Sex steroid–related candidate genes in psychiatric disorders ============================================================== * Lars Westberg * Elias Eriksson ## Abstract Sex steroids readily pass the blood-brain barrier, and receptors for them are abundant in brain areas important for the regulation of emotions, cognition and behaviour. Animal experiments have revealed both important early effects of these hormones on brain development and their ongoing influence on brain morphology and neurotransmission in the adult organism. The important effects of sex steroids on human behaviour are illustrated by, for example, the effect of reduced levels of these hormones on sexual drive and conditions such as premenstrual dysphoric disorder, perimenopausal dysphoria, postpartum depression, postpartum psychosis, dysphoria induced by oral contraceptives or hormonal replacement therapy and anabolic steroid–induced aggression. The fact that men and women (as groups) differ with respect to the prevalence of several psychiatric disorders, certain aspects of cognitive function and certain personality traits may possibly also reflect an influence of sex steroids on human behaviour. The heritability of most behavioural traits, including personality, cognitive abilities and susceptibility to psychiatric illness, is considerable, but as yet, only few genes of definite importance in this context have been identified. Given the important role of sex steroids for brain function, it is unfortunate that relatively few studies so far have addressed the possible influence of sex steroid–related genes on interindividual differences with respect to personality, cognition and susceptibility to psychiatric disorders. To facilitate further research in this area, this review provides information on several such genes and summarizes what is currently known with respect to their possible influence on brain function. ## Introduction Sex steroids readily enter the brain, and receptors for them are found in brain areas known to be of importance for emotions, cognition and behaviour. Animal experiments have revealed that these hormones have both an important early and permanent influence on brain development and an ongoing influence on brain neurotransmission in the adult organism. The influence exerted by sex steroids on animal behaviour, including sexual activity and aggression, is exerted by both these mechanisms.1–4 That sex steroids also influence behaviour in humans is shown by the reduction in libido that often follows a decrease in serum sex steroids and by conditions such as premenstrual dysphoric disorder (where the symptoms coincide with sex steroid fluctuations in serum and can be abolished by means of ovariectomy or treatment with ovulation inhibitors), postpartum depression, dysphoria induced by oral contraceptives and changes in behaviour induced by anabolic steroids.5–8 Although some aspects of sexual dimorphism may be attributable to factors other than sex steroids,9,10 the hypothesis that sex hormones play a role in the regulation of mood and behaviour also gains support from the fact that a large number of psychiatric conditions, including depression, panic disorder, generalized anxiety disorder, social phobia and eating disorders, are more prevalent in women than in men. In contrast, alcoholism, attention-deficit hyperactivity disorder and autism are more common in men. As well, with respect to normal personality traits, there are subtle but clear differences between women and men at the group level (e.g., with respect to anxiety-related traits). Similarly, certain aspects of cognitive abilities appear to differ slightly between the sexes.3,4 Autism is a disorder of particular interest in regard to the possible role of sex steroids; there is evidence suggesting that subjects with autism are characterized by a brain that, in certain aspects, may be regarded as unusually masculinized.3 Transsexualism is another condition for which aberrations in the early organizational influence of sex steroids on the brain is likely to be of critical importance (see below). Knowing from twin and family studies that most psychiatric disorders are to a greater or lesser extent hereditary, numerous research groups are currently engaged in the search for candidate genes influencing the risk for psychiatric morbidity. This line of research has been characterized by considerable enthusiasm that has lately, however, been combined with a certain disappointment: identifying susceptibility genes for common psychiatric disorders has proven more difficult than anticipated by many researchers. The list of genes found to be associated with certain psychiatric disorders or certain aspects of behaviour is nevertheless slowly expanding and now includes the serotonin transporter gene, which is associated with anxiety traits11; the catechol-*O*-methyltransferase (*COMT*) gene, which is associated with cognition12; the apolipoprotein E gene, which is associated with Alzheimer disease13; and several genes, such as the disrupted in schizophrenia (*DISC1*) and neuregulin 1 genes, which are associated with schizophrenia.14 In regard to the association between sex steroids and psychiatric disorders or traits showing a clear sex difference in prevalence, the genes regulating sex steroids should be worthy candidates for exploration. As yet, studies on the possible influence of such genes on mood and behaviour have been relatively sparse. To facilitate further research in this area, this review provides information on several candidate genes related to sex steroids and summarizes what is currently known about their possible relation to brain and behaviour. Obviously, a large number of genes may directly or indirectly influence sex steroids and, hence, be regarded as sex steroid–related. For the sake of brevity, we focus on genes encoding sex steroid receptors (for which we summarize most published findings in Table 1) and receptor coregulators; however, we also mention certain genes coding for relevant enzymes. Given the scarcity of studies in this area, we also mention studies with small sample sizes or otherwise marred by shortcomings in design or methods. View this table: [Table 1](http://jpn.ca/content/33/4/319/T1) Table 1 Investigations of polymorphisms in sex steroid receptor genes in relation to psychiatric disorders and behaviour Given the organism’s remarkable capacity for compensation and adaptation, it may seem counterintuitive that a single polymorphism in a single gene should exert any major impact on the activity of the sex steroids and on aspects of the phenotype that are under the influence of these hormones. Because one should therefore probably not expect large effect sizes in association studies focusing on a single polymorphism, a reasonable strategy in future studies might be to assess the possible influence of interactions between several polymorphisms within the same gene (polymorphism × polymorphism interactions) or between polymorphisms in different genes that influence the sex steroid pathway in different ways (gene × gene interactions). As yet, there are few studies of sex steroids investigating the importance of polymorphism × polymorphism interactions and gene × gene interactions. Consequently, with some exceptions,47–50 most studies discussed in this review have addressed the possible importance of a single polymorphism (or haplotype) in a single gene. ## Sex steroid receptors ### General comments The sex steroid receptors are ligand-activated transcription factors that bind to specific hormone response elements in their target genes. They are abundant in brain areas known to be important for the regulation of emotions, cognition and behaviour (i.e., the hypothalamus, amygdala, cerebral cortex, hippocampus and brain stem).1,51,52 The expression of these receptors is often characterized by a certain sexual dimorphism.53 There are 2 subtypes of estrogen receptors: α and β.54 In addition, several isoforms of each subtype have been reported.55 The 2 estrogen receptor subtypes have comparable affinities to estradiol, but many other ligands show preferential binding to one or the other of them. The 2 subtypes also differ with respect to tissue distribution and coregulator interactions.56,57 So far, there seems to be only a single subtype of the androgen receptor and the progesterone receptor. Alternative splicing of the amino terminal of androgen receptor and progesterone receptor genes, however, results in different isoforms displaying differences in both expression and function.58,59 ### Estrogen receptor α gene The human estrogen receptor α gene (*ESR1*) is located on chromosome 6q25.160 and composed of 8 exons. A large number of polymorphisms in this gene have been identified,61–64 none of which has as yet been shown beyond doubt to be functional. However, it has been speculated that a TA repeat located upstream from exon 1 may influence the tissue-specific expression of the gene. This repeat is in strong linkage disequilibrium with other polymorphisms in the 5′ region of the gene, such as the PvuII (IVS1–397 T/C; rs2234693) and XbaI (IVS1–351 A/C; rs9340799) polymorphisms in intron 1. It has been suggested that the PvuII single nucleotide polymorphism (SNP) produces a binding site for a specific transcription factor61 that may affect gene expression. In several studies with high power to detect associations, the TA repeat, PvuII and XbaI polymorphisms in the *ESR1* gene have been found to influence bone mineral density, fracture risk,65,66 risk for cardiovascular disease62,67,68 and risk for breast cancer.64,69,70 Although strong, these associations are not undisputed.71 Given the well-established role of estrogen receptor α on brain development and function, it is not surprising that possible associations between the *ESR1* gene and various behavioural phenotypes have been the subject of several studies (Table 1). Comings and coworkers31 have reported an association between a long TA repeat polymorphism in *ESR1* and high anxiety scores in men; moreover, in 2 subsequent studies assessing a large number of genes by means of multivariate analysis, the same research group confirmed an association between this polymorphism and personality traits (measured by means of the Temperament and Character Inventory [TCI])37 as well as an association with conduct disorder.38 Using the the Karolinska Scales of Personality (KSP), we examined the possible association between the same estrogen receptor α repeat polymorphism and personality traits in women recruited from the normal population39; this study revealed an association between short length of the estrogen receptor α TA repeat polymorphism and high scores on scales related to neuroticism, psychoticism and irritability. In a longitudinal study of children and adolescents, haplotypes comprising the TA repeat as well as the PvuII and XbaI polymorphisms also were associated with anxiety-related personality traits.40 Moreover, in a large sample from the elderly population, a PvuII and XbaI haplotype was associated with the likelihood of displaying anxiety in women but not in men; in contrast, there was no association with depression.41 Conversely, in another study, the PvuII polymorphism was found to be associated with depression in Chinese women.36 In a recent study investigating 16 SNPs in *ESR1* in a sample of patients with premenstrual dysphoric disorder and symptom-free control subjects, an association was found between diagnosis and a haplotype in intron 4. Further, the significant associations with *ESR1* haplotypes were observed only in those with the Val/Val genotype of the Val158Met polymorphism in the *COMT* gene (see below).30 Although this finding is intriguing, it must, because of the small sample size, be considered as preliminary until replicated. Interestingly, recent data suggest that the PvuII polymorphism is associated with an increased risk for schizophrenia as well as with ESR1 expression in the human brain.72 Moreover, the same polymorphism has been associated with amygdala volume measured with magnetic resonance imaging in a large, elderly population.73 Finally, it has been suggested that *ESR1* polymorphisms (PvuII and XbaI) are associated with various forms of cognitive impairment.74,75 Taken together, the evidence for associations between *ESR1* polymorphisms and anxiety traits, not least in women, is fairly strong. Intriguing but still preliminary reports suggest that *ESR1* variants may be important also for premenstrual dysphoric disorder, depression and schizophrenia. ### Estrogen receptor β gene The human estrogen receptor β gene (*ESR2*) is located on chromosome 14q22–24. The gene is composed of 8 exons76 and has several polymorphsisms,44,64,77,78 of which a polymorphic CA repeat in intron 579 and 2 common SNPs — 1 at position 1730 (G730A; rs4986938) in the 3′ untranslated region and 1 silent mutation at position 1082 (G1082A; rs1256049)43 in exon 5 — are the most studied. To date, only a single clearly functional polymorphism in *ESR2* (F289L), identified specifically in African populations, has been reported80; this polymorphism leads to reduced estrogen binding affinity and impaired response to transactivation induced by 17β-estradiol. Associations between *ESR2* polymorphisms and breast cancer,64 bone mass density,77 prostate cancer78 and risk factors for cardiovascular disease81 have been reported in studies based on large populations. Several investigations also suggest an influence of *ESR2* variants on the brain (Table 1). For example, associations have been reported between *ESR2* polymorphisms and Alzheimer disease82,83 and also with early-onset Parkinson disease.84 Moreover, 2 studies have revealed associations between the G1082A polymorphism and anorexia nervosa,42,43 and another study has suggested an association between the *ESR2* gene and bulimic disease.44 Preliminary evidence from a small group of postmenopausal Japanese women suggests an association between menopausal complaints, including mood symptoms, and the CA repeat of *ESR2*.45 Further, a recent report provides some evidence for an association between longer CA repeats and risk for depression in an adolescent population.29 No associations between the G1730A polymorphism and bipolar disorder could be seen in a sample comprising parent and proband trios.85 Taken together so far, few association studies of psychiatric disorders have included the estrogen receptor β gene. There is some weak evidence for associations between *ESR2* polymorphisms and eating disorders in women. However, because animal data indicate that this gene is of considerable importance for behaviour, it clearly deserves further study. ### Progesterone receptor gene The human progesterone receptor gene (*PGR*) is located on chromosome 11q22–2386 and composed of 8 exons. The receptor exists in 2 molecular forms, PR-A and PR-B; these differ only at the amino terminus, with PR-B containing an additional stretch of amino acids.58 This domain plays an important role in identifying target genes that can be activated by the PR-B protein but not by the PR-A protein. The expression ratio of the 2 PR isoforms in the brain varies during fetal development87,88 and as a result of the estrous cycle89,90 and also differs between males and females.91–93 Administration of estrogen and progesterone has been shown to influence the expression ratio, and some of these variations may therefore be induced by these hormones.89,92,94 Notably, PR-A has recently been shown to play a key role in both hormone-dependent and hormone-independent facilitation of female sexual behaviour.95 The *PGR* gene contains several genetic variants.64,70,96–99 For example, intron 7 of the gene contains a 306 bp ALU insertion polymorphism97 called PROGINS that has recently been shown to decrease the stability of the PGR transcript, which diminishes the response of the receptor to progesterone.100 The PROGINS polymorphism has been thoroughly studied in relation to ovarian101 and breast99 cancer, but with conflicting results. The PROGINS polymorphism is linked with an SNP in exon 4 causing a valine-to-leucine substitution (V660L), as well as with a silent SNP in exon 5. Functional characterization of the V660L variant in an in vitro study revealed that the progesterone receptor encoded by the less common variant had a similar hormone binding capacity and hormone dissociation rate but higher transcriptional activity, compared with the wild-type receptor.101 There is also a functional polymorphism at position +331 (rs10895068) in the promoter region of the *PGR* gene that has been shown to increase the transcription of the gene and to favour the expression of the PR-B isoform in an endometrial cancer cell line.96 This polymorphism is located adjacent to a binding site for the GATA family of transcription factors. GATA5, which is expressed in breast cancer cell lines but not in normal mammary tissue, activated progesterone receptor expression in cells expressing the +331A variant of the receptor more strongly than in cells expressing the G allele.102 The G331A polymorphism has been found to be associated with risk for endometrial cancer,96,103 ovarian cancer104 and breast cancer,102,105 as well as with serum prolactin levels in healthy women.106 According to the false suffocation alarm hypothesis, panic disorder is due to abnormalities in the brain stem regulation of ventilation.107 Because progesterone is important for the regulation of breathing,108,109 an involvement of this hormone in panic disorder is well in line with this hypothesis and has been suggested by Klein.107 Prompted by this and by the fact that panic disorder displays a considerable sex difference with respect to prevalence, with women being afflicted more often than men,110 we studied the possible association between *PGR* variants and panic disorder and found the A allele of the G331A SNP to occur more frequently in patients than in control subjects.46 After the cohort was split according to sex, this association was seen in female patients only, with an odds ratio of 3.5. The PROGINS polymorphism was, however, not associated with the disorder. ### Androgen receptor gene The androgen receptor gene (*AR*) is located on chromosome Xq11–12 and composed of 8 exons.111,112 Exon 1 of the gene, encoding the amino terminal domain, contains 2 polymorphic trinucleotide repeats: a CAG repeat encoding a polyglutamine stretch and a GGC repeat encoding a polyglycine stretch. The polymorphic polyglutamine stretch appears to influence the function of the receptor as transcription factor, and relatively long fragments are associated with a low level of receptor function.113–115 Studies aiming to elucidate the molecular mechanism for this relation between repeat length and receptor function suggest that the CAG repeat influences interactions between *AR* and its coactivators. In one study, long repeat regions were shown to act as inhibitors of the interactions between coactivators and the receptor protein116; in another study, *AR*s with deleted polyglutamine regions showed enhanced interactions with coactivators.117 Conversely, the functional consequences of the GGC repeat polymorphism remain inconsistent: 3 studies indicate a positive correlation between GGC repeat number and *AR* gene activity or protein amount,59,118,119 1 suggests an inverse correlation between repeat length and AR protein amount,120 and 1 suggests higher activity for the most common allele.121 Clinical studies strongly support the notion that the CAG repeat sequence of the *AR* gene is of functional importance. The normal size range of the repeat is between 4 and 36. A substantial expansion (40–72 repeats) is the cause of a rare X-linked motor neuron disorder in men (Kennedy disease, or spinal and bulbar muscular atrophy)122 that is associated with moderate androgen insensitivity.123–125 A large number of studies have reported associations between short CAG or GGC repeats and increased risk of prostate cancer and benign prostate hyperplasia,126–129 as well as decreased risk of infertility.130–132 Moreover, associations between these repeat polymorphisms and several other androgen-related diseases and traits in men have been reported, including male-pattern baldness, bone density and cardiovascular risk factors.133,134 There are also an increasing number of studies on the importance of *AR* gene repeats in women. In female populations, associations have been suggested between repeat length and serum androgen levels,135 breast cancer,136,137 ovarian cancer,138 bone mass density,139 obesity140 and left-handedness.141 Recent investigations also suggest an influence of *AR* repeat polymorphisms on the brain (Table 1). In 2 small studies of CAG repeat length in the androgen receptor gene and Alzheimer disease, short androgen receptor alleles were associated with increased disease risk142,143; moreover, in men, this effect was strengthened if short androgen receptor alleles were combined with low levels of serum testosterone.143 Conversely, in a prospective study of older men, short CAG repeat alleles were associated with better performance on 3 cognitive tests.144 In a recent study, we found a relation between *AR* repeat length and the personality traits of impulsiveness and monotony avoidance as measured with the KSP in 2 separate samples of men, one comprising 141 middle-aged subjects from the normal Swedish population and one comprising a smaller group of subjects from a forensic psychiatry cohort (Westberg and colleagues, unpublished). Similarly, others have reported associations between *AR* repeat length and personality traits, externalizing behaviour and antisocial traits.15,19–22 Several studies, although not entirely consistently, suggest that low serum testosterone levels are associated with risk for depression and/or depressive symptoms in men.145 Three studies have investigated whether *AR* CAG repeat length may influence this possible relation between testosterone levels and depression.26–28 Two of these studies, conducted in large samples of young26 and middle-aged27 men, suggest that individuals having short CAG repeats and low testosterone display enhanced risk for depression. However, this relation was not observed in a smaller population of older men.28 Studies on the possible association between *AR* repeat polymorphisms and schizophrenia23 or violent criminal activity24 have yielded negative results. Rare mutations in *AR* have been observed in patients with alcoholism and social phobia.25 Taken together, investigations conducted so far suggest that a short CAG repeat in combination with low testosterone levels may increase the risk for depression in men. Preliminary evidence from several studies also suggests that *AR* repeat polymorphisms may be of importance for interindividual differences in personality traits. ## Other sex steroid–related genes ### Coregulators Coregulators of sex steroid receptors play an important role for tissue-specific actions of sex steroids.57 Several coregulators of importance for brain function have been identified146; for example, both the steroid receptor coactivator gene and CREB-binding protein have been shown to be involved in estrogen receptor–mediated effects on sexual behaviour.147 Moreover, the coactivator estrogen receptor–associated protein 140, which interacts with both estrogen receptor α and estrogen receptor β, displays its highest expression in the brain.148 Another protein expressed in the brain that, among other tasks, serves as coactivator for sex steroid receptors, is E6-associated protein (UBE3A),149 which is involved in the pathophysiology of Angelman syndrome. Although there are as yet no studies on the possible influence of genes encoding sex steroid receptor coregulators on human behaviour, this group of genes clearly deserves further investigation. ### Membrane-coupled receptors Rapid effects of sex steroids on neuronal cell firing as well as on behaviour, by means of nongenomic mechanisms, have been reported.150 At least some of the rapid effects exerted by estrogens are probably mediated by a recently discovered G protein–coupled receptor, GPR30,151 which is expressed in the brain.152 *GPR30* should therefore be another interesting candidate for future association studies on behaviour related to sex steroids as well as psychiatric disorders. Moreover, the fact that progesterone metabolites interact with the γ-aminobutyric acid A (GABAA) receptor153 makes the different subunits of this receptor complex important candidates when the genetic basis for interindividual differences in progesterone responsiveness is addressed. ### Genes regulating sex steroid levels in serum and brain The aromatase enzyme converts androgens into estrogens. The human aromatase gene (*CYP19*) is located on 15q21.1 and contains several genetic variants.154,155 Associations have been revealed with hormone levels,156–158 bone metabolism,157,158 risk factors for prostate cancer,129,159 endometriosis160 and obesity.156,161 Moreover, several reports have recently suggested that a variant of *CYP19* is a substantial risk factor for Alzheimer disease.162,163 However, there are as yet few studies of this gene in other psychiatric disorders. Transsexualism is a rare condition that has been suggested to be caused by aberrations in the early sexual differentiation of the brain, a process believed to involve estrogen receptors, androgen receptors and the aromatase enzyme. We have reported preliminary data indicating that interactions between the repeat polymorphisms in the *CYP19*, *ESR2* and *AR* genes may be of importance for male-to-female transsexualism.48 When short and long repeat lengths were compared between groups, significant effects on the risk for developing transsexualism were revealed for all 3 polymorphisms as well as for the interaction between the *AR* and *CYP19* polymorphisms. Given the small number of transsexuals in this study, the results should be interpreted with caution. In a more recent study, however, we also found a nonsynonymous SNP in the aromatase gene to be associated with male-to-female transsexualism (Bergman and colleagues, unpublished). A large number of studies have reported associations between other CYP genes and serum hormone levels.164,165 Notably, polymorphisms in *CYP1A1*, *17HSD* and *CYP19* were recently shown to be associated with depressive symptoms in middle-aged women.166 Moreover, in 2 recent studies, a functional polymorphism in the *CYP2C19* gene, encoding an enzyme that metabolizes sex steroids as well as serotonin, was associated with personality traits assessed with the TCI.167,168 The *CYP2C19* polymorphism results in 3 phenotypic groups: homozygous extensive metabolizer, heterozygous extensive metabolizer and poor metabolizer. In a study by Ishii and colleagues,167 the female extensive metabolizer group showed high scores on reward dependence, cooperativeness and self-transcendence. In contrast, a study by Yasui-Furukori and colleagues168 showed an association between the extensive metabolizer genotype and low scores in harm avoidance but no associations with the other TCI dimensions. The enzyme COMT metabolizes both estrogens and catecholamines such as dopamine and noradrenaline. The human *COMT* gene is located on chromosome 22q11.2 and contains many genetic variants,169 several of which seem to be of functional importance.170,171 The most studied of these is the valine-to-methionine substitution at codon 158 (rs4680) resulting in a protein with a lower enzyme activity, as shown both in vitro172 and in vivo.173 Strong evidence has been provided for associations between the *COMT* val-158-met polymorphism and cognitive function,12,174 and there are also studies suggesting that this polymorphism is associated with both panic disorder175,176 and obsessive–compulsive disorder,177 as well as with personality traits.178,179 Usually, the association between the *COMT* gene and central nervous system–related traits such as cognition has been attributed to the importance of this gene for the metabolism of catecholamines. The possible importance of estrogen, which is also metabolized by COMT, in this context should however not be ignored; notably, the val-158-met polymorphism has been associated with estrogen levels in both women180,181 and men,182 as well as with other estrogen-related phenotypes such as risk for breast cancer183 and bone mineral density.181,184 Interestingly, as recently reviewed,185 most of the strong associations between *COMT* polymorphisms and psychiatric disorders, as well as personality traits, appear to be sex-specific. Estrogens are known to downregulate COMT expression by estrogen receptor–mediated actions.186 There is one polymorphism described in the vicinity of one of the estrogen response elements (ERE6) in the promoter region of the *COMT* gene187 that may affect the estrogen receptor–mediated regulation of COMT expression. Sweet and colleagues47 have reported that joint actions of alleles of the rs4680 and ERE6 polymorphisms exert a strong impact on risk for Alzheimer disease with psychosis. In women, a strong linear relation between the number of ERE6 C and rs4680 G alleles and the risk for Alzheimer disease with psychosis was reported, whereas in men the outcome was more complex. Notably, enzymes required for the synthesis of sex steroids, as well as for functionally active sex steroid metabolites, are expressed locally within the brain; some of the sex steroids present in the central nervous system are thus probably produced locally.188 For example, within the brain, progesterone is metabolized to allopregnanolone189,190 that may influence behaviour by interacting with GABAA receptors (see above). The genes for the 5 α-reductase type 1 and type 2 enzymes, which are critical for this conversion, contain functional polymorphisms191 that could be relevant for the study of psychiatric disorders for which allopregnanolone has been attributed importance, such as premenstrual dysphoric disorder. Given the importance of this enzyme for the formation of the active metabolite dihydrotestosterone from testosterone, the same genes are obviously also relevant candidates for any condition hypothesized to be related to the influence of androgens. Polymorphisms in the sex hormone–binding globulin gene encoding the protein essential for the transport of sex steroids in blood have also been reported to influence sex hormone levels.120,192 To date, however, there are no studies on the possible importance of these polymorphisms for behavioural traits. It should be added that, needless to say, serum levels of sex steroids may also be influenced by other genes than those coding for enzymes and transporting proteins, including, for example, the genes coding for sex steroid receptors.135,193,194 A further discussion on the complex regulation of sex steroid levels is, however, beyond the scope of this review. ## Concluding remarks Despite the fact that sex steroids play a clear role in several psychiatric disorders, such as premenstrual dysphoric disorder and postpartum depression, and are likely to contribute to sex differences characterizing a number of other psychiatric disorders, the possible influence of polymorphisms in sex steroid–related genes on behaviour and psychiatric morbidity is still poorly explored. Accumulating data showing polymorphisms in several such genes to be of importance for various somatic conditions should encourage further research on their possible influence on brain and behaviour. The purpose of this review has been to summarize findings obtained in this area so far, with special focus on the genes coding for sex steroid receptors. Whenever an association between a sex steroid–related gene variant and a certain behavioural trait is observed, this could of course indicate that sex steroids exert an ongoing influence on the trait in question. Importantly, however, given the critical role of sex steroids during brain development, such an association might, as well, be caused by an early organizing effect on the architecture of the brain. Data available at this point suggest that *ESR1* polymorphisms influence interindividual differences in anxiety, at least in women, and that the CAG repeat of the *AR* gene, if combined with low testosterone levels, influences the risk for depression in men. There are also several other associations of potential importance that have been reported and warrant attempts for replication, as well numerous important issues that still wait to be addressed. Rather than focusing on single polymorphisms or genes, future studies in this field would probably benefit from examining possible interactions between different genes affecting sex steroid activity by means of different mechanisms. In addition, whenever possible, it is probably advantageous to combine genetic studies with assessment of hormone levels in serum. ## Acknowledgements The authors are supported by the Swedish Research Council, the Brain Foundation, Swedish Brain Power and Torsten och Ragnar Söderberg’s Foundation. ## Footnotes * Medical subject headings: polymorphism, genetic; receptors, androgen; receptors, estrogen; receptors, progesterone; aromatase. * **Competing interests:** None declared. * **Contributors:** Both authors contributed to the design, development and writing of the article, and both authors gave final approval for the article to be published. * Received June 18, 2007. * Revision received October 12, 2007. * Accepted November 12, 2007. ## References 1. McEwen BS. Invited review: Estrogens effects on the brain: multiple sites and molecular mechanisms. J Appl Physiol 2001;91:2785–801. [PubMed](http://jpn.ca/lookup/external-ref?access_num=11717247&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000172484200048&link_type=ISI) 2. Pfaff DW. Morphological changes in the brains of adult male rats after neonatal castration. J Endocrinol 1966;36:415–6. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoiam9lIjtzOjU6InJlc2lkIjtzOjg6IjM2LzQvNDE1IjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzMvNC8zMTkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 3. Baron-Cohen S, Knickmeyer RC, Belmonte MK. Sex differences in the brain: implications for explaining autism. Science 2005;310:819–23. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzMTAvNTc0OS84MTkiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMy80LzMxOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 4. Cahill L. Why sex matters for neuroscience. Nat Rev Neurosci 2006; 7(6):477–84. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1038/nrn1909&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=16688123&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000238287900016&link_type=ISI) 5. Steiner M, Dunn E, Born L. Hormones and mood: from menarche to menopause and beyond. J Affect Disord 2003;74:67–83. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0165-0327(02)00432-9&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12646300&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000182091200008&link_type=ISI) 6. Eriksson E, Andersch B, Ho HP, et al. Diagnosis and treatment of premenstrual dysphoria. J Clin Psychiatry 2002;63(Suppl 7):16–23. 7. Rubinow DR. Reproductive steroids in context. Arch Womens Ment Health 2005;8:1–5. 8. Rubinow DR, Schmidt PJ. Gonadal steroid regulation of mood: the lessons of premenstrual syndrome. Front Neuroendocrinol 2006;27:210–6. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/j.yfrne.2006.02.003&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=16650465&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 9. Kaminsky Z, Wang SC, Petronis A. Complex disease, gender and epigenetics. Ann Med 2006;38:530–44. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1080/07853890600989211&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=17438668&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000243431600001&link_type=ISI) 10. Skuse DH. X-linked genes and mental functioning. Hum Mol Genet 2005; 14 Spec No 1:R27–32. 11. Lesch KP, Bengel D, Heils A, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 1996;274:1527–31. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIyNzQvNTI5Mi8xNTI3IjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzMvNC8zMTkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 12. Egan MF, Goldberg TE, Kolachana BS, et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A 2001;98:6917–22. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMDoiOTgvMTIvNjkxNyI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMzLzQvMzE5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 13. Strittmatter WJ, Saunders AM, Schmechel D, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 1993;90:1977–81. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czo5OiI5MC81LzE5NzciO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMy80LzMxOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 14. Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005;10:40–68. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1038/sj.mp.4001558&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15263907&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000225888300005&link_type=ISI) 15. Comings DE, Chen C, Wu S, et al. Association of the androgen receptor gene (AR) with ADHD and conduct disorder. Neuroreport 1999;10:1589–92. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1097/00001756-199905140-00036&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10380986&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000080653300037&link_type=ISI) 16. Comings DE, Gonzales N, Saucier G, et al. The DRD4 gene and the spiritual transcendence scale of the character temperament index. Psychiatr Genet 2000;10:185–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1097/00041444-200010040-00006&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11324944&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 17. Comings DE, Muhleman D, Johnson JP, et al. Parent-daughter transmission of the androgen receptor gene as an explanation of the effect of father absence on age of menarche. Child Dev 2002;73:1046–51. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1111/1467-8624.00456&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12146732&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000177054500004&link_type=ISI) 18. Jorm AF, Christensen H, Rodgers B, et al. Association of adverse childhood experiences, age of menarche, and adult reproductive behavior: Does the androgen receptor gene play a role? Am J Med Genet B Neuropsychiatr Genet 2004;125:105–11. 19. Loehlin JC, Medland SE, Montgomery GW, et al. Eysenck’s psychoticism and the X-linked androgen receptor gene CAG polymorphisms in additional Australina samples. Pers Individ Dif 2005;39: 661–7. 20. Turakulov R, Jorm AF, Jacomb PA, et al. Association of dopamine-β-hydroxylase and androgen receptor gene polymorphisms with Eysenck’s P and other personality traits. Pers Individ Dif 2004;37: 191–202. 21. Jönsson EG, von Gertten C, Gustavsson JP, et al. Androgen receptor trinucleotide repeat polymorphism and personality traits. Psychiatr Genet 2001;11:19–23. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1097/00041444-200103000-00004&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11409695&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000169027200003&link_type=ISI) 22. Prichard ZM, Jorm AF, Mackinnon A, et al. Association analysis of 15 polymorphisms within 10 candidate genes for antisocial behavioural traits. Psychiatr Genet 2007;17:299–303. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1097/YPG.0b013e32816ebc9e&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=17728669&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000249484300007&link_type=ISI) 23. Tsai SJ, Hong CJ, Liao DL, et al. Distribution of androgen receptor CAG repeat polymorphism in Chinese schizophrenia and its correlation with age at onset. Psychoneuroendocrinology 2006;31:270–4. [PubMed](http://jpn.ca/lookup/external-ref?access_num=16112495&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 24. Cheng D, Hong CJ, Liao DL, et al. Association study of androgen receptor CAG repeat polymorphism and male violent criminal activity. Psychoneuroendocrinology 2006;31:548–52. [PubMed](http://jpn.ca/lookup/external-ref?access_num=16377095&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 25. Yan J, Feng J, Goldman D, et al. Mutation scanning of the androgen receptor gene in patients with psychiatric disorders reveals highly conserved variants in alcoholic and phobia patients. Psychiatr Genet 2004;14:57–60. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1097/00041444-200403000-00010&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15091318&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 26. Seidman SN, Araujo AB, Roose SP, et al. Testosterone level, androgen receptor polymorphism, and depressive symptoms in middle-aged men. Biol Psychiatry 2001;50:371–6. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0006-3223(01)01148-9&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11543741&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000170731700009&link_type=ISI) 27. Colangelo LA, Sharp L, Kopp P, et al. Total testosterone, androgen receptor polymorphism, and depressive symptoms in young black and white men: The CARDIA Male Hormone Study. Psychoneuroendocrinology 2007 32:951–8. [PubMed](http://jpn.ca/lookup/external-ref?access_num=17659846&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 28. T’Sjoen GG, De Vos S, Goemaere S, et al. Sex steroid level, androgen receptor polymorphism, and depressive symptoms in healthy elderly men. J Am Geriatr Soc 2005;53:636–42. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1111/j.1532-5415.2005.53212.x&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15817010&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000227899200012&link_type=ISI) 29. Geng YG, Su QR, Su LY, et al. Comparison of the polymorphisms of androgen receptor gene and estrogen alpha and beta gene between adolescent females with first-onset major depressive disorder and controls. Int J Neurosci 2007;117:539–47. [PubMed](http://jpn.ca/lookup/external-ref?access_num=17365134&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 30. Huo L, Straub RE, Schmidt PJ, et al. Risk for premenstrual dysphoric disorder is associated with genetic variation in ESR1, the estrogen receptor alpha gene. Biol Psychiatry 2007;62:925–33. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/j.biopsych.2006.12.019&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=17599809&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000250222300015&link_type=ISI) 31. Comings DE, Muhleman D, Johnson P, et al. Potential role of the estrogen receptor gene (ESR1) in anxiety. Mol Psychiatry 1999;4:374–7. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1038/sj.mp.4000503&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10483055&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000082550900015&link_type=ISI) 32. Ouyang WC, Wang YC, Hong CJ, et al. Estrogen receptor alpha gene polymorphism in schizophrenia: frequency, age at onset, symptomatology and prognosis. Psychiatr Genet 2001;11:95–8. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1097/00041444-200106000-00007&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11525424&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000170303000007&link_type=ISI) 33. Jones I, Middle F, McCandless F, et al. Molecular genetic studies of bipolar disorder and puerperal psychosis at two polymorphisms in the estrogen receptor alpha gene (ESR 1). Am J Med Genet 2000;96:850–3. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1002/1096-8628(20001204)96:6<850::AID-AJMG31>3.0.CO;2-1&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11121195&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000165717300031&link_type=ISI) 34. Feng J, Yan J, Michaud S, et al. Scanning of estrogen receptor alpha (ERalpha) and thyroid hormone receptor alpha (TRalpha) genes in patients with psychiatric diseases: four missense mutations identified in ER alpha gene. Am J Med Genet 2001;105:369–74. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1002/ajmg.1364&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11378852&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000169116200012&link_type=ISI) 35. Middle F, Jones I, Robertson E, et al. Variation in the coding sequence and flanking splice junctions of the estrogen receptor alpha (ERalpha) gene does not play an important role in genetic susceptibility to bipolar disorder or bipolar affective puerperal psychosis. Am J Med Genet B Neuropsychiatr Genet 2003;118:72–5. 36. Tsai SJ, Wang YC, Hong CJ, et al. Association study of oestrogen receptor alpha gene polymorphism and suicidal behaviours in major depressive disorder. Psychiatr Genet 2003;13:19–22. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1097/00041444-200303000-00003&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12605096&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000181535400003&link_type=ISI) 37. Comings DE, Gade-Andavolu R, Gonzalez N, et al. A multivariate analysis of 59 candidate genes in personality traits: the Temperament and Character Inventory. Clin Genet 2000;58:375–85. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1034/j.1399-0004.2000.580508.x&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11140838&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000165703200007&link_type=ISI) 38. Comings DE, Gade-Andavolu R, Gonzalez N, et al. Multivariate analysis of associations of 42 genes in ADHD, ODD and conduct disorder. Clin Genet 2000;58:31–40. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1034/j.1399-0004.2000.580106.x&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10945659&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000088472900006&link_type=ISI) 39. Westberg L, Melke J, Landen M, et al. Association between a dinucleotide repeat polymorphism of the estrogen receptor alpha gene and personality traits in women. Mol Psychiatry 2003;8:118–22. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1038/sj.mp.4001192&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12556917&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000180718400018&link_type=ISI) 40. Prichard Z, Jorm AF, Prior M, et al. Association of polymorphisms of the estrogen receptor gene with anxiety-related traits in children and adolescents: a longitudinal study. Am J Med Genet 2002;114: 169–76. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1002/ajmg.10181&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11857578&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000173929800008&link_type=ISI) 41. Tiemeier H, Schuit SC, den Heijer T, et al. Estrogen receptor alpha gene polymorphisms and anxiety disorder in an elderly population. Mol Psychiatry 2005;10:806–7. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1038/sj.mp.4001697&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15940291&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000231483200001&link_type=ISI) 42. Eastwood H, Brown KM, Markovic D, et al. Variation in the ESR1 and ESR2 genes and genetic susceptibility to anorexia nervosa. Mol Psychiatry 2002;7:86–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1038/sj.mp.4000929&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11803451&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000173123500016&link_type=ISI) 43. Rosenkranz K, Hinney A, Ziegler A, et al. Systematic mutation screening of the estrogen receptor beta gene in probands of different weight extremes: identification of several genetic variants. J Clin Endocrinol Metab 1998;83:4524–7. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1210/jc.83.12.4524&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9851804&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000077359400059&link_type=ISI) 44. Nilsson M, Naessen S, Dahlman I, et al. Association of estrogen receptor beta gene polymorphisms with bulimic disease in women. Mol Psychiatry 2004;9:28–34. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1038/sj.mp.4001402&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=14699439&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000187570300007&link_type=ISI) 45. Takeo C, Negishi E, Nakajima A, et al. Association of cytosine-adenine repeat polymorphism of the estrogen receptor-beta gene with menopausal symptoms. Gend Med 2005;2:96–105. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S1550-8579(05)80016-6&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=16115604&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 46. Ho HP, Westberg L, Annerbrink K, et al. Association between a functional polymorphism in the progesterone receptor gene and panic disorder in women. Psychoneuroendocrinology 2004;29:1138–41. [PubMed](http://jpn.ca/lookup/external-ref?access_num=15219637&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 47. Sweet RA, Devlin B, Pollock BG, et al. Catechol-O-methyltransferase haplotypes are associated with psychosis in Alzheimer disease. Mol Psychiatry 2005;10:1026–36. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1038/sj.mp.4001709&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=16027741&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000232833000009&link_type=ISI) 48. Henningsson S, Westberg L, Nilsson S, et al. Sex steroid-related genes and male-to-female transsexualism. Psychoneuroendocrinology 2005;30:657–64. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/j.psyneuen.2005.02.006&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15854782&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000229246300005&link_type=ISI) 49. Hakansson A, Westberg L, Nilsson S, et al. Interaction of polymorphisms in the genes encoding interleukin-6 and estrogen receptor beta on the susceptibility to Parkinson’s disease. Am J Med Genet B Neuropsychiatr Genet 2005;133:88–92. 50. Rivadeneira F, van Meurs JB, Kant J, et al. Estrogen receptor beta (ESR2) polymorphisms in interaction with estrogen receptor alpha (ESR1) and insulin-like growth factor I (IGF1) variants influence the risk of fracture in postmenopausal women. J Bone Miner Res 2006;21:1443–56. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1359/jbmr.060605&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=16939403&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000240159500013&link_type=ISI) 51. Pfaff DW. Autoradiographic localization of radioactivity in rat brain after injection of tritiated sex hormones. Science 1968;161:1355–6. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIxNjEvMzg0OC8xMzU1IjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzMvNC8zMTkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 52. Osterlund MK, Hurd YL. Estrogen receptors in the human forebrain and the relation to neuropsychiatric disorders. Prog Neurobiol 2001;64:251–67. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0301-0082(00)00059-9&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11240308&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000168313300002&link_type=ISI) 53. Swaab DF, Chung WC, Kruijver FP, et al. Sex differences in the hypothalamus in the different stages of human life. Neurobiol Aging 2003;24(Suppl 1):S1–16; discussion S7–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0197-4580(03)00059-9&link_type=DOI) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000184187300001&link_type=ISI) 54. Kuiper GG, Enmark E, Pelto-Huikko M, et al. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A 1996;93:5925–30. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMDoiOTMvMTIvNTkyNSI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMzLzQvMzE5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 55. Hirata S, Shoda T, Kato J, et al. Isoform/variant mRNAs for sex steroid hormone receptors in humans. Trends Endocrinol Metab 2003;14:124–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S1043-2760(03)00028-6&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12670738&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000182395000006&link_type=ISI) 56. Nilsson S, Makela S, Treuter E, et al. Mechanisms of estrogen action. Physiol Rev 2001;81:1535–65. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1152/physrev.2001.81.4.1535&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11581496&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000171442500005&link_type=ISI) 57. Lonard DM, O’Malley BW. The expanding cosmos of nuclear receptor coactivators. Cell 2006;125:411–4. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/j.cell.2006.04.021&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=16678083&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000237506100002&link_type=ISI) 58. Conneely OM, Mulac-Jericevic B, Lydon JP. Progesterone-dependent regulation of female reproductive activity by two distinct progesterone receptor isoforms. Steroids 2003;68:771–8. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0039-128X(03)00126-0&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=14667967&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000187565700003&link_type=ISI) 59. Gao T, McPhaul MJ. Functional activities of the A and B forms of the human androgen receptor in response to androgen receptor agonists and antagonists. Mol Endocrinol 1998;12:654–63. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1210/me.12.5.654&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9605928&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000073403400005&link_type=ISI) 60. Ponglikitmongkol M, Green S, Chambon P. Genomic organization of the human oestrogen receptor gene. EMBO J 1988;7:3385–8. [PubMed](http://jpn.ca/lookup/external-ref?access_num=3145193&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1988Q778500012&link_type=ISI) 61. Herrington DM, Howard TD. ER-alpha variants and the cardiovascular effects of hormone replacement therapy. Pharmacogenomics 2003;4:269–77. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1517/phgs.4.3.269.22686&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12718718&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000182613800010&link_type=ISI) 62. Herrington DM, Howard TD, Hawkins GA, et al. Estrogen-receptor polymorphisms and effects of estrogen replacement on high-density lipoprotein cholesterol in women with coronary disease. N Engl J Med 2002;346:967–74. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1056/NEJMoa012952&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11919305&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000174608600003&link_type=ISI) 63. Schubert EL, Lee MK, Newman B, et al. Single nucleotide polymorphisms (SNPs) in the estrogen receptor gene and breast cancer susceptibility. J Steroid Biochem Mol Biol 1999;71:21–7. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0960-0760(99)00126-0&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10619354&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000084244500002&link_type=ISI) 64. Gold B, Kalush F, Bergeron J, et al. Estrogen receptor genotypes and haplotypes associated with breast cancer risk. Cancer Res 2004;64:8891–900. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjEwOiI2NC8yNC84ODkxIjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzMvNC8zMTkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 65. Ioannidis JP, Ralston SH, Bennett ST, et al. Differential genetic effects of ESR1 gene polymorphisms on osteoporosis outcomes. JAMA 2004;292:2105–14. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1001/jama.292.17.2105&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15523071&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000224921900023&link_type=ISI) 66. Albagha OM, Pettersson U, Stewart A, et al. Association of oestrogen receptor alpha gene polymorphisms with postmenopausal bone loss, bone mass, and quantitative ultrasound properties of bone. J Med Genet 2005;42:240–6. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToiam1lZGdlbmV0IjtzOjU6InJlc2lkIjtzOjg6IjQyLzMvMjQwIjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzMvNC8zMTkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 67. Fox CS, Yang Q, Cupples LA, et al. Sex-specific association between estrogen receptor-alpha gene variation and measures of adiposity: the Framingham Heart Study. J Clin Endocrinol Metab 2005;90:6257–62. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1210/jc.2005-0670&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=16144952&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000233115700049&link_type=ISI) 68. Shearman AM, Cooper JA, Kotwinski PJ, et al. Estrogen receptor alpha gene variation is associated with risk of myocardial infarction in more than seven thousand men from five cohorts. Circ Res 2006;98:590–2. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNpcmNyZXNhaGEiO3M6NToicmVzaWQiO3M6ODoiOTgvNS81OTAiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMy80LzMxOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 69. Shin A, Kang D, Nishio H, et al. Estrogen receptor alpha gene polymorphisms and breast cancer risk. Breast Cancer Res Treat 2003;80:127–31. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1023/A:1024439202528&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12889606&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000183702500013&link_type=ISI) 70. van Duijnhoven FJ, Peeters PH, Warren RM, et al. Influence of estrogen receptor alpha and progesterone receptor polymorphisms on the effects of hormone therapy on mammographic density. Cancer Epidemiol Biomarkers Prev 2006;15:462–7. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiY2VicCI7czo1OiJyZXNpZCI7czo4OiIxNS8zLzQ2MiI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMzLzQvMzE5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 71. Kjaergaard AD, Ellervik C, Tybjaerg-Hansen A, et al. Estrogen receptor alpha polymorphism and risk of cardiovascular disease, cancer, and hip fracture: cross-sectional, cohort, and case-control studies and a meta-analysis. Circulation 2007;115:861–71. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTQ6ImNpcmN1bGF0aW9uYWhhIjtzOjU6InJlc2lkIjtzOjk6IjExNS83Lzg2MSI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMzLzQvMzE5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 72. Weickert CS, Miranda-Angulo AL, Wong J, et al. Variants in the estrogen receptor alpha gene and its mRNA contribute to risk for schizophrenia. Hum Mol Genet. Epub 2008. Apr 18 ahead of print. 73. den Heijer T, Schuit SC, Pols HA, et al. Variations in estrogen receptor alpha gene and risk of dementia, and brain volumes on MRI. Mol Psychiatry 2004;9:1129–35. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1038/sj.mp.4001553&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15263903&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000225248700013&link_type=ISI) 74. Olsen L, Rasmussen HB, Hansen T, et al. Estrogen receptor alpha and risk for cognitive impairment in postmenopausal women. Psychiatr Genet 2006;16:85–8. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1097/01.ypg.0000194445.27555.71&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=16538187&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 75. Luckhaus C, Sand PG. Estrogen receptor 1 gene (ESR1) variants in Alzheimer’s disease. Results of a meta-analysis. Aging Clin Exp Res 2007;19:165–8. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1007/BF03324684&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=17446729&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 76. Enmark E, Pelto-Huikko M, Grandien K, et al. Human estrogen receptor beta-gene structure, chromosomal localization, and expression pattern. J Clin Endocrinol Metab 1997;82:4258–65. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1210/jc.82.12.4258&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9398750&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000071002000066&link_type=ISI) 77. Ichikawa S, Koller DL, Peacock M, et al. Polymorphisms in the estrogen receptor beta (ESR2) gene are associated with bone mineral density in Caucasian men and women. J Clin Endocrinol Metab 2005;90:5921–7. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1210/jc.2004-2253&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=16118344&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000233115700001&link_type=ISI) 78. Thellenberg-Karlsson C, Lindstrom S, Malmer B, et al. Estrogen receptor beta polymorphism is associated with prostate cancer risk. Clin Cancer Res 2006;12:1936–41. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNsaW5jYW5yZXMiO3M6NToicmVzaWQiO3M6OToiMTIvNi8xOTM2IjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzMvNC8zMTkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 79. Tsukamoto K, Inoue S, Hosoi T, et al. Isolation and radiation hybrid mapping of dinucleotide repeat polymorphism at the human estrogen receptor beta locus. J Hum Genet 1998;43:73–4. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1007/s100380050043&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9610005&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000074132100016&link_type=ISI) 80. Zhao C, Gustafsson JA, Dahlman-Wright K. Functional characterization of a novel variant of estrogen receptor beta identified in screening of DNA derived from African Americans. Pharmacogenet Genomics 2006;16:379–83. [PubMed](http://jpn.ca/lookup/external-ref?access_num=16609371&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 81. Peter I, Shearman AM, Vasan RS, et al. Association of estrogen receptor beta gene polymorphisms with left ventricular mass and wall thickness in women. Am J Hypertens 2005;18:1388–95. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/j.amjhyper.2005.05.023&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=16280269&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 82. Forsell C, Enmark E, Axelman K, et al. Investigations of a CA repeat in the oestrogen receptor beta gene in patients with Alzheimer’s disease. Eur J Hum Genet 2001;9:802–4. [PubMed](http://jpn.ca/lookup/external-ref?access_num=11781694&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 83. Pirskanen M, Hiltunen M, Mannermaa A, et al. Estrogen receptor beta gene variants are associated with increased risk of Alzheimer’s disease in women. Eur J Hum Genet 2005;13:1000–6. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1038/sj.ejhg.5201447&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15944651&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000231395500004&link_type=ISI) 84. Westberg L, Hakansson A, Melke J, et al. Association between the estrogen receptor beta gene and age of onset of Parkinson’s disease. Psychoneuroendocrinology 2004;29:993–8. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/j.psyneuen.2003.08.010&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15219649&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000222702100003&link_type=ISI) 85. Kealey C, Reynolds A, Mynett-Johnson L, et al. No evidence to support an association between the oestrogen receptor beta gene and bipolar disorder. Psychiatr Genet 2001;11:223–6. [PubMed](http://jpn.ca/lookup/external-ref?access_num=11807414&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 86. Rousseau-Merck MF, Misrahi M, Loosfelt H, et al. Localization of the human progesterone receptor gene to chromosome 11q22–q23. Hum Genet 1987;77:280–2. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1007/BF00284486&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=3679212&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1987K814000017&link_type=ISI) 87. Camacho-Arroyo I, Gonzalez-Arenas A, Gonzalez-Aguero G, et al. Changes in the content of progesterone receptor isoforms and estrogen receptor alpha in the chick brain during embryonic development. Comp Biochem Physiol A Mol Integr Physiol 2003;136:447–52. [PubMed](http://jpn.ca/lookup/external-ref?access_num=14511763&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 88. Kato J, Hirata S, Nozawa A, et al. Gene expression of progesterone receptor isoforms in the rat brain. Horm Behav 1994;28:454–63. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1006/hbeh.1994.1043&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=7729814&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 89. Guerra-Araiza C, Villamar-Cruz O, Gonzalez-Arenas A, et al. Changes in progesterone receptor isoforms content in the rat brain during the oestrous cycle and after oestradiol and progesterone treatments. J Neuroendocrinol 2003;15:984–90. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1046/j.1365-2826.2003.01088.x&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12969244&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000185274700012&link_type=ISI) 90. Guerra-Araiza C, Cerbon MA, Morimoto S, et al. Progesterone receptor isoforms expression pattern in the rat brain during the estrous cycle. Life Sci 2000;66:1743–52. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0024-3205(00)00497-5&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10809171&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000086161000009&link_type=ISI) 91. Camacho-Arroyo I, Hernandez-Molina VI, Rivas-Suarez M, et al. Changes in progesterone receptor isoforms content in the brain of immature, mature and aged male and female chickens. Gen Comp Endocrinol 2006;150:381–5. 92. Scott RE, Wu-Peng XS, Pfaff DW. Regulation and expression of progesterone receptor mRNA isoforms A and B in the male and female rat hypothalamus and pituitary following oestrogen treatment. J Neuroendocrinol 2002;14:175–83. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1046/j.0007-1331.2001.00750.x&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11999716&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000173920800002&link_type=ISI) 93. Guerra-Araiza C, Coyoy-Salgado A, Camacho-Arroyo I. Sex differences in the regulation of progesterone receptor isoforms expression in the rat brain. Brain Res Bull 2002;59:105–9. [PubMed](http://jpn.ca/lookup/external-ref?access_num=12379440&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 94. Camacho-Arroyo I, Guerra-Araiza C, Cerbon MA. Progesterone receptor isoforms are differentially regulated by sex steroids in the rat forebrain. Neuroreport 1998;9:3993–6. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1097/00001756-199812210-00001&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9926835&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000078128400002&link_type=ISI) 95. Mani SK, Reyna AM, Chen JZ, et al. Differential response of progesterone receptor isoforms in hormone-dependent and -independent facilitation of female sexual receptivity. Mol Endocrinol 2006; 20:1322–32. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1210/me.2005-0466&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=16484336&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000237806900015&link_type=ISI) 96. De Vivo I, Huggins GS, Hankinson SE, et al. A functional polymorphism in the promoter of the progesterone receptor gene associated with endometrial cancer risk. Proc Natl Acad Sci U S A 2002;99:12263–8. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMToiOTkvMTkvMTIyNjMiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMy80LzMxOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 97. Rowe SM, Coughlan SJ, McKenna NJ, et al. Ovarian carcinoma-associated TaqI restriction fragment length polymorphism in intron G of the progesterone receptor gene is due to an Alu sequence insertion. Cancer Res 1995;55:2743–5. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjEwOiI1NS8xMy8yNzQzIjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzMvNC8zMTkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 98. Pearce CL, Hirschhorn JN, Wu AH, et al. Clarifying the PROGINS allele association in ovarian and breast cancer risk: a haplotype-based analysis. J Natl Cancer Inst 2005;97:51–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1093/jnci/dji007&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15632380&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000226599400013&link_type=ISI) 99. Pooley KA, Healey CS, Smith PL, et al. Association of the progesterone receptor gene with breast cancer risk: a single-nucleotide polymorphism tagging approach. Cancer Epidemiol Biomarkers Prev 2006;15:675–82. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiY2VicCI7czo1OiJyZXNpZCI7czo4OiIxNS80LzY3NSI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMzLzQvMzE5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 100.Romano A, Delvoux B, Fischer DC, et al. The PROGINS polymorphism of the human progesterone receptor diminishes the response to progesterone. J Mol Endocrinol 2007;38:331–50. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoiam1lIjtzOjU6InJlc2lkIjtzOjg6IjM4LzIvMzMxIjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzMvNC8zMTkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 101.Agoulnik IU, Tong XW, Fischer DC, et al. A germline variation in the progesterone receptor gene increases transcriptional activity and may modify ovarian cancer risk. J Clin Endocrinol Metab 2004;89:6340–7. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1210/jc.2004-0114&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15579801&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000225495400071&link_type=ISI) 102.Huggins GS, Wong JY, Hankinson SE, et al. GATA5 activation of the progesterone receptor gene promoter in breast cancer cells is influenced by the +331G/A polymorphism. Cancer Res 2006;66: 1384–90. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjk6IjY2LzMvMTM4NCI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMzLzQvMzE5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 103.Berchuck A, Schildkraut JM, Wenham RM, et al. Progesterone receptor promoter +331A polymorphism is associated with a reduced risk of endometrioid and clear cell ovarian cancers. Cancer Epidemiol Biomarkers Prev 2004;13:2141–7. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiY2VicCI7czo1OiJyZXNpZCI7czoxMDoiMTMvMTIvMjE0MSI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMzLzQvMzE5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 104.Risch HA, Bale AE, Beck PA, et al. PGR +331 A/G and increased risk of epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev 2006;15:1738–41. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiY2VicCI7czo1OiJyZXNpZCI7czo5OiIxNS85LzE3MzgiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMy80LzMxOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 105.De Vivo I, Hankinson SE, Colditz GA, et al. A functional polymorphism in the progesterone receptor gene is associated with an increase in breast cancer risk. Cancer Res 2003;63:5236–8. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjEwOiI2My8xNy81MjM2IjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzMvNC8zMTkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 106.Westberg L, Ho HP, Baghaei F, et al. Polymorphisms in oestrogen and progesterone receptor genes: possible influence on prolactin levels in women. Clin Endocrinol (Oxf) 2004;61:216–23. [PubMed](http://jpn.ca/lookup/external-ref?access_num=15272917&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 107.Klein DF. False suffocation alarms, spontaneous panics, and related conditions. An integrative hypothesis. Arch Gen Psychiatry 1993;50:306–17. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1001/archpsyc.1993.01820160076009&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=8466392&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1993KW76300008&link_type=ISI) 108.Behan M, Zabka AG, Thomas CF, et al. Sex steroid hormones and the neural control of breathing. Respir Physiol Neurobiol 2003;136:249–63. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S1569-9048(03)00086-7&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12853015&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000184484100015&link_type=ISI) 109.Saaresranta T, Polo O. Hormones and breathing. Chest 2002;122: 2165–82. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1378/chest.122.6.2165&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12475861&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000179985600048&link_type=ISI) 110.Carlbring P, Gustafsson H, Ekselius L, et al. 12-month prevalence of panic disorder with or without agoraphobia in the Swedish general population. Soc Psychiatry Psychiatr Epidemiol 2002;37:207–11. [PubMed](http://jpn.ca/lookup/external-ref?access_num=12107711&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 111.Chang CS, Kokontis J, Liao ST. Molecular cloning of human and rat complementary DNA encoding androgen receptors. Science 1988;240:324–6. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIyNDAvNDg1MC8zMjQiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMy80LzMxOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 112.Lubahn DB, Joseph DR, Sullivan PM, et al. Cloning of human androgen receptor complementary DNA and localization to the X chromosome. Science 1988;240:327–30. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIyNDAvNDg1MC8zMjciO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMy80LzMxOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 113.Chamberlain NL, Driver ED, Miesfeld RL. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res 1994;22:3181–6. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1093/nar/22.15.3181&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=8065934&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1994PD65700047&link_type=ISI) 114.Kazemi-Esfarjani P, Trifiro MA, Pinsky L. Evidence for a repressive function of the long polyglutamine tract in the human androgen receptor: possible pathogenetic relevance for the (CAG)nexpanded neuronopathies. Hum Mol Genet 1995;4:523–7. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1093/hmg/4.4.523&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=7633399&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1995QV81400005&link_type=ISI) 115.Tut TG, Ghadessy FJ, Trifiro MA, et al. Long polyglutamine tracts in the androgen receptor are associated with reduced transactivation, impaired sperm production, and male infertility. J Clin Endocrinol Metab 1997;82:3777–82. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1210/jc.82.11.3777&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=9360540&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1997YF27100041&link_type=ISI) 116.Irvine RA, Ma H, Yu MC, et al. Inhibition of p160-mediated coactivation with increasing androgen receptor polyglutamine length. Hum Mol Genet 2000;9:267–74. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1093/hmg/9.2.267&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10607837&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000084976500013&link_type=ISI) 117.Callewaert L, Christiaens V, Haelens A, et al. Implications of a polyglutamine tract in the function of the human androgen receptor. Biochem Biophys Res Commun 2003;306:46–52. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0006-291X(03)00902-1&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12788064&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000183676900008&link_type=ISI) 118.Brockschmidt FF, Nothen MM, Hillmer AM. The two most common alleles of the coding GGN repeat in the androgen receptor gene cause differences in protein function. J Mol Endocrinol 2007;39:1–8. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoiam1lIjtzOjU6InJlc2lkIjtzOjY6IjM5LzEvMSI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMzLzQvMzE5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 119.Werner R, Holterhus PM, Binder G, et al. The A645D mutation in the hinge region of the human androgen receptor (AR) gene modulates AR activity, depending on the context of the polymorphic glutamine and glycine repeats. J Clin Endocrinol Metab 2006;91: 3515–20. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1210/jc.2006-0372&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=16804045&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000240358600044&link_type=ISI) 120.Dunning AM, Dowsett M, Healey CS, et al. Polymorphisms associated with circulating sex hormone levels in postmenopausal women. J Natl Cancer Inst 2004;96:936–45. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1093/jnci/djh167&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15199113&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000222340900013&link_type=ISI) 121.Lundin KB, Giwercman A, Dizeyi N, et al. Functional in vitro characterisation of the androgen receptor GGN polymorphism. Mol Cell Endocrinol 2007;264:184–7. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/j.mce.2006.11.008&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=17197074&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000244157800022&link_type=ISI) 122.La Spada AR, Wilson EM, Lubahn DB, et al. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991;352:77–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1038/352077a0&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=2062380&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1991FV17800075&link_type=ISI) 123.Katsuno M, Adachi H, Doyu M, et al. Leuprorelin rescues polyglutamine-dependent phenotypes in a transgenic mouse model of spinal and bulbar muscular atrophy. Nat Med 2003;9:768–73. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1038/nm878&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12754502&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000183444100034&link_type=ISI) 124.Katsuno M, Adachi H, Kume A, et al. Testosterone reduction prevents phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Neuron 2002;35:843–54. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0896-6273(02)00834-6&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12372280&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000177779800008&link_type=ISI) 125.Kinirons P, Rouleau GA. Administration of testosterone results in reversible deterioration in Kennedy’s disease. J Neurol Neurosurg Psychiatry 2008;79:106–7. [FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiam5ucCI7czo1OiJyZXNpZCI7czo4OiI3OS8xLzEwNiI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMzLzQvMzE5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 126.Chang BL, Zheng SL, Hawkins GA, et al. Polymorphic GGC repeats in the androgen receptor gene are associated with hereditary and sporadic prostate cancer risk. Hum Genet 2002;110:122–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1007/s00439-001-0662-6&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11935317&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000174691800002&link_type=ISI) 127.Clark PE, Irvine RA, Coetzee GA. The androgen receptor CAG repeat and prostate cancer risk. Methods Mol Med 2003;81:255–66. [PubMed](http://jpn.ca/lookup/external-ref?access_num=12725125&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 128.Nelson KA, Witte JS. Androgen receptor CAG repeats and prostate cancer. Am J Epidemiol 2002;155:883–90. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1093/aje/155.10.883&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11994226&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000175628800001&link_type=ISI) 129.Roberts RO, Bergstralh EJ, Farmer SA, et al. Polymorphisms in genes involved in sex hormone metabolism may increase risk of benign prostatic hyperplasia. Prostate 2006;66:392–404. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1002/pros.20362&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=16302261&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000235586700007&link_type=ISI) 130.Ferlin A, Bartoloni L, Rizzo G, et al. Androgen receptor gene CAG and GGC repeat lengths in idiopathic male infertility. Mol Hum Reprod 2004;10:417–21. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1093/molehr/gah054&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15044606&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000221295600006&link_type=ISI) 131.Ruhayel Y, Lundin K, Giwercman Y, et al. Androgen receptor gene GGN and CAG polymorphisms among severely oligozoospermic and azoospermic Swedish men. Hum Reprod 2004;19:2076–83. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1093/humrep/deh349&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15229204&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000223792100025&link_type=ISI) 132.Yong EL, Loy CJ, Sim KS. Androgen receptor gene and male infertility. Hum Reprod Update 2003;9:1–7. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1093/humupd/dmg003&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12638777&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000181518600001&link_type=ISI) 133.Hillmer AM, Hanneken S, Ritzmann S, et al. Genetic variation in the human androgen receptor gene is the major determinant of common early-onset androgenetic alopecia. Am J Hum Genet 2005;77:140–8. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1086/431425&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15902657&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000229794500014&link_type=ISI) 134.Zitzmann M, Nieschlag E. The CAG repeat polymorphism within the androgen receptor gene and maleness. Int J Androl 2003;26:76–83. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1046/j.1365-2605.2003.00393.x&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12641825&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000181654300003&link_type=ISI) 135.Westberg L, Baghaei F, Rosmond R, et al. Polymorphisms of the androgen receptor gene and the estrogen receptor beta gene are associated with androgen levels in women. J Clin Endocrinol Metab 2001;86:2562–8. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1210/jc.86.6.2562&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11397855&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000169412000036&link_type=ISI) 136.Wang W, John EM, Ingles SA. Androgen receptor and prostate-specific antigen gene polymorphisms and breast cancer in African-American women. Cancer Epidemiol Biomarkers Prev 2005;14:2990–4. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiY2VicCI7czo1OiJyZXNpZCI7czoxMDoiMTQvMTIvMjk5MCI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMzLzQvMzE5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 137.Lillie EO, Bernstein L, Ingles SA, et al. Polymorphism in the androgen receptor and mammographic density in women taking and not taking estrogen and progestin therapy. Cancer Res 2004;64:1237–41. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjk6IjY0LzQvMTIzNyI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMzLzQvMzE5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 138.Terry KL, De Vivo I, Titus-Ernstoff L, et al. Androgen receptor cytosine, adenine, guanine repeats, and haplotypes in relation to ovarian cancer risk. Cancer Res 2005;65:5974–81. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjEwOiI2NS8xMy81OTc0IjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzMvNC8zMTkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 139.Sowers M, Willing M, Burns T, et al. Genetic markers, bone mineral density, and serum osteocalcin levels. J Bone Miner Res 1999; 14:1411–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1359/jbmr.1999.14.8.1411&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=10457274&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000081682000018&link_type=ISI) 140.Gustafson DR, Wen MJ, Koppanati BM. Androgen receptor gene repeats and indices of obesity in older adults. Int J Obes Relat Metab Disord 2003;27:75–81. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1038/sj.ijo.0802191&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12532157&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000180482800011&link_type=ISI) 141.Medland SE, Duffy DL, Spurdle AB, et al. Opposite effects of androgen receptor CAG repeat length on increased risk of left-handedness in males and females. Behav Genet 2005;35:735–44. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1007/s10519-005-6187-3&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=16273319&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000233391600004&link_type=ISI) 142.Lehmann DJ, Butler HT, Warden DR, et al. Association of the androgen receptor CAG repeat polymorphism with Alzheimer’s disease in men. Neurosci Lett 2003;340:87–90. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0304-3940(03)00069-7&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12668243&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 143.Lehmann DJ, Hogervorst E, Warden DR, et al. The androgen receptor CAG repeat and serum testosterone in the risk of Alzheimer’s disease in men. J Neurol Neurosurg Psychiatry 2004;75:163–4. [PubMed](http://jpn.ca/lookup/external-ref?access_num=14707333&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 144.Yaffe K, Edwards ER, Lui LY, et al. Androgen receptor CAG repeat polymorphism is associated with cognitive function in older men. Biol Psychiatry 2003;54:943–6. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0006-3223(03)00115-X&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=14573323&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000186062000012&link_type=ISI) 145.Pope HG Jr., Cohane GH, Kanayama G, et al. Testosterone gel supplementation for men with refractory depression: a randomized, placebo-controlled trial. Am J Psychiatry 2003;160:105–11. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1176/appi.ajp.160.1.105&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12505808&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000180195400017&link_type=ISI) 146.Nishihara E, O’Malley BW, Xu J. Nuclear receptor coregulators are new players in nervous system development and function. Mol Neurobiol 2004;30:307–25. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1385/MN:30:3:307&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15655254&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000226463900006&link_type=ISI) 147.Molenda HA, Kilts CP, Allen RL, et al. Nuclear receptor coactivator function in reproductive physiology and behavior. Biol Reprod 2003;69:1449–57. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1095/biolreprod.103.019364&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12855594&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000186147700001&link_type=ISI) 148.Shao W, Halachmi S, Brown M. ERAP140, a conserved tissue-specific nuclear receptor coactivator. Mol Cell Biol 2002;22:3358–72. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoibWNiIjtzOjU6InJlc2lkIjtzOjEwOiIyMi8xMC8zMzU4IjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzMvNC8zMTkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 149.Nawaz Z, Lonard DM, Smith CL, et al. The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Mol Cell Biol 1999;19:1182–9. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoibWNiIjtzOjU6InJlc2lkIjtzOjk6IjE5LzIvMTE4MiI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMzLzQvMzE5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 150.Vasudevan N, Kow LM, Pfaff D. Integration of steroid hormone initiated membrane action to genomic function in the brain. Steroids 2005;70:388–96. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/j.steroids.2005.02.007&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15862822&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000229342800008&link_type=ISI) 151.Revankar CM, Cimino DF, Sklar LA, et al. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 2005;307:1625–30. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIzMDcvNTcxNS8xNjI1IjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzMvNC8zMTkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 152.Funakoshi T, Yanai A, Shinoda K, et al. G protein-coupled receptor 30 is an estrogen receptor in the plasma membrane. Biochem Biophys Res Commun 2006;346:904–10. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/j.bbrc.2006.05.191&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=16780796&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000238865900037&link_type=ISI) 153.Sundstrom Poromaa I, Smith S, Gulinello M. GABA receptors, progesterone and premenstrual dysphoric disorder. Arch Womens Ment Health 2003;6:23–41. 154.Ma CX, Adjei AA, Salavaggione OE, et al. Human aromatase: gene resequencing and functional genomics. Cancer Res 2005;65:11071–82. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjExOiI2NS8yMy8xMTA3MSI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMzLzQvMzE5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 155.Polymeropoulos MH, Xiao H, Rath DS, et al. Tetranucleotide repeat polymorphism at the human aromatase cytochrome P-450 gene (CYP19). Nucleic Acids Res 1991;19:195. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1093/nar/19.1.195-a&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=1672741&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 156.Baghaei F, Rosmond R, Westberg L, et al. The lean woman. Obes Res 2002;10:115–21. [PubMed](http://jpn.ca/lookup/external-ref?access_num=11836457&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000173890000007&link_type=ISI) 157.Gennari L, Masi L, Merlotti D, et al. A polymorphic CYP19 TTTA repeat influences aromatase activity and estrogen levels in elderly men: effects on bone metabolism. J Clin Endocrinol Metab 2004;89:2803–10. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1210/jc.2003-031342&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15181061&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000221839900044&link_type=ISI) 158.Lorentzon M, Swanson C, Eriksson AL, et al. Polymorphisms in the aromatase gene predict areal BMD as a result of affected cortical bone size: the GOOD study. J Bone Miner Res 2006;21:332–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1359/JBMR.051026&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=16418790&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000234932100017&link_type=ISI) 159.Mononen N, Seppala EH, Duggal P, et al. Profiling genetic variation along the androgen biosynthesis and metabolism pathways implicates several single nucleotide polymorphisms and their combinations as prostate cancer risk factors. Cancer Res 2006;66:743–7. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjg6IjY2LzIvNzQzIjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzMvNC8zMTkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 160.Arvanitis DA, Koumantakis GE, Goumenou AG, et al. CYP1A1, CYP19, and GSTM1 polymorphisms increase the risk of endometriosis. Fertil Steril 2003;79(Suppl 1):702–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0015-0282(02)04817-3&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12620480&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000181670300007&link_type=ISI) 161.Baghaei F, Rosmond R, Westberg L, et al. The CYP19 gene and associations with androgens and abdominal obesity in premenopausal women. Obes Res 2003;11:578–85. [PubMed](http://jpn.ca/lookup/external-ref?access_num=12690088&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000182195600014&link_type=ISI) 162.Huang R, Poduslo SE. CYP19 haplotypes increase risk for Alzheimer’s disease. J Med Genet 2006;43:e42. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToiam1lZGdlbmV0IjtzOjU6InJlc2lkIjtzOjg6IjQzLzgvZTQyIjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzMvNC8zMTkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 163.Iivonen S, Corder E, Lehtovirta M, et al. Polymorphisms in the CYP19 gene confer increased risk for Alzheimer disease. Neurology 2004;62:1170–6. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1212/01.WNL.0000118208.16939.60&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15079018&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 164.Jakobsson J, Palonek E, Lorentzon M, et al. A novel polymorphism in the 17beta-hydroxysteroid dehydrogenase type 5 (aldo-keto reductase 1C3) gene is associated with lower serum testosterone levels in caucasian men. Pharmacogenomics J 2007;7:282–9. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1038/sj.tpj.6500419&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=16983398&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000248486500005&link_type=ISI) 165.Sharp L, Cardy AH, Cotton SC, et al. CYP17 gene polymorphisms: prevalence and associations with hormone levels and related factors. a HuGE review. Am J Epidemiol 2004;160:729–40. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1093/aje/kwh287&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15466495&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000224361000002&link_type=ISI) 166.Kravitz HM, Janssen I, Lotrich FE, et al. Sex steroid hormone gene polymorphisms and depressive symptoms in women at midlife. Am J Med 2006;119(Suppl 1):S87–93. [PubMed](http://jpn.ca/lookup/external-ref?access_num=16843091&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000239014700013&link_type=ISI) 167.Ishii G, Suzuki A, Oshino S, et al. CYP2C19 polymorphism affects personality traits of Japanese females. Neurosci Lett 2007;411:77–80. [PubMed](http://jpn.ca/lookup/external-ref?access_num=17052843&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 168.Yasui-Furukori N, Kaneda A, Iwashima K, et al. Association between cytochrome P450 (CYP) 2C19 polymorphisms and harm avoidance in Japanese. Am J Med Genet B Neuropsychiatr Genet 2007;144:724–7. 169.Shifman S, Bronstein M, Sternfeld M, et al. A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet 2002;71:1296–302. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1086/344514&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12402217&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000179586800004&link_type=ISI) 170.Bray NJ, Buckland PR, Williams NM, et al. A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain. Am J Hum Genet 2003;73:152–61. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1086/376578&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12802784&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000183904900013&link_type=ISI) 171.Meyer-Lindenberg A, Nichols T, Callicott JH, et al. Impact of complex genetic variation in COMT on human brain function. Mol Psychiatry 2006;11:867–77, 797. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1038/sj.mp.4001860&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=16786032&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000240043100010&link_type=ISI) 172.Lachman HM, Papolos DF, Saito T, et al. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 1996;6:243–50. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1097/00008571-199606000-00007&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=8807664&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=A1996UV42600007&link_type=ISI) 173.Mattay VS, Goldberg TE, Fera F, et al. Catechol-*O*-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci U S A 2003;100:6186–91. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMToiMTAwLzEwLzYxODYiO3M6NDoiYXRvbSI7czoxODoiL2pwbi8zMy80LzMxOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 174.de Frias CM, Annerbrink K, Westberg L, et al. Catechol-*O*-methyltransferase Val158Met polymorphism is associated with cognitive performance in nondemented adults. J Cogn Neurosci 2005;17: 1018–25. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1162/0898929054475136&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=16102234&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000230933400004&link_type=ISI) 175.Rothe C, Koszycki D, Bradwejn J, et al. Association of the Val158Met catechol-*O*-methyltransferase genetic polymorphism with panic disorder. Neuropsychopharmacology 2006;31:2237–42. [PubMed](http://jpn.ca/lookup/external-ref?access_num=16525418&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 176.Domschke K, Deckert J, O’Donovan MC, et al. Meta-analysis of COMT val158met in panic disorder: ethnic heterogeneity and gender specificity. Am J Med Genet B Neuropsychiatr Genet 2007;144:667–73. 177.Pooley EC, Fineberg N, Harrison PJ. The met(158) allele of catechol-*O*-methyltransferase (COMT) is associated with obsessive-compulsive disorder in men: case-control study and meta-analysis. Mol Psychiatry 2007;12:556–61. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1038/sj.mp.4001951&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=17264842&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000246906200004&link_type=ISI) 178.Stein MB, Fallin MD, Schork NJ, et al. COMT polymorphisms and anxiety-related personality traits. Neuropsychopharmacology 2005;30:2092–102. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1038/sj.npp.1300787&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15956988&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000232784900014&link_type=ISI) 179.Lang UE, Bajbouj M, Sander T, et al. Gender-dependent association of the functional catechol-*O*-methyltransferase Val158Met genotype with sensation seeking personality trait. Neuropsychopharmacology 2007;32:1950–5. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1038/sj.npp.1301335&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=17299513&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000248788900009&link_type=ISI) 180.Dawling S, Roodi N, Mernaugh RL, et al. Catechol-*O*-methyltransferase (COMT)-mediated metabolism of catechol estrogens: comparison of wild-type and variant COMT isoforms. Cancer Res 2001;61:6716–22. [Abstract/FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjEwOiI2MS8xOC82NzE2IjtzOjQ6ImF0b20iO3M6MTg6Ii9qcG4vMzMvNC8zMTkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 181.Eriksson AL, Suuriniemi M, Mahonen A, et al. The COMT val158met polymorphism is associated with early pubertal development, height and cortical bone mass in girls. Pediatr Res 2005; 58:71–7. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1203/01.PDR.0000163383.49747.B5&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15985686&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 182.Eriksson AL, Skrtic S, Niklason A, et al. Association between the low activity genotype of catechol-*O*-methyltransferase and myocardial infarction in a hypertensive population. Eur Heart J 2004;25:386–91. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/j.ehj.2003.12.026&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15033250&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000220484300007&link_type=ISI) 183.Bergman-Jungestrom M, Wingren S. Catechol-*O*-methyltransferase (COMT) gene polymorphism and breast cancer risk in young women. Br J Cancer 2001;85:859–62. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1054/bjoc.2001.2009&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11556837&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000171536200015&link_type=ISI) 184.Lorentzon M, Eriksson AL, Mellstrom D, et al. The COMT val158met polymorphism is associated with peak BMD in men. J Bone Miner Res 2004;19:2005–11. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1359/JBMR.040909&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15537444&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 185.Harrison PJ, Tunbridge EM. Catechol-*O*-methyltransferase (COMT): a gene contributing to sex differences in brain function, and to sexual dimorphism in the predisposition to psychiatric disorders. Neuropsychopharmacology. Epub 2007 Sept 5 ahead of print. 186.Jiang H, Xie T, Ramsden DB, et al. Human catechol-*O*-methyltransferase down-regulation by estradiol. Neuropharmacology 2003;45:1011–8. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/S0028-3908(03)00286-7&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=14573393&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000186378800013&link_type=ISI) 187.Kinnear C, Niehaus DJ, Seedat S, et al. Obsessive-compulsive disorder and a novel polymorphism adjacent to the oestrogen response element (ERE 6) upstream from the COMT gene. Psychiatr Genet 2001;11:85–7. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1097/00041444-200106000-00005&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=11525422&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000170303000005&link_type=ISI) 188.Mensah-Nyagan AG, Do-Rego JL, Beaujean D, et al. Neurosteroids: expression of steroidogenic enzymes and regulation of steroid biosynthesis in the central nervous system. Pharmacol Rev 1999;51:63–81. [FREE Full Text](http://jpn.ca/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6ODoicGhhcm1yZXYiO3M6NToicmVzaWQiO3M6NzoiNTEvMS82MyI7czo0OiJhdG9tIjtzOjE4OiIvanBuLzMzLzQvMzE5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 189.Frye CA, Sumida K, Dudek BC, et al. Progesterone’s effects to reduce anxiety behavior of aged mice do not require actions via intracellular progestin receptors. Psychopharmacology (Berl) 2006;186:312–22. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1007/s00213-006-0309-3&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=16538472&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 190.N-Wihlbäck AC, Sundstrom-Poromaa I, Backstrom T. Action by and sensitivity to neuroactive steroids in menstrual cycle related CNS disorders. Psychopharmacology (Berl) 2006;186:388–401. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1007/s00213-005-0185-2&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=16362406&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) 191.Goodarzi MO, Shah NA, Antoine HJ, et al. Variants in the 5alpha-reductase type 1 and type 2 genes are associated with polycystic ovary syndrome and the severity of hirsutism in affected women. J Clin Endocrinol Metab 2006;91:4085–91. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1210/jc.2006-0227&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=16849416&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000241100900060&link_type=ISI) 192.Eriksson AL, Lorentzon M, Mellstrom D, et al. SHBG gene promoter polymorphisms in men are associated with serum sex hormone-binding globulin, androgen and androgen metabolite levels, and hip bone mineral density. J Clin Endocrinol Metab 2006;91:5029–37. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1210/jc.2006-0679&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=16926255&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000242581300050&link_type=ISI) 193.Ibanez L, Ong KK, Mongan N, et al. Androgen receptor gene CAG repeat polymorphism in the development of ovarian hyperandrogenism. J Clin Endocrinol Metab 2003;88:3333–8. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1210/jc.2002-021791&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=12843184&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom) [Web of Science](http://jpn.ca/lookup/external-ref?access_num=000183926300057&link_type=ISI) 194.Brum IS, Spritzer PM, Paris F, et al. Association between androgen receptor gene CAG repeat polymorphism and plasma testosterone levels in postmenopausal women. J Soc Gynecol Investig 2005;12:135–41. [CrossRef](http://jpn.ca/lookup/external-ref?access_num=10.1016/j.jsgi.2004.11.003&link_type=DOI) [PubMed](http://jpn.ca/lookup/external-ref?access_num=15695110&link_type=MED&atom=%2Fjpn%2F33%2F4%2F319.atom)