link_type=ISI) 127.Shi WX, Bunney BS. Actions of neurotensin: a review of the electrophysiological studies. Ann N Y Acad Sci 1992;668:129–45. [PubMed](http://jpn.ca/lookup/external-ref?access_num=1463269&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 128.Werkman TR, Kruse CG, Nievelstein H, et al. Neurotensin attenuates the quinpirole-induced inhibition of the firing rate of dopamine neurons in the rat substantia nigra pars compacta and the ventral tegmental area. Neuroscience 2000;95:417–23. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0306-4522(99)00449-2&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10658621&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000084303600012&link_type=ISI) 129.Nalivaiko E, Michaud JC, Soubrie P, et al. Electrophysiological evidence for putative subtypes of neurotensin receptors in guinea-pig mesencephalic dopaminergic neurons. Neuroscience 1998;86:799–811. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0306-4522(98)00084-0&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9692718&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000074521600010&link_type=ISI) 130.Shute CC, Lewis PR. The ascending cholinergic reticular system: neocortical, olfactory and subcortical projections. Brain 1967;90:497–520. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1093/brain/90.3.497&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=6058140&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1967A039000002&link_type=ISI) 131.Bolam JP, Wainer BH, Smith AD. Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyl-transferase immunocytochemistry, Golgi-impregnation and electron microscopy. Neuroscience 1984;12:711–8. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0306-4522(84)90165-9&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=6382048&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1984TC80300003&link_type=ISI) 132.Wenk GL, Markowska AL, Olton DS. Basal forebrain lesions and memory: alterations in neurotensin, not acetylcholine, may cause amnesia. Behav Neurosci 1989;103:765–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1037/0735-7044.103.4.765&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=2669837&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 133.Szigethy E, Leonard K, Beaudet A. Ultrastructural localization of [125I]neurotensin binding sites to cholinergic neurons of the rat nucleus basalis magnocellularis. Neuroscience 1990:36(2):377–91. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0306-4522(90)90433-5&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=1699163&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1990DP22300009&link_type=ISI) 134.Morin AJ, Beaudet A. Origin of the neurotensinergic innervation of the rat basal forebrain studied by retrograde transport of cholera toxin. J Comp Neurol 1998;391:30–41. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1002/(SICI)1096-9861(19980202)391:1<30::AID-CNE3>3.0.CO;2-S&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9527539&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000071774500003&link_type=ISI) 135.Steinberg R, Brun P, Souilhac J, et al. Neurochemical and behavioural effects of neurotensin vs [D-Tyr11]neurotensin on mesolimbic dopaminergic function. Neuropeptides 1995;28:43–50. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0143-4179(95)90073-X&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=7746351&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 136.Lapchak PA, Araujo DM, Quirion R, et al. Neurotensin regulation of endogenous acetylcholine release from rat striatal slices is independent of dopaminergic tone. J Neurochem 1991;56:651–7. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1111/j.1471-4159.1991.tb08199.x&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=1899109&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1991ET73200040&link_type=ISI) 137.O’Connor WT, Tanganelli S, Ungerstedt U, et al. The effects of neurotensin on GABA and acetylcholine release in the dorsal striatum of the rat: an in vivo microdialysis study. Brain Res 1992;573:209–16. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(92)90765-2&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=1504761&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1992HH57500005&link_type=ISI) 138.Lapchak PA, Araujo DM, Quirion R, et al. Neurotensin regulation of endogenous acetylcholine release from rat cerebral cortex: effect of quinolinic acid lesions of the basal forebrain. J Neurochem 1990;55: 1397–403. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1111/j.1471-4159.1990.tb03152.x&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=2144584&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1990DZ46500043&link_type=ISI) 139.Alonso A, Faure MP, Beaudet A. Neurotensin promotes oscillatory bursting behavior and is internalized in basal forebrain cholinergic neurons. J Neurosci 1994;14:5778–92. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Njoiam5ldXJvIjtzOjU6InJlc2lkIjtzOjEwOiIxNC8xMC81Nzc4IjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzEvNC8yMjkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 140.Cape EG, Manns ID, Alonso A, et al. Neurotensin-induced bursting of cholinergic basal forebrain neurons promotes gamma and theta cortical activity together with waking and paradoxical sleep. J Neurosci 2000;20:8452–61. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Njoiam5ldXJvIjtzOjU6InJlc2lkIjtzOjEwOiIyMC8yMi84NDUyIjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzEvNC8yMjkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 141.Jones BE. Activity, modulation and role of basal forebrain cholinergic neurons innervating the cerebral cortex. Prog Brain Res 2004;145: 157–69. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0079-6123(03)45011-5&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=14650914&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000188788200011&link_type=ISI) 142.Matthews RT. Neurotensin depolarizes cholinergic and a subset of non-cholinergic septal/diagonal band neurons by stimulating neurotensin-1 receptors. Neuroscience 1999;94:775–83. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0306-4522(99)00364-4&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10579568&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000083250900010&link_type=ISI) 143.Farkas RH, Nakajima S, Nakajima Y. Neurotensin excites basal forebrain cholinergic neurons: ionic and signal-transduction mechanisms. Proc Natl Acad Sci U S A 1994;91:2853–7. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czo5OiI5MS83LzI4NTMiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 144.Kitabgi P, Rostene W, Dussaillant M, et al. Two populations of neurotensin binding sites in murine brain: discrimination by the antihistamine levocabastine reveals markedly different radioautographic distribution. Eur J Pharmacol 1987;140:285–93. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0014-2999(87)90285-8&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=2888670&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1987K067700005&link_type=ISI) 145.Kessler JP, Moyse E, Kitabgi P, et al. Distribution of neurotensin binding sites in the caudal brainstem of the rat: a light microscopic radioautographic study. Neuroscience 1987;23:189–98. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0306-4522(87)90282-X&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=3683860&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1987K564800015&link_type=ISI) 146.Cooper PE, Fernstrom MH, Rorstad OP, et al. The regional distribution of somatostatin, substance P and neurotensin in human brain. Brain Res 1981;218:219–32. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(81)91302-0&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=6168327&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1981LZ33200015&link_type=ISI) 147.Uhl GR, Goodman RR, Snyder SH. Neurotensin-containing cell bodies, fibers and nerve terminals in the brain stem of the rat: immunohistochemical mapping. Brain Res 1979;167:77–91. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(79)90264-6&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=378326&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1979GT04000006&link_type=ISI) 148.Wang QP, Guan JL, Nakai Y. Synaptic relations of neurotensinergic neurons in the dorsal raphe nucleus. Peptides 1995;16:1421–7. [PubMed](http://jpn.ca/lookup/external-ref?access_num=8745053&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 149.Jolas T, Aghajanian GK. Neurotensin excitation of serotonergic neurons in the dorsal raphe nucleus of the rat in vitro. Eur J Neurosci 1996;8:153–61. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1111/j.1460-9568.1996.tb01176.x&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=8713459&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1996TR96000016&link_type=ISI) 150.Li AH, Yeh TH, Tan PP, et al. Neurotensin excitation of serotonergic neurons in the rat nucleus raphe magnus: ionic and molecular mechanisms. Neuropharmacology 2001;40:1073–83. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0028-3908(01)00030-2&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11406199&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000169808800013&link_type=ISI) 151.Buhler AV, Choi J, Proudfit HK, et al. Neurotensin activation of the NTR1 on spinally-projecting serotonergic neurons in the rostral ventromedial medulla is antinociceptive. Pain 2005;114:285–94. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/j.pain.2004.12.031&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15733655&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000227683500032&link_type=ISI) 152.Jolas T, Aghajanian GK. Neurotensin and the serotonergic system. Prog Neurobiol 1997;52:455–68. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0301-0082(97)00025-7&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9316156&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1997XY30800002&link_type=ISI) 153.Corley KC, Phan TH, Daugherty WP, et al. Stress-induced activation of median raphe serotonergic neurons in rats is potentiated by the neurotensin antagonist, SR 48692. Neurosci Lett 2002;319:1–4. [PubMed](http://jpn.ca/lookup/external-ref?access_num=11814639&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 154.Rakovska A, Giovannini MG, Della Corte L, et al. Neurotensin modulation of acetylcholine and GABA release from the rat hippocampus: an in vivo microdialysis study. Neurochem Int 1998;33:335–40. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0197-0186(98)00036-9&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9840224&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000077026200007&link_type=ISI) 155.Petrie KA, Schmidt D, Bubser M, et al. Neurotensin activates GABAergic interneurons in the prefrontal cortex. J Neurosci 2005;25: 1629–36. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Njoiam5ldXJvIjtzOjU6InJlc2lkIjtzOjk6IjI1LzcvMTYyOSI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMxLzQvMjI5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 156.Ferraro L, O’Connor WT, Antonelli T, et al. Differential effects of intrastriatal neurotensin(1–13) and neurotensin(8–13) on striatal dopamine and pallidal GABA release. A dual-probe microdialysis study in the awake rat. Eur J Neurosci 1997;9:1838–46. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1111/j.1460-9568.1997.tb00750.x&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9383206&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1997YC91900005&link_type=ISI) 157.Ferraro L, Tomasini MC, Fernandez M, et al. Nigral neurotensin receptor regulation of nigral glutamate and nigroventral thalamic GABA transmission: a dual-probe microdialysis study in intact conscious rat brain. Neuroscience 2001;102:113–20. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0306-4522(00)00448-6&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11226674&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000166562300010&link_type=ISI) 158.Ferraro L, Antonelli T, O’Connor WT, et al. The striatal neurotensin receptor modulates striatal and pallidal glutamate and GABA release: functional evidence for a pallidal glutamate-GABA interaction via the pallidal-subthalamic nucleus loop. J Neurosci 1998;18:6977–89. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Njoiam5ldXJvIjtzOjU6InJlc2lkIjtzOjEwOiIxOC8xNy82OTc3IjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzEvNC8yMjkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 159.Sanz B, Exposito I, Mora F. Effects of neurotensin on the release of glutamic acid in the prefrontal cortex and striatum of the rat. Neuroreport 1993;4:1194–6. [PubMed](http://jpn.ca/lookup/external-ref?access_num=8106002&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 160.Ferraro L, Tanganelli S, O’Connor WT, et al. Neurotensin increases endogenous glutamate release in the neostriatum of the awake rat. Synapse 1995;20:362–4. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1002/syn.890200409&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=7482295&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1995RK58900008&link_type=ISI) 161.Antonelli T, Tomasini MC, Finetti S, et al. Neurotensin enhances glutamate excitotoxicity in mesencephalic neurons in primary culture. J Neurosci Res 2002;70:766–73. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1002/jnr.10415&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12444598&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000179541900006&link_type=ISI) 162.Antonelli T, Ferraro L, Fuxe K, et al. Neurotensin enhances endogenous extracellular glutamate levels in primary cultures of rat cortical neurons: involvement of neurotensin receptor in NMDA induced excitotoxicity. Cereb Cortex 2004;14:466–73. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1093/cercor/bhh008&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15028650&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000220339600011&link_type=ISI) 163.Choi DW, Koh JY, Peters S. Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci 1988;8:185–96. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Njoiam5ldXJvIjtzOjU6InJlc2lkIjtzOjc6IjgvMS8xODUiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 164.Cheung NS, Pascoe CJ, Giardina SF, et al. Micromolar L-glutamate induces extensive apoptosis in an apoptotic-necrotic continuum of insult-dependent, excitotoxic injury in cultured cortical neurones. Neuropharmacology 1998;37:1419–29. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0028-3908(98)00123-3&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9849677&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000077219400022&link_type=ISI) 165.Rostene WH, Alexander MJ. Neurotensin and neuroendocrine regulation. Front Neuroendocrinol 1997;18:115–73. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1006/frne.1996.0146&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9101258&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1997WT21600001&link_type=ISI) 166.Memo M, Castelletti L, Valerio A, et al. Identification of neurotensin receptors associated with calcium channels and prolactin release in rat pituitary. J Neurochem 1986;47:1682–8. [PubMed](http://jpn.ca/lookup/external-ref?access_num=2430057&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1986E897400004&link_type=ISI) 167.Rowe W, Viau V, Meaney MJ, et al. Stimulation of CRH-mediated ACTH secretion by central administration of neurotensin: evidence for the participation of the paraventricular nucleus. J Neuroendocrinol 1995;7:109–17. [PubMed](http://jpn.ca/lookup/external-ref?access_num=7767323&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1995QH35700003&link_type=ISI) 168.Kiss A, Palkovits M, Antoni FA, et al. Neurotensin in the rat median eminence: the possible sources of neurotensin-like fibers and varicosities in the external layer. Brain Res 1987;416:129–35. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(87)91504-6&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=3304533&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1987J396700015&link_type=ISI) 169.Merchenthaler I, Lennard DE. The hypophysiotropic neurotensin-immunoreactive neuronal system of the rat brain. Endocrinology 1991;129:2875–80. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1210/endo-129-6-2875&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=1954874&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 170.Ceccatelli S, Eriksson M, Hokfelt T. Distribution and coexistence of corticotropin-releasing factor-, neurotensin-, enkephalin-, cholecystokinin-, galanin- and vasoactive intestinal polypeptide/peptide histidine isoleucine-like peptides in the parvocellular part of the paraventricular nucleus. Neuroendocrinology 1989;49:309–23. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1159/000074532&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=2469987&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1989U027300013&link_type=ISI) 171.Nicot A, Rowe WB, De Kloet ER, et al. Endogenous neurotensin regulates hypothalamic-pituitary-adrenal axis activity and peptidergic neurons in the rat hypothalamic paraventricular nucleus. J Neuroendocrinol 1997;9:263–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1046/j.1365-2826.1997.00581.x&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9147289&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 172.Niimi M, Takahara J, Sato M, et al. Neurotensin and growth hormone-releasing factor-containing neurons projecting to the median eminence of the rat: a combined retrograde tracing and immunohistochemical study. Neurosci Lett 1991;133:183–6. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0304-3940(91)90565-B&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=1726185&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1991GX48400009&link_type=ISI) 173.Rowe WB, Nicot A, Sharma S, et al. Central administration of the neurotensin receptor antagonist, SR48692, modulates diurnal and stress-related hypothalamic-pituitary-adrenal activity. Neuroendocrinology 1997;66:75–85. [PubMed](http://jpn.ca/lookup/external-ref?access_num=9263204&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 174.Nicot A, Rostene W, Berod A. Hypercorticism induces neurotensin mRNA in rat periventricular hypothalamus. Neuroreport 1995; 6:2158–60. [PubMed](http://jpn.ca/lookup/external-ref?access_num=8595193&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1995TH46100014&link_type=ISI) 175.Watts AG, Sanchez-Watts G. Region-specific regulation of neuropeptide mRNAs in rat limbic forebrain neurones by aldosterone and corticosterone. J Physiol 1995;484:721–36. [PubMed](http://jpn.ca/lookup/external-ref?access_num=7623287&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1995QX93000015&link_type=ISI) 176.Watanobe H, Takebe K. In vivo release of neurotensin from the median eminence of ovariectomized estrogen-primed rats as estimated by push-pull perfusion: correlation with luteinizing hormone and prolactin surges. Neuroendocrinology 1993;57:760–4. [PubMed](http://jpn.ca/lookup/external-ref?access_num=8367038&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1993LP39200027&link_type=ISI) 177.Schimpff RM, Gourmelen M, Scarceriaux V, et al. Plasma neurotensin levels in humans: relation to hormone levels in diseases involving the hypothalamo-pituitary-thyroid axis. Eur J Endocrinol 1995;133:534–8. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiZWplIjtzOjU6InJlc2lkIjtzOjk6IjEzMy81LzUzNCI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMxLzQvMjI5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 178.Hosli E, Stauffer S, Hosli L. Autoradiographic and electrophysiological evidence for the existence of neurotensin receptors on cultured astrocytes. Neuroscience 1995;66:627–33. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0306-4522(95)00005-4&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=7644026&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1995QZ35500012&link_type=ISI) 179.Trudeau LE. Neurotensin regulates intracellular calcium in ventral tegmental area astrocytes: evidence for the involvement of multiple receptors. Neuroscience 2000;97:293–302. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0306-4522(99)00597-7&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10799761&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000087064400011&link_type=ISI) 180.Newman EA. New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci 2003;26:536–42. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0166-2236(03)00237-6&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=14522146&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000185862300006&link_type=ISI) 181.Hertz L, Zielke HR. Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 2004;27:735–43. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/j.tins.2004.10.008&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15541514&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000225540000008&link_type=ISI) 182.Nemeroff CB. Neurotensin: Perchance an endogenous neuroleptic? Biol Psychiatry 1980;15:283–302. [PubMed](http://jpn.ca/lookup/external-ref?access_num=6106513&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1980JK81900009&link_type=ISI) 183.Hollerman JR, Abercrombie ED, Grace AA. Electrophysiological, biochemical, and behavioral studies of acute haloperidol-induced depolarization block of nigral dopamine neurons. Neuroscience 1992; 47:589–601. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0306-4522(92)90168-2&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=1584410&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1992HJ98200008&link_type=ISI) 184.Dobner PR, Deutch AY, Fadel J. Neurotensin: dual roles in psychostimulant and antipsychotic drug responses. Life Sci 2003;73:801–11. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0024-3205(03)00411-9&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12801600&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000183664500016&link_type=ISI) 185.Kinkead B, Nemeroff CB. Neurotensin: an endogenous antipsychotic? Curr Opin Pharmacol 2002;2:99–103. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S1471-4892(01)00128-X&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11786316&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 186.Chien PY, Farkas RH, Nakajima S, et al. Single-channel properties of the nonselective cation conductance induced by neurotensin in dopaminergic neurons. Proc Natl Acad Sci U S A 1996;93:14917–21. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMToiOTMvMjUvMTQ5MTciO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 187.Widerlov E, Lindstrom LH, Besev G, et al. Subnormal CSF levels of neurotensin in a subgroup of schizophrenic patients: normalization after neuroleptic treatment. Am J Psychiatry 1982;139:1122–6. [PubMed](http://jpn.ca/lookup/external-ref?access_num=6126127&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1982PE50400006&link_type=ISI) 188.Manberg PJ, Nemeroff CB, Bissette G, et al. Neuropeptides in CSF and post-mortem brain tissue of normal controls, schizophrenics and Huntington’s choreics. Prog Neuropsychopharmacol Biol Psychiatry 1985;9:97–108. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0278-5846(85)90184-8&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=2859637&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 189.Lindstrom LH, Widerlov E, Bisette G, et al. Reduced CSF neurotensin concentration in drug-free schizophrenic patients. Schizophr Res 1988;1:55–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0920-9964(88)90040-0&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=3154507&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1988R261700007&link_type=ISI) 190.Nemeroff CB, Bissette G, Widerlov E, et al. Neurotensin-like immunoreactivity in cerebrospinal fluid of patients with schizophrenia, depression, anorexia nervosa-bulimia, and premenstrual syndrome. J Neuropsychiatry Clin Neurosci 1989;1:16–20. [PubMed](http://jpn.ca/lookup/external-ref?access_num=2577718&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 191.Garver DL, Bissette G, Yao JK, et al. Relation of CSF neurotensin concentrations to symptoms and drug response of psychotic patients. Am J Psychiatry 1991;148:484–8. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1176/ajp.148.4.484&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=2006695&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1991FD90600013&link_type=ISI) 192.Breslin NA, Suddath RL, Bissette G, et al. CSF concentrations of neurotensin in schizophrenia: an investigation of clinical and biochemical correlates. Schizophr Res 1994;12:35–41. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0920-9964(94)90082-5&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=7517175&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1994NE94100005&link_type=ISI) 193.Sharma RP, Janicak PG, Bissette G, et al. CSF neurotensin concentrations and antipsychotic treatment in schizophrenia and schizoaffective disorder. Am J Psychiatry 1997;154:1019–21. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1176/ajp.154.7.1019&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9210757&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1997XG89200022&link_type=ISI) 194.Nemeroff CB, Youngblood WW, Manberg PJ, et al. Regional brain concentrations of neuropeptides in Huntington’s chorea and schizophrenia. Science 1983;221:972–5. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIyMjEvNDYxNC85NzIiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 195.Williams FG, Murtaugh MP, Beitz AJ. The effect of acute haloperidol treatment on brain proneurotensin mRNA: in situ hybridization analyses using a novel fluorescence detection procedure. Brain Res Mol Brain Res 1990;7:347–58. [PubMed](http://jpn.ca/lookup/external-ref?access_num=2163009&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 196.Merchant KM, Miller MA, Ashleigh EA, et al. Haloperidol rapidly increases the number of neurotensin mRNA-expressing neurons in neostriatum of the rat brain. Brain Res 1991;540:311–4. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(91)90526-2&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=2054626&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1991EY79400041&link_type=ISI) 197.Merchant KM, Dobner PR, Dorsa DM. Differential effects of haloperidol and clozapine on neurotensin gene transcription in rat neostriatum. J Neurosci 1992;12:652–63. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Njoiam5ldXJvIjtzOjU6InJlc2lkIjtzOjg6IjEyLzIvNjUyIjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzEvNC8yMjkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 198.Radke JM, Owens MJ, Ritchie JC, et al. Atypical antipsychotic drugs selectively increase neurotensin efflux in dopamine terminal regions. Proc Natl Acad Sci U S A 1998;95:11462–4. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMToiOTUvMTkvMTE0NjIiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 199.Mijnster MJ, Docter GJ, Voorn P. Risperidone does not elevate neurotensin mRNA in rat nucleus accumbens and caudate-putamen. Neuroreport 1995;6:2209–12. [PubMed](http://jpn.ca/lookup/external-ref?access_num=8595204&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 200.Meltzer HY, Arvanitis L, Bauer D, et al. Placebo-controlled evaluation of four novel compounds for the treatment of schizophrenia and schizoaffective disorder. Am J Psychiatry 2004;161:975–84. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1176/appi.ajp.161.6.975&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15169685&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000221836700007&link_type=ISI) 201.Sarhan S, Hitchcock JM, Grauffel CA, et al. Comparative antipsychotic profiles of neurotensin and a related systemically active peptide agonist. Peptides 1997;18:1223–7. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0196-9781(97)00145-9&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9396065&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 202.Feifel D, Reza TL, Wustrow DJ, et al. Novel antipsychotic-like effects on prepulse inhibition of startle produced by a neurotensin agonist. J Pharmacol Exp Ther 1999;288:710–3. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoianBldCI7czo1OiJyZXNpZCI7czo5OiIyODgvMi83MTAiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 203.Cusack B, Boules M, Tyler BM, et al. Effects of a novel neurotensin peptide analog given extracranially on CNS behaviors mediated by apomorphine and haloperidol. Brain Res 2000;856:48–54. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0006-8993(99)02363-X&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10677610&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 204.Boules M, Fredrickson P, Richelson E. Neurotensin agonists as an alternative to antipsychotics. Expert Opin Investig Drugs 2005;14:359–69. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1517/13543784.14.4.359&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15882113&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 205.Richelson E, Boules M, Fredrickson P. Neurotensin agonists: possible drugs for treatment of psychostimulant abuse. Life Sci 2003;73: 679–90. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0024-3205(03)00388-6&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12801589&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 206.Van Kemmel FM, Dubuc I, Bourdel E, et al. A C-terminal cyclic 8–13 neurotensin fragment analog appears less exposed to neprilysin when it crosses the blood-brain barrier than the cerebrospinal fluid-brain barrier in mice. Neurosci Lett 1996;217:58–60. [PubMed](http://jpn.ca/lookup/external-ref?access_num=8905739&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 207.Tyler BM, Douglas CL, Fauq A, et al. In vitro binding and CNS effects of novel neurotensin agonists that cross the blood-brain barrier. Neuropharmacology 1999;38:1027–34. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0028-3908(99)00011-8&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10428421&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000081126200012&link_type=ISI) 208.Boules M, McMahon B, Warrington L, et al. Neurotensin analog selective for hypothermia over antinociception and exhibiting atypical neuroleptic-like properties. Brain Res 2001;919:1–11. [PubMed](http://jpn.ca/lookup/external-ref?access_num=11689157&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 209.Feifel D, Melendez G, Shilling PD. Reversal of sensorimotor gating deficits in Brattleboro rats by acute administration of clozapine and a neurotensin agonist, but not haloperidol: a potential predictive model for novel antipsychotic effects. Neuropsychopharmacology 2004; 29:731–8. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1038/sj.npp.1300378&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=14760394&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000220336200010&link_type=ISI) 210.Feifel D, Melendez G, Shilling PD. A systemically administered neurotensin agonist blocks disruption of prepulse inhibition produced by a serotonin-2A agonist. Neuropsychopharmacology 2003;28:651–3. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1038/sj.npp.1300083&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12655309&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 211.Shilling PD, Richelson E, Feifel D. The effects of systemic NT69L, a neurotensin agonist, on baseline and drug-disrupted prepulse inhibition. Behav Brain Res 2003;143:7–14. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0166-4328(03)00037-8&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12842291&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000184240500002&link_type=ISI) 212.Boules M, Warrington L, Fauq A, et al. A novel neurotensin analog blocks cocaine- and D-amphetamine-induced hyperactivity. Eur J Pharmacol 2001;426:73–6. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0014-2999(01)01197-9&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11525773&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000170879000010&link_type=ISI) 213.Petrie KA, Bubser M, Casey CD, et al. The neurotensin agonist PD149163 increases Fos expression in the prefrontal cortex of the rat. Neuropsychopharmacology 2004;29:1878–88. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1038/sj.npp.1300494&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15150532&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000223998700012&link_type=ISI) 214.Hadden MK, Orwig KS, Kokko KP, et al. Design, synthesis, and evaluation of the antipsychotic potential of orally bioavailable neurotensin (8–13) analogues containing non-natural arginine and lysine residues. Neuropharmacology 2005;49:1149–59. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/j.neuropharm.2005.06.010&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=16095636&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000233695400006&link_type=ISI) 215.Feifel D, Minor KL, Dulawa S, et al. The effects of intra-accumbens neurotensin on sensorimotor gating. Brain Res 1997;760:80–4. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0006-8993(97)00306-5&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9237521&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1997XK47700011&link_type=ISI) 216.Feifel D, Reza TL, Robeck SL. Pro-dopamine effects of neurotensin on sensorimotor gating deficits. Peptides 1997;18:1457–60. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0196-9781(97)00187-3&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9392852&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1997YF79800026&link_type=ISI) 217.Feifel D, Reza TL. Effects of neurotensin administered into the ventral tegmental area on prepulse inhibition of startle. Behav Brain Res 1999;106:189–93. [PubMed](http://jpn.ca/lookup/external-ref?access_num=10595435&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 218.Rompre PP. Psychostimulant-like effect of central microinjection of neurotensin on brain stimulation reward. Peptides 1995;16:1417–20. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0196-9781(95)02032-2&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=8745052&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 219.Binder EB, Kinkead B, Owens MJ, et al. Enhanced neurotensin neurotransmission is involved in the clinically relevant behavioral effects of antipsychotic drugs: evidence from animal models of sensorimotor gating. J Neurosci 2001;21:601–8. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Njoiam5ldXJvIjtzOjU6InJlc2lkIjtzOjg6IjIxLzIvNjAxIjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzEvNC8yMjkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 220.Kinkead B, Dobner PR, Egnatashvili V, et al. Neurotensin-deficient mice have deficits in prepulse inhibition: restoration by clozapine but not haloperidol, olanzapine or quetiapine. J Pharmacol Exp Ther 2005;315:256–64. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoianBldCI7czo1OiJyZXNpZCI7czo5OiIzMTUvMS8yNTYiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 221.Austin J, Hoogendoorn B, Buckland P, et al. Comparative sequencing of the proneurotensin gene and association studies in schizophrenia. Mol Psychiatry 2000;5:208–12. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1038/sj.mp.4000693&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10822351&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000086630600019&link_type=ISI) 222.Ervin GN, Birkemo LS, Nemeroff CB, et al. Neurotensin blocks certain amphetamine-induced behaviours. Nature 1981;291:73–6. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1038/291073a0&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=7231526&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 223.Kalivas PW, Nemeroff CB, Prange AJ Jr.. Increase in spontaneous motor activity following infusion of neurotensin into the ventral tegmental area. Brain Res 1981;229:525–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(81)91016-7&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=7306825&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 224.Kalivas PW, Burgess SK, Nemeroff CB, et al. Behavioral and neurochemical effects of neurotensin microinjection into the ventral tegmental area of the rat. Neuroscience 1983;8:495–505. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0306-4522(83)90195-1&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=6406930&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1983QM05400009&link_type=ISI) 225.Kalivas PW. Blockade of neurotensin-induced motor activity by inhibition of protein kinase. Psychopharmacology (Berl) 1994;114:175–80. [PubMed](http://jpn.ca/lookup/external-ref?access_num=7846201&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 226.Laitinen K, Crawley JN, Mefford IN, et al. Neurotensin and cholecystokinin microinjected into the ventral tegmental area modulate microdialysate concentrations of dopamine and metabolites in the posterior nucleus accumbens. Brain Res 1990;523:342–6. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(90)91511-E&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=1698106&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1990DT11300027&link_type=ISI) 227.Sotty F, Brun P, Leonetti M, et al. Comparative effects of neurotensin, neurotensin(8–13) and [D-Tyr(11)]neurotensin applied into the ventral tegmental area on extracellular dopamine in the rat prefrontal cortex and nucleus accumbens. Neuroscience 2000;98:485–92. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0306-4522(00)90023-X&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10869842&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 228.Palacios JM, Kuhar MJ. Neurotensin receptors are located on dopamine-containing neurones in rat midbrain. Nature 1981;294: 587–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1038/294587a0&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=6273751&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 229.Glimcher PW, Margolin DH, Giovino AA, et al. Neurotensin: a new ‘reward peptide’. Brain Res 1984;291:119–24. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(84)90657-7&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=6320951&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 230.Glimcher PW, Giovino AA, Hoebel BG. Neurotensin self-injection in the ventral tegmental area. Brain Res 1987;403:147–50. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(87)90134-X&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=3828807&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1987G136600020&link_type=ISI) 231.Rompre PP, Bauco P, Gratton A. Facilitation of brain stimulation reward by mesencephalic injections of neurotensin-(1–13). Eur J Pharmacol 1992;211:295–303. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0014-2999(92)90384-G&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=1319909&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1992HG82900002&link_type=ISI) 232.Rompre PP, Boye SM. Opposite effects of mesencephalic microinjections of cholecystokinin octapeptide and neurotensin-(1–13) on brain stimulation reward. Eur J Pharmacol 1993;232:299–303. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0014-2999(93)90789-K&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=8467866&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 233.Rompre PP, Gratton A. Mesencephalic microinjections of neurotensin-( 1–13) and its C-terminal fragment, neurotensin-(8–13), potentiate brain stimulation reward. Brain Res 1993;616:154–62. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(93)90204-Z&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=8358607&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 234.Bauco P, Rompre PP. Effects of neurotensin receptor activation on brain stimulation reward in Fischer 344 and Lewis rats. Eur J Pharmacol 2001;432:57–61. [PubMed](http://jpn.ca/lookup/external-ref?access_num=11734188&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 235.Rompre PP. Repeated activation of neurotensin receptors sensitizes to the stimulant effect of amphetamine. Eur J Pharmacol 1997;328:131–4. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0014-2999(97)00159-3&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9218694&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1997XG82600004&link_type=ISI) 236.Morrow EL, Erwin VG. Calcium influence on neurotensin and betaendorphin enhancement of ethanol sensitivity in selectively bred mouse lines. Alcohol Drug Res 1987;7:225–32. [PubMed](http://jpn.ca/lookup/external-ref?access_num=2950866&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 237.Erwin VG, Markel PD, Johnson TE, et al. Common quantitative trait loci for alcohol-related behaviors and central nervous system neurotensin measures: hypnotic and hypothermic effects. J Pharmacol Exp Ther 1997;280:911–8. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoianBldCI7czo1OiJyZXNpZCI7czo5OiIyODAvMi85MTEiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 238.Rompre P, Perron S. Evidence for a role of endogenous neurotensin in the initiation of amphetamine sensitization. Neuropharmacology 2000;39:1880–92. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0028-3908(99)00269-5&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10884569&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000088465600020&link_type=ISI) 239.Panayi F, Dorso E, Lambas-Senas L, et al. Chronic blockade of neurotensin receptors strongly reduces sensitized, but not acute, behavioral response to D-amphetamine. Neuropsychopharmacology 2002;26: 64–74. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0893-133X(01)00354-2&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11751033&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000172895100007&link_type=ISI) 240.Panayi F, Colussi-Mas J, Lambas-Senas L, et al. Endogenous neurotensin in the ventral tegmental area contributes to amphetamine behavioral sensitization. Neuropsychopharmacology 2005;30:871–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1038/sj.npp.1300638&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15637639&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000228452800004&link_type=ISI) 241.Zahm DS, Williams ES, Krause JE, et al. Distinct and interactive effects of d-amphetamine and haloperidol on levels of neurotensin and its mRNA in subterritories in the dorsal and ventral striatum of the rat. J Comp Neurol 1998;400:487–503. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1002/(SICI)1096-9861(19981102)400:4<487::AID-CNE4>3.0.CO;2-6&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9786410&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 242.Adams DH, Hanson GR, Keefe KA. Differential effects of cocaine and methamphetamine on neurotensin/neuromedin N and preprotachykinin messenger RNA expression in unique regions of the striatum. Neuroscience 2001;102:843–51. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0306-4522(00)00530-3&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11182247&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 243.Betancur C, Lepee-Lorgeoux I, Cazillis M, et al. Neurotensin gene expression and behavioral responses following administration of psychostimulants and antipsychotic drugs in dopamine D(3) receptor deficient mice. Neuropsychopharmacology 2001;24:170–82. [PubMed](http://jpn.ca/lookup/external-ref?access_num=11120399&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 244.Gygi SP, Gibb JW, Hanson GR. Differential effects of antipsychotic and psychotomimetic drugs on neurotensin systems of discrete extrapyramidal and limbic regions. J Pharmacol Exp Ther 1994;270:192–7. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoianBldCI7czo1OiJyZXNpZCI7czo5OiIyNzAvMS8xOTIiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 245.Letter AA, Merchant K, Gibb JW, et al. Effect of methamphetamine on neurotensin concentrations in rat brain regions. J Pharmacol Exp Ther 1987;241:443–7. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoianBldCI7czo1OiJyZXNpZCI7czo5OiIyNDEvMi80NDMiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 246.Hanson GR, Smiley P, Johnson M, et al. Response by the neurotensin systems of the basal ganglia to cocaine treatment. Eur J Pharmacol 1989;160:23–30. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0014-2999(89)90650-X&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=2714362&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 247.Hertel P, Mathe JM, Nomikos GG, et al. Effects of D-amphetamine and phencyclidine on behavior and extracellular concentrations of neurotensin and dopamine in the ventral striatum and the medial prefrontal cortex of the rat. Behav Brain Res 1995;72:103–14. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0166-4328(96)00138-6&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=8788863&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1995TP48100013&link_type=ISI) 248.Fantegrossi WE, Ko MC, Woods JH, et al. Antinociceptive, hypothermic, hypotensive, and reinforcing effects of a novel neurotensin receptor agonist, NT69L, in rhesus monkeys. Pharmacol Biochem Behav 2005;80:341–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/j.pbb.2004.12.005&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15680187&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 249.Kelley AE, Cador M, Stinus L, et al. Neurotensin, substance P, neurokinin- alpha, and enkephalin: injection into ventral tegmental area in the rat produces differential effects on operant responding. Psychopharmacology (Berl) 1989;97:243–52. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1007/BF00442258&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=2471221&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 250.Vanakoski J, Mazzanti C, Naukkarinen H, et al. An abundant proneurotensin polymorphism, 479A>G, and a test of its association with alcohol dependence in a Finnish population. Alcohol Clin Exp Res 2000;24:762–5. [PubMed](http://jpn.ca/lookup/external-ref?access_num=10888062&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 251.Chinaglia G, Probst A, Palacios JM. Neurotensin receptors in Parkinson’s disease and progressive supranuclear palsy: an autoradiographic study in basal ganglia. Neuroscience 1990;39:351–60. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0306-4522(90)90273-7&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=1965015&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 252.Sadoul JL, Checler F, Kitabgi P, et al. Loss of high affinity neurotensin receptors in substantia nigra from parkinsonian subjects. Biochem Biophys Res Commun 1984;125:395–404. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0006-291X(84)80381-2&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=6095844&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1984TV27800058&link_type=ISI) 253.Uhl GR, Whitehouse PJ, Price DL, et al. Parkinson’s disease: depletion of substantia nigra neurotensin receptors. Brain Res 1984;308: 186–90. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(84)90935-1&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=6089953&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1984TG79300026&link_type=ISI) 254.Fernandez A, de Ceballos ML, Jenner P, et al. Neurotensin, substance P, delta and mu opioid receptors are decreased in basal ganglia of Parkinson’s disease patients. Neuroscience 1994;61:73–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0306-4522(94)90061-2&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=7969897&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 255.Yamada M, Yamada M, Richelson E. Heterogeneity of melanized neurons expressing neurotensin receptor messenger RNA in the substantia nigra and the nucleus paranigralis of control and Parkinson’s disease brain. Neuroscience 1995;64:405–17. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0306-4522(94)00395-L&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=7700529&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 256.Tanji H, Araki T, Fujihara K, et al. Alteration of neurotensin receptors in MPTP-treated mice. Peptides 1999;20:803–7. [PubMed](http://jpn.ca/lookup/external-ref?access_num=10477079&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 257.Goulet M, Morissette M, Grondin R, et al. Neurotensin receptors and dopamine transporters: effects of MPTP lesioning and chronic dopaminergic treatments in monkeys. Synapse 1999;32:153–64. [PubMed](http://jpn.ca/lookup/external-ref?access_num=10340626&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 258.Waters CM, Hunt SP, Jenner P, et al. Localization of neurotensin receptors in the forebrain of the common marmoset and the effects of treatment with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Brain Res 1987;412:244–53. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(87)91130-9&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=3038264&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1987H589300004&link_type=ISI) 259.Quirion R, Chiueh CC, Everist HD, et al. Comparative localization of neurotensin receptors on nigrostriatal and mesolimbic dopaminergic terminals. Brain Res 1985;327:385–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(85)91542-2&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=2985182&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1985ACK2600050&link_type=ISI) 260.Cadet JL, Kujirai K, Przedborski S. Bilateral modulation of [3H]neurotensin binding by unilateral intrastriatal 6-hydroxydopamine injections: evidence from a receptor autoradiographic study. Brain Res 1991;564:37–44. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(91)91349-6&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=1663814&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 261.Herve D, Tassin JP, Studler JM, et al. Dopaminergic control of 125I-labeled neurotensin binding site density in corticolimbic structures of the rat brain. Proc Natl Acad Sci U S A 1986;83:6203–7. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMDoiODMvMTYvNjIwMyI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMxLzQvMjI5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 262.Schimpff RM, Avard C, Fenelon G, et al. Increased plasma neurotensin concentrations in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 2001;70:784–6. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiam5ucCI7czo1OiJyZXNpZCI7czo4OiI3MC82Lzc4NCI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMxLzQvMjI5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 263.Fernandez A, Jenner P, Marsden CD, et al. Characterization of neurotensin-like immunoreactivity in human basal ganglia: increased neurotensin levels in substantia nigra in Parkinson’s disease. Peptides 1995;16:339–46. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0196-9781(94)00141-3&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=7784265&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 264.Bissette G, Nemeroff CB, Decker MW, et al. Alterations in regional brain concentrations of neurotensin and bombesin in Parkinson’s disease. Ann Neurol 1985;17:324–8. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1002/ana.410170403&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=4004152&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1985AFH1500002&link_type=ISI) 265.Gibb WR, Esiri MM, Lees AJ. Clinical and pathological features of diffuse cortical Lewy body disease (Lewy body dementia). Brain 1987;110:1131–53. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1093/brain/110.5.1131&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=2823957&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1987L062000003&link_type=ISI) 266.Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 1991;114:2283–301. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1093/brain/114.5.2283&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=1933245&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1991GR31100017&link_type=ISI) 267.Forno LS, Alvord EC Jr.. The pathology of Parkinsonism. Part I. Some new observations and correlations. Contemp Neurol Ser 1971;8: 119–30. [PubMed](http://jpn.ca/lookup/external-ref?access_num=5162177&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 268.Fernandez A, de Ceballos ML, Rose S, et al. Alterations in peptide levels in Parkinson’s disease and incidental Lewy body disease. Brain 1996;119:823–30. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1093/brain/119.3.823&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=8673494&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1996UX94700012&link_type=ISI) 269.Engber TM, Susel Z, Kuo S, et al. Levodopa replacement therapy alters enzyme activities in striatum and neuropeptide content in striatal output regions of 6-hydroxydopamine lesioned rats. Brain Res 1991;552:113–8. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(91)90667-K&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=1717109&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1991FU38800017&link_type=ISI) 270.Taylor MD, De Ceballos ML, Rose S, et al. Effects of a unilateral 6-hydroxydopamine lesion and prolonged L-3,4-dihydroxyphenylalanine treatment on peptidergic systems in rat basal ganglia. Eur J Pharmacol 1992;219:183–92. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0014-2999(92)90295-F&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=1385171&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 271.Taylor MD, de Ceballos ML, Rose S, et al. Neuropeptide levels in the basal ganglia of aged common marmosets following prolonged treatment with MPTP. J Neural Transm Park Dis Dement Sect 1991;3: 99–108. [PubMed](http://jpn.ca/lookup/external-ref?access_num=1716907&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 272.Allen JM, Cross AJ, Yeats JC, et al. Neuropeptides and dopamine in the marmoset. Effect of treatment with 1-methyl-4-phenyl-1, 2, 3, 6 tetrahydropyridine (MPTP): An animal model for Parkinson’s disease? Brain 1986;109:143–57. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1093/brain/109.1.143&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=2417654&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1986AZJ5100008&link_type=ISI) 273.Jolicoeur FB, Rivest R, St-Pierre S, et al. Antiparkinson-like effects of neurotensin in 6-hydroxydopamine lesioned rats. Brain Res 1991; 538:187–92. [PubMed](http://jpn.ca/lookup/external-ref?access_num=1901504&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 274.Rivest R, St-Pierre S, Jolicoeur FB. Structure-activity studies of neurotensin on muscular rigidity and tremors induced by 6-hydroxydopamine lesions in the posterolateral hypothalamus of the rat. Neuropharmacology 1991;30:47–52. [PubMed](http://jpn.ca/lookup/external-ref?access_num=1904561&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 275.Boules M, Warrington L, Fauq A, et al. Antiparkinson-like effects of a novel neurotensin analog in unilaterally 6-hydroxydopamine lesioned rats. Eur J Pharmacol 2001;428:227–33. [PubMed](http://jpn.ca/lookup/external-ref?access_num=11675040&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 276.Mesnage V, Houeto JL, Bonnet AM, et al. Neurokinin B, neurotensin, and cannabinoid receptor antagonists and Parkinson disease. Clin Neuropharmacol 2004;27:108–10. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1097/00002826-200405000-00003&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15190231&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000222099200003&link_type=ISI) 277.Clineschmidt BV, McGuffin JC. Neurotensin administered intracisternally inhibits responsiveness of mice to noxious stimuli. Eur J Pharmacol 1977;46:395–6. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0014-2999(77)90236-9&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=201475&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1977EF26800014&link_type=ISI) 278.Uhl GR, Snyder SH. Regional and subcellular distributions of brain neurotensin. Life Sci 1976;19:1827–32. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0024-3205(76)90114-4&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12438&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1976CQ95700005&link_type=ISI) 279.Alexander MJ, Leeman SE. Widespread expression in adult rat forebrain of mRNA encoding high-affinity neurotensin receptor. J Comp Neurol 1998;402:475–500. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1002/(SICI)1096-9861(19981228)402:4<475::AID-CNE4>3.0.CO;2-9&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9862322&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000077534100004&link_type=ISI) 280.Clineschmidt BV, McGuffin JC, Bunting PB. Neurotensin: antinocisponsive action in rodents. Eur J Pharmacol 1979;54:129–39. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0014-2999(79)90415-1&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=421735&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1979GL91900016&link_type=ISI) 281.Osbahr AJ III., Nemeroff CB, Luttinger D, et al. Neurotensin-induced antinociception in mice: antagonism by thyrotropin-releasing hormone. J Pharmacol Exp Ther 1981;217:645–51. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoianBldCI7czo1OiJyZXNpZCI7czo5OiIyMTcvMy82NDUiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 282.Hylden JL, Wilcox GL. Antinociceptive action of intrathecal neurotensin in mice. Peptides 1983;4:517–20. [PubMed](http://jpn.ca/lookup/external-ref?access_num=6196760&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 283.Pazos A, Lopez M, Florez J. Different mechanisms are involved in the respiratory depression and analgesia induced by neurotensin in rats. Eur J Pharmacol 1984;98:119–23. [PubMed](http://jpn.ca/lookup/external-ref?access_num=6714297&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 284.Urban MO, Smith DJ. Role of neurotensin in the nucleus raphe magnus in opioid-induced antinociception from the periaqueductal gray. J Pharmacol Exp Ther 1993;265:580–6. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoianBldCI7czo1OiJyZXNpZCI7czo5OiIyNjUvMi81ODAiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 285.Kalivas PW, Gau BA, Nemeroff CB, et al. Antinociception after microinjection of neurotensin into the central amygdaloid nucleus of the rat. Brain Res 1982;243:279–86. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(82)90251-7&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=7104740&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1982NY85400009&link_type=ISI) 286.Williams FG, Mullet MA, Beitz AJ. Basal release of Met-enkephalin and neurotensin in the ventrolateral periaqueductal gray matter of the rat: a microdialysis study of antinociceptive circuits. Brain Res 1995;690:207–16. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(95)00554-4&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=8535838&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1995RU45200008&link_type=ISI) 287.Urban MO, Coutinho SV, Gebhart GF. Biphasic modulation of visceral nociception by neurotensin in rat rostral ventromedial medulla. J Pharmacol Exp Ther 1999;290:207–13. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoianBldCI7czo1OiJyZXNpZCI7czo5OiIyOTAvMS8yMDciO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 288.Urban MO, Gebhart GF. Characterization of biphasic modulation of spinal nociceptive transmission by neurotensin in the rat rostral ventromedial medulla. J Neurophysiol 1997;78:1550–62. [PubMed](http://jpn.ca/lookup/external-ref?access_num=9310442&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1997XY50300031&link_type=ISI) 289.Smith DJ, Hawranko AA, Monroe PJ, et al. Dose-dependent pain-facilitatory and -inhibitory actions of neurotensin are revealed by SR 48692, a nonpeptide neurotensin antagonist: influence on the antinociceptive effect of morphine. J Pharmacol Exp Ther 1997;282:899–908. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoianBldCI7czo1OiJyZXNpZCI7czo5OiIyODIvMi84OTkiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 290.Gui X, Carraway RE, Dobner PR. Endogenous neurotensin facilitates visceral nociception and is required for stress-induced antinociception in mice and rats. Neuroscience 2004;126:1023–32. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/j.neuroscience.2004.04.034&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15207335&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000222552900020&link_type=ISI) 291.Labbe-Jullie C, Dubuc I, Brouard A, et al. In vivo and in vitro structure-activity studies with peptide and pseudopeptide neurotensin analogs suggest the existence of distinct central neurotensin receptor subtypes. J Pharmacol Exp Ther 1994;268:328–36. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoianBldCI7czo1OiJyZXNpZCI7czo5OiIyNjgvMS8zMjgiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 292.Al-Rodhan NR, Richelson E, Gilbert JA, et al. Structure-antinociceptive activity of neurotensin and some novel analogues in the periaqueductal gray region of the brainstem. Brain Res 1991;557:227–35. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0006-8993(91)90139-M&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=1660754&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1991GE52000032&link_type=ISI) 293.Dubuc I, Costentin J, Terranova JP, et al. The nonpeptide neurotensin antagonist, SR 48692, used as a tool to reveal putative neurotensin receptor subtypes. Br J Pharmacol 1994;112:352–4. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1111/j.1476-5381.1994.tb13077.x&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=8075852&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1994NN63600003&link_type=ISI) 294.Dubuc I, Remande S, Costentin J. The partial agonist properties of levocabastine in neurotensin-induced analgesia. Eur J Pharmacol 1999;381:9–12. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0014-2999(99)00554-3&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10528128&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 295.Tyler-McMahon BM, Stewart JA, Farinas F, et al. Highly potent neurotensin analog that causes hypothermia and antinociception. Eur J Pharmacol 2000;390:107–11. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0014-2999(99)00877-8&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10708713&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 296.Quirion R, Rioux F, Regoli D, et al. Compound 48/80 inhibits neurotensin-induced hypotension in rats. Life Sci 1980;27:1889–95. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0024-3205(80)90435-X&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=6110157&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 297.Rioux F, Quirion R, St-Pierre S, et al. The hypotensive effect of centrally administered neurotensin in rats. Eur J Pharmacol 1981;69:241–7. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0014-2999(81)90469-6&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=7215426&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 298.Kubo T, Kihara M. Modulation of the aortic baroreceptor reflex by neuropeptide Y, neurotensin and vasopressin microinjected into the nucleus tractus solitarii of the rat. Naunyn Schmiedebergs Arch Pharmacol 1990;342:182–8. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1007/BF00166962&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=2146512&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1990DT82900011&link_type=ISI) 299.Ciriello J, Zhang TX. Cardiovascular effects of neurotensin microinjections into the nucleus of the solitary tract. Brain Res 1997;749:35–43. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0006-8993(96)01176-6&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9070625&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1997WL91100005&link_type=ISI) 300.Iwata T, Hashimoto H, Hiwada K, et al. Changes of plasma renin activity by intracerebroventricular administration of biological active peptides in conscious rats. Clin Exp Hypertens A 1984;6:1055–66. [PubMed](http://jpn.ca/lookup/external-ref?access_num=6375907&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 301.Sumners C, Phillips MI, Richards EM. Central pressor action of neurotensin in conscious rats. Hypertension 1982;4:888–93. 302.Shido O, Nagasaka T. Effects of intraventricular neurotensin on blood pressure and heat balance in rats. Jpn J Physiol 1985;35:311–20. [PubMed](http://jpn.ca/lookup/external-ref?access_num=4046236&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 303.Shulkes A, Lewis SJ, Jarrott B. Strain differences in central nervous system neurotensin content between normotensive and spontaneously hypertensive rats. Brain Res 1987;415:404–8. [PubMed](http://jpn.ca/lookup/external-ref?access_num=3607509&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 304.Goncharuk VD, van Heerikhuize J, Dai JP, et al. Neuropeptide changes in the suprachiasmatic nucleus in primary hypertension indicate functional impairment of the biological clock. J Comp Neurol 2001;431:320–30. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1002/1096-9861(20010312)431:3<320::AID-CNE1073>3.0.CO;2-2&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11170008&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000166761200006&link_type=ISI) 305.Cador M, Kelley AE, Le Moal M, et al. Ventral tegmental area infusion of substance P, neurotensin and enkephalin: differential effects on feeding behavior. Neuroscience 1986;18:659–69. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0306-4522(86)90061-8&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=2427971&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1986D423100007&link_type=ISI) 306.Hawkins MF, Barkemeyer CA, Tulley RT. Synergistic effects of dopamine agonists and centrally administered neurotensin on feeding. Pharmacol Biochem Behav 1986;24:1195–201. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0091-3057(86)90170-X&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=3725825&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1986C617500007&link_type=ISI) 307.Richy S, Burlet A, Max J, et al. Effect of chronic intraperitoneal injections of leptin on hypothalamic neurotensin content and food intake. Brain Res 2000;862:276–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0006-8993(00)02125-9&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10799699&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 308.Sahu A. Evidence suggesting that galanin (GAL), melanin-concentrating hormone (MCH), neurotensin (NT), proopiomelanocortin (POMC) and neuropeptide Y (NPY) are targets of leptin signaling in the hypothalamus. Endocrinology 1998;139:795–8. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1210/en.139.2.795&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9449656&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000071491000050&link_type=ISI) 309.Cui H, Cai F, Belsham DD. Anorexigenic hormones leptin, insulin, and alpha-melanocyte-stimulating hormone directly induce neurotensin (NT) gene expression in novel NT-expressing cell models. J Neurosci 2005;25:9497–506. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Njoiam5ldXJvIjtzOjU6InJlc2lkIjtzOjEwOiIyNS80MS85NDk3IjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzEvNC8yMjkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 310.Sahu A, Carraway RE, Wang YP. Evidence that neurotensin mediates the central effect of leptin on food intake in rat. Brain Res 2001; 888:343–7. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0006-8993(00)03107-3&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11150496&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000166427900022&link_type=ISI) 311.Wilding JP, Gilbey SG, Bailey CJ, et al. Increased neuropeptide-Y messenger ribonucleic acid (mRNA) and decreased neurotensin mRNA in the hypothalamus of the obese (ob/ob) mouse. Endocrinology 1993;132:1939–44. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1210/en.132.5.1939&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=7682936&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1993KZ69900009&link_type=ISI) 312.Boules M, Cusack B, Zhao L, et al. A novel neurotensin peptide analog given extracranially decreases food intake and weight in rodents. Brain Res 2000;865:35–44. [PubMed](http://jpn.ca/lookup/external-ref?access_num=10814731&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 313.Hermans-Borgmeyer I, Hermey G, Nykjaer A, et al. Expression of the 100-kDa neurotensin receptor sortilin during mouse embryonal development. Brain Res Mol Brain Res 1999;65:216–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0169-328X(99)00022-4&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10064893&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 314.Hara Y, Shiosaka S, Senba E, et al. Ontogeny of the neurotensin-containing neuron system of the rat: immunohistochemical analysis. I. Forebrain and diencephalon. J Comp Neurol 1982;208:177–95. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1002/cne.902080207&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=7119156&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1982PA13700006&link_type=ISI) 315.Reubi JC, Waser B, Schaer JC, et al. Neurotensin receptors in human neoplasms: high incidence in Ewing’s sarcomas. Int J Cancer 1999;82: 213–8. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1002/(SICI)1097-0215(19990719)82:2<213::AID-IJC11>3.0.CO;2-8&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10389755&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000081064800011&link_type=ISI) 316.Davis TP, Burgess HS, Crowell S, et al. Beta-endorphin and neurotensin stimulate in vitro clonal growth of human SCLC cells. Eur J Pharmacol 1989;161:283–5. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0014-2999(89)90862-5&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=2542049&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 317.Maoret JJ, Anini Y, Rouyer-Fessard C, et al. Neurotensin and a nonpeptide neurotensin receptor antagonist control human colon cancer cell growth in cell culture and in cells xenografted into nude mice. Int J Cancer 1999;80:448–54. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1002/(SICI)1097-0215(19990129)80:3<448::AID-IJC19>3.0.CO;2-N&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9935189&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000077782700019&link_type=ISI) 318.Iwase K, Evers BM, Hellmich MR, et al. Indirect inhibitory effect of a neurotensin receptor antagonist on human colon cancer (LoVo) growth. Surg Oncol 1996;5:245–51. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0960-7404(96)80028-4&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9129137&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 319.Reubi JC, Waser B, Friess H, et al. Neurotensin receptors: a new marker for human ductal pancreatic adenocarcinoma. Gut 1998;42:546–50. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiZ3V0am5sIjtzOjU6InJlc2lkIjtzOjg6IjQyLzQvNTQ2IjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzEvNC8yMjkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 320.Elek J, Pinzon W, Park KH, et al. Relevant genomics of neurotensin receptor in cancer. Anticancer Res 2000;20:53–8. [PubMed](http://jpn.ca/lookup/external-ref?access_num=10769634&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000086326500008&link_type=ISI) 321.Wang L, Friess H, Zhu Z, et al. Neurotensin receptor-1 mRNA analysis in normal pancreas and pancreatic disease. Clin Cancer Res 2000;6:566–71. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNsaW5jYW5yZXMiO3M6NToicmVzaWQiO3M6NzoiNi8yLzU2NiI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMxLzQvMjI5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 322.Souaze F, Viardot-Foucault V, Roullet N, et al. Neurotensin receptor 1 gene activation by the Tcf/beta-catenin pathway is an early event in human colonic adenomas. Carcinogenesis 2006;27(4):708–16. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1093/carcin/bgi269&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=16299383&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000236252600004&link_type=ISI) 323.Toy-Miou-Leong M, Cortes CL, Beaudet A, et al. Receptor trafficking via the perinuclear recycling compartment accompanied by cell division is necessary for permanent neurotensin cell sensitization and leads to chronic mitogen-activated protein kinase activation. J Biol Chem 2004;279:12636–46. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEyOiIyNzkvMTMvMTI2MzYiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 324.Stopa EG, Volicer L, Kuo-Leblanc V, et al. Pathologic evaluation of the human suprachiasmatic nucleus in severe dementia. J Neuropathol Exp Neurol 1999;58:29–39. 325.Torup L, Borsdal J, Sager T. Neuroprotective effect of the neurotensin analogue JMV-449 in a mouse model of permanent middle cerebral ischaemia. Neurosci Lett 2003;351:173–6. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/j.neulet.2003.08.008&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=14623134&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000186443500011&link_type=ISI) 326.Babcock AM, Baker DA, Hallock NL, et al. Neurotensin-induced hypothermia prevents hippocampal neuronal damage and increased locomotor activity in ischemic gerbils. Brain Res Bull 1993;32:373–8. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0361-9230(93)90202-M&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=8221127&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1993LU13400007&link_type=ISI) 327.Asakura K, Matsuo Y, Kanemasa T, et al. P/Q-type Ca2+ channel blocker omega-agatoxin IVA protects against brain injury after focal ischemia in rats. Brain Res 1997;776:140–5. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0006-8993(97)00975-X&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9439806&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 328.Goldman R, Bar-Shavit Z, Romeo D. Neurotensin modulates human neutrophil locomotion and phagocytic capability. FEBS Lett 1983;159:63–7. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/0014-5793(83)80417-7&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=6873304&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1983RD45900013&link_type=ISI) 329.Lemaire I. Neurotensin enhances IL-1 production by activated alveolar macrophages. J Immunol 1988;140:2983–8. [Abstract](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiamltbXVub2wiO3M6NToicmVzaWQiO3M6MTA6IjE0MC85LzI5ODMiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 330.Castagliuolo I, Wang CC, Valenick L, et al. Neurotensin is a proinflammatory neuropeptide in colonic inflammation. J Clin Invest 1999;103:843–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1172/JCI4217&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10079105&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000079203100011&link_type=ISI) 331.Zhao D, Keates AC, Kuhnt-Moore S, et al. Signal transduction pathways mediating neurotensin-stimulated interleukin-8 expression in human colonocytes. J Biol Chem 2001;276:44464–71. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEyOiIyNzYvNDgvNDQ0NjQiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMS80LzIyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 332.Brun P, Mastrotto C, Beggiao E, et al. Neuropeptide neurotensin stimulates intestinal wound healing following chronic intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 2005;288: G621–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1152/ajpgi.00140.2004&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15764810&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000227564400006&link_type=ISI) 333.Juaneda C, Lafon-Dubourg P, Ciofi P, et al. Immune challenge-stimulated hypophysiotropic corticotropin-releasing hormone messenger RNA expression is associated with an induction of neurotensin messenger RNAs without alteration of vasopressin messenger RNAs. Neuroscience 1999;93:393–400. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0306-4522(99)00133-5&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10430502&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) 334.Dicou E, Vincent JP, Mazella J. Neurotensin receptor-3/sortilin mediates neurotensin-induced cytokine/chemokine expression in a murine microglial cell line. J Neurosci Res 2004;78:92–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1002/jnr.20231&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15372498&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000224258700011&link_type=ISI) 335.Vanegas H. To the descending pain-control system in rats, inflammation-induced primary and secondary hyperalgesia are two different things. Neurosci Lett 2004;361:225–8. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/j.neulet.2003.12.002&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15135934&link_type=MED&atom=%2Fjpn%2F31%2F4%2F229.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000221566100058&link_type=ISI)