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Introduction

Depression is one of the most devastating mental illnesses,
with a lifetime prevalence of about 16%.1 The rate of suicidal
ideation is as high as 58% among depressed patients, and sui-
cidal behaviour increases the mortality associated with de-
pression, leading to a major burden on society.2 Conventional
antidepressants require several weeks to achieve therapeutic
responses. This treatment delay is a major limitation to cur-
rent depression therapies. Therefore, developing faster-acting
and more effective antidepressants is important, especially
for depressed patients at risk for suicide.

Human postmortem studies reported that glutamate levels

in the frontal cortex are increased in patients with depression,
suggesting that abnormal glutamatergic neurotransmission
may play a role in the pathophysiology of depression and the
action mechanism of antidepressants.3–5 Ketamine, a noncom-
petitive N-methyl-D-aspartate (NMDA) receptor antagonist,
has been widely reported to have rapid antidepressant effects
in both preclinical and clinical studies.6,7 A single dose of ket-
amine exerted fast antidepressant effects within a few hours
in patients with treatment-resistant major depression.8–10

Based on the addictive and psychotomimetic potential of ket-
amine, however, developing fast-acting antidepressants that
target the NMDA receptor system without causing psycho -
tropic side effects is necessary. Unfortunately, the adverse
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Background: Glutamate N-methyl-D-aspartate (NMDA) receptor antagonists exert fast-acting antidepressant effects, providing a promis-
ing way to develop a new classification of antidepressant that targets the glutamatergic system. In the present study, we examined the
potential antidepressant action of 7-chlorokynurenic acid (7-CTKA), a glycine recognition site NMDA receptor antagonist, in a series of
behavioural models of depression and determined the molecular mechanisms that underlie the behavioural actions of 7-CTKA.
 Methods: We administered the forced swim test, novelty-suppressed feeding test, learned helplessness paradigm and chronic mild
stress (CMS) paradigm in male rats to evaluate the possible rapid antidepressant-like actions of 7-CTKA. In addition, we assessed
 phospho-glycogen synthase kinase-3β (p-GSK3β) level, mammalian target of rapamycin (mTOR) function, and postsynaptic protein
 expression in the medial prefrontal cortex (mPFC) and hippocampus. Results: Acute 7-CTKA administration produced rapid
 antidepressant-like actions in several behavioural tests. It increased p-GSK3β, enhanced mTOR function and increased postsynaptic
protein levels in the mPFC. Activation of GSK3β by LY294002 completely blocked the antidepressant-like effects of 7-CTKA. Moreover,
7-CTKA did not produce rewarding properties or abuse potential. Limitations: It is possible that 7-CTKA modulates glutamatergic trans-
mission, thereby causing enduring alterations of GSK3β and mTOR signalling, although we did not provide direct evidence to support
this possibility. Thus, the therapeutic involvement of synaptic adaptions engaged by 7-CTKA requires further study.  Conclusion: Our
findings demonstrate that acute 7-CTKA administration produced rapid antidepressant-like effects, indicating that the behavioural
 response to 7-CTKA is mediated by GSK3β and mTOR signalling function in the mPFC.
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 effects of ketamine, particularly psychotomimetic conse-
quences and cognitive impairment, limit its clinical utility.11

Increasing evidence suggests that several NMDA receptor
antagonists are effective in the treatment of depression.
Mem antine, a noncompetitive NMDA receptor antagonist,
has produced antidepressant effects in the forced swim test
in rats,12 and CP-101606, an NR2B subunit-selective NMDA
receptor antagonist, has been shown to elicit an antidepres-
sant response in depressed patients.13 These findings suggest
that NMDA receptor antagonists could have therapeutic po-
tential for the treatment of major depression.

7-Chlorokynurenic acid (7-CTKA), a glycine recognition
site NMDA receptor antagonist, has been shown to have
neuro protective and antinociceptive effects.14 Whether 7-
CTKA is effective for the treatment of depression has not yet
been clarified. Glycogen synthase kinase 3β (GSK3β) is a
 serine/ threonine kinase, and this signalling molecule modu-
lates the effects of many psychiatric therapeutic agents.15,16

Numerous studies have suggested the involvement of GSK3β
in NMDA receptor-dependent long-term potentiation (LTP)
and long-term depression (LTD). Specifically, activation of
GSK3β is required for LTD, whereas inhibition of GSK3β
 activity induces LTP.17,18 The NMDA receptor antagonist
 memantine has been reported to inhibit GSK3β activation,19

suggesting that 7-CTKA may similarly inhibit GSK3β. The
mammalian target of rapamycin (mTOR) regulates cell
growth and survival and is implicated in activity-dependent
synaptic plasticity by controlling protein synthesis. A recent
study found that an NMDA receptor antagonist rapidly acti-
vated mTOR, causing an increase in the function of spine
synapses.6 In the present study, we sought to determine
whether 7-CTKA has antidepressant-like effects in animal
models of depression and whether GSK3β and mTOR sig-
nalling in the medial prefrontal cortex (mPFC) are involved
in the behavioural mechanism of action of 7-CTKA.

Methods

Animals

Male Sprague–Dawley rats that weighed 200–220 g upon ar-
rival were individually housed under a constant temperature
(23°C ± 2°C) and a 12-hour light:dark cycle with free access to
food and water. All of the animal procedures were per-
formed in accordance with the National Institutes of Health
Guide for the Care and Use of Laboratory Animals, and the
Peking University Animal Use Committee (LA2012/21) ap-
proved all procedures. All of the behavioural tests and drug
administrations were performed during the dark phase of the
light:dark cycle.

Drugs

We purchased 7-CTKA hydrochloride from Enzo Life Sci-
ences International Inc. and dissolved it in saline containing
10% dimethylsulfoxide (DMSO). We administered 7-CTKA
intraperitoneally at doses of 0.05, 0.1 and 1 mg/kg. We chose
these doses based on our previous study20 and on another re-

port that demonstrated effective antagonism of the NMDA
receptor.21 We purchased LY294002 (10 nM/0.5 µl) from
Sigma and dissolved it in saline containing 50% DMSO, as
described in previous reports.6,22 Rapamycin (50 µg/0.5 µl)
was also purchased from Sigma and dissolved in saline con-
taining 5% DMSO, as described in a previous report.23 We
purchased D-serine (50 µg/0.5 µL) from Beijing Redwood
Fine Chemical Co. Ltd. and dissolved it in saline containing
2% DMSO, as described in a previous report.24 All drugs and
vehicles were bilaterally infused into the mPFC at a volume
of 0.5 µl per side. Nissl staining showed that the vehicle
(5%–50% DMSO) used in the microinjection did not cause
cell death after a single infusion. We obtained venlafaxine
from Chengdu Daxi’nan Pharmaceutical Co. Ltd. and keta-
mine from Jiangsu Hengrui Medicine Co. Ltd.

Behavioural tests

Forced swim test
We placed the rats in a plastic cylinder 25 cm in diameter and
65 cm high filled to a depth of 30 cm with 23ºC–25ºC water for
15 minutes. The rats were tested 24 hours later. Immobility
was defined as the minimum movement required to passively
keep the animal’s head above the water without other mo-
tions. Results are expressed as the amount of time (in seconds)
that the animals spent immobile during the 5-minute test.25

Open field test
We administered the open field test to measure locomotor ac-
tivity, as previously described.26 Briefly, the apparatus con-
sisted of a 75 cm × 75 cm × 40 cm square arena divided into
25 equal squares (15 cm × 15 cm). A single rat was placed in
the centre of the apparatus, and we counted the number of
crossings (i.e., entries into adjacent squares) for 5 minutes.

Novelty-suppressed feeding test
We adapted the novelty-suppressed feeding test from previ-
ous studies,27,28 making minor modifications. The rats were
deprived of food in their home cages for 24 hours before the
test. On the test day, rats were individually placed in an open
field arena (75 cm × 75 cm × 40 cm) with several pellets of
food placed in the centre. The animal was placed in a corner
of the arena and allowed to explore for 8 minutes. We record -
ed the latency (in seconds) to approach the food and begin
eating. Subsequent home cage food consumption in 5 min-
utes was the quantitative control measure for appetite.

Learned helplessness
We used the learned helplessness paradigm, as described
previously.29 The shuttle box apparatus consisted of 2 equal
compartments divided by a central barrier (Jiliang Software
Technology). During training on day 1, we administered an
inescapable footshock on 1 side of the apparatus with the
guillotine door closed (100 footshocks, 0.85 mA intensity, 15 s
average duration, 60 s average intershock interval). Control
rats were placed in the same chambers but received no foot-
shock. We used failures and the latency to es cape in an active
avoidance test to detect learned helplessness. In the test



 session on day 2, 30 escapable footshock trials (0.65 mA in-
tensity, 35 s maximum duration, 90 s average intertrial inter-
val) were presented with the guillotine door open. During
the shock period, the rats needed to cross to the other side of
the shuttle box twice to terminate the shock. If rats failed to
escape within 35 seconds, the shock was automatically ter -
min ated. The numbers of escape failures and latency to es-
cape were recorded by computer.

Chronic mild stress protocol and sucrose preference test
We adapted the chronic mild stress protocol from our earlier
study.30 Briefly, rats were subjected to different mild stressors
for 28 days: day 1 (cold immobilization for 1 h at 4°C, tilted
cages [45°] for 24 h), day 2 (immobilization for 1 h, crowding
for 24 h), day 3 (forced cold swim for 5 min, soiled bedding
for 24 h), day 4 (immobilization for 1 h, vibration for 1 h), day
5 (tilted cages [45°] for 24 h, cold immobilization for 1 h at
4°C), day 6 (forced cold swim for 5 min at 4°C, crowding for
24 h) and day 7 (vibration for 1 h, soiled bedding for 24 h).
This schedule was repeated 3 more times. Control rats were
handled daily without any stress in the housing room.

We measured sucrose preference as previously described.31

The rats were trained to adapt to a 1% sucrose solution (w/v)
for 48 hours at the beginning of the experiment, during which
2 bottles of 1% sucrose solution were placed in each cage. Af-
ter adaptation, rats were deprived of water and food for
24 hours and then submitted to the sucrose preference test, in
which they were housed in individual cages for 4 hours and
had free access to 2 bottles containing 1% sucrose or tap wat -
er. We counterbalanced the bottles across the left and right
sides of the cages throughout the experiment. The position of
the 2 bottles varied every 2 hours during the test. At the end
of 4 hours, we measured sucrose and water consumption (in
millilitres) and calculated sucrose preference (%) as the ratio
of sucrose consumption to sucrose plus water consumption.

Conditioned place preference
We administered the conditioned place preference (CPP) test
based on our previous work.32,33 The apparatus consisted of 3-
chamber polyvinyl chloride (PVC) boxes with 2 large side
chambers (27.9 cm × 21.0 cm × 20.9 cm) separated by a
smaller chamber (12.1 cm × 21.0 cm × 20.9 cm) with a smooth
PVC floor. The floor textures are different (bar or grid) in the
2 chambers to provide distinct contexts paired with drug (7-
CTKA, ketamine) or saline injections. Before the CPP test, the
rats were placed in the centre compartment of the CPP ap -
par atus with the doors removed for 15 minutes to measure
baseline place preference. Subsequently, rats were condi-
tioned for 8 consecutive days with alternating intraperitoneal
injections of drug (1 mg/kg 7-CTKA or 10 mg/kg ketamine)
or saline (1 mL/kg) in corresponding compartments using an
unbiased, counterbalanced protocol. A separate set of rats re-
ceived only saline during the 8-day conditioning period. Af-
ter each injection, rats were confined to the drug- or saline-
conditioned chamber for 45 minutes before being returned to
their home cages. We assessed the expression of 7-CTKA-
and ketamine-induced CPP 1 day after the last training ses-
sion on day 9 under conditions identical to those described in

the preconditioning test. The CPP score was defined as the
time (in seconds) spent in the drug-paired chamber minus
the time spent in the saline-paired chamber.

Further methodological details, including those for tissue
sample preparation,34 Western blot assays, intracerebral cannula
implantation and intracranial injections,35,36 together with de-
tailed experimental design of the 6 main experiments per-
formed37–39 are included in Appendix 1 (available at cma.ca/jpn).

Statistical analysis

The data are expressed as mean (and standard error of the
mean [SEM]). We analyzed the data using 1- or 2-way analy-
sis of variance (ANOVA) followed by the Tukey post hoc
test. We considered results to be significant at p < 0.05.

Results

Acute 7-CTKA administration produced rapid
 antidepressant-like effects

In the forced swim test (Fig. 1A), acute 7-CTKA (0.1 and
1 mg/ kg) significantly reduced immobility (Fig. 1B) but had
no effects on locomotor activity (Fig. 1C). In the novelty-
 suppressed feeding test (Fig. 1D), acute 7-CTKA significantly
decreased the latency to feed (Fig. 1E), whereas 7-CTKA did
not affect food consumption in the home cage (Fig. 1F). In the
learned helplessness paradigm (Fig. 1G), inescapable foot-
shock significantly increased failures compared with non-
shock rats (Fig. 1H) and increased the latency to escape
(Fig. 1I). In contrast, rats treated with 7-CTKA exhibited a sig-
nificant decrease in escape failures (F4,39 = 9.86, p < 0.001) and
decreased latency to escape (F4,39 = 4.83, p = 0.002). These be-
havioural results suggest that a single dose of 7-CTKA pro-
duces a rapid antidepressant-like response. However, a sin-
gle dose of a traditional antidepressant, venlafaxine, was not
effective in any of these 3 tests (Fig. 1). Previous evidence has
shown that 3 injections of venlafaxine were needed to pro-
duce an antidepressant-like action by decreasing the im -
mobil ity in the forced swim test.40,41

Acute 7-CTKA administration rapidly reversed  
depressive-like behaviour induced by chronic mild stress

We further assessed the fast antidepressant-like effect of 7-
CTKA in the chronic mild stress (CMS) paradigm (Fig. 2A),
one of the most valid models of depression that requires con-
tinuous administration of traditional antidepressants to pro-
duce a therapeutic response. The rats subjected to CMS ex-
hibited a key symptom of depression, anhedonia, reflected
by a decrease in sucrose preference (F1,13 = 25.58, p < 0.001). A
single injection of 7-CTKA significantly increased sucrose
preference (F1,13 = 9.89, p = 0.008), consistent with the effect of
ketamine (Fig. 2B). The rapid antidepressant-like effects of 7-
CTKA lasted for 7 days, indicated by the sucrose preference
test results on day 28 (Fig. 2C). The CMS-treated rats exhib-
ited an increased latency to feed in a novel environment, and
this behavioural deficit was reversed by a single injection of
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7-CTKA (F1,13 = 7.06, p = 0.021), with no changes in home cage
food intake (Fig. 2D and E). These results suggest that the ef-
fectiveness of 7-CTKA in decreasing depression-related be-
haviours is similar to that of the fast-acting antidepressant
ketamine.

Acute 7-CTKA treatment increased p-GSK3β level and
 enhanced mTOR function and synaptic protein levels in
rats subjected to CMS

To further examine the mechanisms that underlie the rapid
anti depressant activity of 7-CTKA, we exposed 3 groups of
rats (n = 6 per group) to CMS for 21 days, and we intraperi-
toneally administered vehicle, 7-CTKA or ketamine acutely on
day 21. One day after the drug treatment, we measured
GSK3β, postsynaptic density 95 (PSD95) protein, p70s6k and
rps6 in the mPFC and hippocampus using Western blot

(Fig. 3A). Exposure to CMS significantly decreased p-GSK3β in
the mPFC (p < 0.001; Fig. 3B) without altering t-GSK3β levels
(Fig. 3C). The results showed that the decrease in p-GSK3β in
the mPFC was reversed by acute 7-CTKA administration.
We observed a similar effect in the ketamine-treated group; 
7-CTKA did not alter hippocampal p-GSK3β level induced by
CMS (Fig. 3D and E), suggesting that the mPFC is a key target
 region involved in the behavioural effects of 7-CTKA.

Next we examined whether acute 7-CTKA treatment pre-
vented the changes in the mTOR signalling pathway. Chron -
ic mild stress significantly decreased p-p70s6k and p-rps6 in
the mPFC (Fig. 3F) but not in the hippocampus (Fig. 3G). We
found that 7-CTKA blocked the deficits of PSD95 induced by
chronic stress (Fig. 3F), suggesting that induction of synapto-
genesis might underlie the antidepressant action of 7-CTKA.

We also found that systemic 7-CTKA treatment selectively
increased p-GSK3β in the mPFC (Fig. 4A and B) but not in
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the hippocampus in nonstressed rats (Fig. 4C and D), sug-
gesting that acute 7-CTKA administration increased the p-
GSK3β level specifically in the mPFC and that this inhibition
was necessary for the rapid antidepressant action of 7-CTKA.
Furthermore, microinfusion of 7-CTKA into the mPFC ex-
erted significant antidepressant-like effects in the forced
swim test (Fig. 4E and F), novelty-suppressed feeding test
(Fig. 4G and H) and learned helplessness paradigm (Fig. 4I
and J), confirming that the mPFC is a selective region for the
antidepressant effects of 7-CTKA. The location of 7-CTKA in-
fusions into the mPFC is shown in Figure 4K.

Activation of GSK3β by LY294002 reversed the
 antidepressant-like effect of 7-CTKA

Microinjection of the GSK3β activator LY294002 into the mPFC
decreased the level of p-GSK3β (p < 0.001). A single injection of
7-CTKA increased p-GSK3β (p < 0.001; Fig. 5A and B). In the
absence of pretreatment with LY294002, systemic 7-CTKA ad-
ministration decreased immobility in the forced swim test
(Fig. 5C), with no effects on locomotor activity (Fig. 5D).

In the novelty-suppressed feeding test, acute 7-CTKA admin-
istration significantly decreased the latency to feed (p < 0.001;
Fig. 5E), whereas the reduction of the latency to feed in 7-
CTKA-treated rats was reversed by LY294002 pretreatment
(p = 0.002; Fig. 5E and F). These results indicate that activation
of GSK3β effectively reversed the behavioural effect of 7-CTKA
in the novelty-suppressed feeding test.

In the learned helplessness paradigm, inescapable shock
significantly increased the number of failures (p < 0.001;
Fig. 5G) and latency to escape (p = 0.001; Fig. 5H) compared
with the nonshock condition. Acute 7-CTKA administration
completely reversed the behavioural deficits with regard to
failures and latency to escape induced by inescapable shock
(Fig. 5G and H). However, the reversal effects of 7-CTKA on
failures and the latency to escape was blocked by intra-mPFC
administration of LY294002 (Fig. 5G and H).

Furthermore, pretreatment with the mTOR inhibitor ra-
pamycin into the mPFC (50 µg per side) reversed the antide-
pressant effect of 7-CTKA in the forced swim test (p < 0.001;
Fig. 5I) without altering normal locomotion (data not shown).
We also found that intra-mPFC administration of D-serine, a
glycine site NMDA receptor agonist, produced a significant
antidepressant-like action by decreasing the immobility in
the forced swim test (p = 0.011; Fig. 5J), whereas the combina-
tion of D-serine with 7-CTKA did not change the immobility
time (Fig. 5J).

Systemic 7-CTKA administration produced no rewarding
effects in the CPP test

In this experiment, we determined whether systemic 7-CTKA
(1 mg/kg, intraperitoneal) has abuse potential when ad -
ministered at an effective antidepressant dose (Fig. 6A). The
analysis of the behavioural data (i.e., the expression of
CPP) included drug (saline, 7-CTKA and ketamine) as the
 between-subjects factor and test condition (pretest baseline
preference and test preference) as a within-subjects factor.
This analysis of CPP scores after 8 days of conditioning
 revealed a significant drug × test condition interaction for
 ketamine (F1,27 = 15.12, p = 0.001) but not 7-CTKA (F1,25 = 0.058,
p = 0.81; Fig. 6B). We observed the expression of CPP in rats
injected with ketamine but not those injected with 7-CTKA,
suggesting that 7-CTKA at an effective antidepressant dose
(1 mg/kg) did not have rewarding property.

Discussion

The present study showed that a single injection of the
glycine binding site NMDA receptor antagonist 7-CTKA
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 produced rapid antidepressant-like effects and also reversed
the behavioural deficits induced by CMS. Notably, 7-CTKA
at an effective antidepressant dose produced no rewarding

effects, reflected by the CPP scores, suggesting that 7-CTKA
has no addictive potential and indicating the potential bene-
fits of further exploring 7-CTKA rather than ketamine as a
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PSD95 = postsynaptic density protein 95; rps6 = ribosomal protein s6; t = total.



promising antidepressant agent.
The important roles of the GSK3β in depressive behaviour

and antidepressant treatment have been previously demon-
strated. Chronic administration of traditional antidepressants,
including fluoxetine and venlafaxine, significantly increased
phospho-Ser9-GSK3β protein in the hippocampus.42 Increas-

ing evidence suggests that the PFC plays a key role in depres-
sion.43–46 Previous studies have also reported that ketamine
rapidly inhibited GSK3 activation and that GSK3 inhibition is
required for the rapid antidepressant effects of ketamine.47

The present results also showed that acute 7-CTKA adminis -
tration increased p-Ser9-GSK3β in the mPFC, suggesting that
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the antidepressant response of 7-CTKA is likely mediated by
the increase of p-GSK3β in the mPFC. The requirement for
GSK3β inhibition for the antidepressant effects of 7-CTKA
was further confirmed by the results that acute 7-CTKA re-
versed GSK3β activation induced by CMS (Fig. 3). We also
found that the antidepressant effects of 7-CTKA were blocked
by the GSK3β activator LY294002, indicating that the anti -
depressant effect of 7-CTKA is GSK3β-dependent. Further 
studies are required to determine the mechanism by which 
7-CTKA increases p-GSK3β and subsequently affects behav-
iour phenotype.

A growing body of evidence suggests that dysfunction of
the NMDA receptor system is critical in depression.48 D-
 serine, a glycine site NMDA receptor agonist, has been
shown to produce  antidepressant-like effects in rodents.49

Consistently, we found that intra-mPFC infusion of D-serine
produced antidepressant effects. However, pretreatment
with D-serine blocked the behavioural response of 7-CTKA.
It appears contradictory that both the NMDA receptor agon -
ist and antagonist produced similar antidepressant effects.
This may be explained by the regulatory effects of D-serine
on glutamatergic neurotransmission and synaptic plasticity
by influencing neuronal–glial communication. This regula-
tion might mediate the behavioural effects of D-serine.50 Keta-
mine also increased glutamatergic neurotransmission in the
PFC at non-NMDA glutamate receptors.51 Therefore, 7-CTKA
might have similar effects on glutamatergic neurotransmis-
sion, which could be a potential mechanism underlying the
antidepressant effects of 7-CTKA. Additional glycine site
NMDA receptor antagonists will be required to determine

the antidepressant efficacy of glycine site antagonism in the
treatment of depression.

Synaptogenesis is accompanied by upregulation of post -
syn aptic proteins, including PSD-95,6 a key synaptic protein
that colocalizes with NMDA receptors at synapses in primary
neurons and is important for the structure and function of
brain cells.52 Decreased PSD95 may result in the dysfunction
of NMDA receptors with consequently reduced LTP associ-
ated with NMDA receptors.53 Induction of PSD-95 is also con-
sistent with increased synapse formation and function. Con-
sistent with previous reports, our results showed that CMS
markedly reduced PSD95 in the mPFC (Fig. 3), showing that
PSD95 loss could underlie the behavioural deficits caused by
CMS. In contrast, the decrease of PSD95 was rapidly reversed
by 7-CTKA, suggesting that synaptic function underlies the
antidepressant response of 7-CTKA. In addition, brain-
 derived neurotrophic factor (BDNF) also participates in the
synaptogenesis and neurogenesis.54 Several NMDA receptor
antagonists, including ketamine, memantine and MK-801, in-
creased BDNF, which is necessary for their antidepressant re-
sponses.55,56 Based on these findings and our observation that
7-CTKA enhanced mTOR function and increased postsynap-
tic protein levels, we hypothesize that 7-CTKA produces anti-
depressant response through multiple pathways just like
other NMDA receptor antagonists.

The mTOR signalling pathways have been implicated in the
increase in synaptic plasticity and new spine formation. Keta-
mine activated mTOR by increasing phosphorylated p70s6k
and rps6 in the mPFC, indicating that the behavioural effects of
ketamine require mTOR activation. Therefore, we hypothe-
sized that stimulation of the mTOR may be involved in the
 antidepressant-like effects of 7-CTKA. Our findings that pre-
treatment with the mTOR inhibitor rapamycin reversed the
 antidepressant action of 7-CTKA confirmed this possibility.
Chronic mild stress significantly decreased phosphorylated
p70s6k and rps6 in the mPFC, whereas a single dose of 7-CTKA
prevented the deficits in mTOR function induced by CMS.
These findings suggest that inhibition of mTOR may be in-
volved in the impairment of synaptic function induced by CMS
and that stimulation of mTOR in the mPFC may increase
synaptic plasticity and mediate the antidepressant effects of 7-
CTKA. However, our findings are not consistent with previous
reports that phosphorylated p70s6k and rps6 levels were not
changed by chronic stress.7 This may have 2 explanations. First,
the exact brain tissues used in these studies were different.
Whole cytosolic proteins in the mPFC were selected in the pre-
sent study, whereas synaptoneurosomes were used in the earli -
er study. The differences in the neural circuits associated with 
glutamate-mediated neurotransmission between the cytosol
and synaptoneurosome may lead to various behavioural and
neuro physiological phenotypes in rats exposed to chronic
stress. Further studies are needed to address the mechanisms
by which chronic stress induces distinct effects on mTOR sig-
nalling cascades in the subcellular components of the mPFC.
Second, although CMS protocols were used in these investiga-
tions, the stressors were not identical. In the previous study,7

food and water deprivation was one of the stressors used in the
21-day procedure to produce depression-related behaviour,
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whereas the stressors used in present study did not include
food and water deprivation. Dietary restriction has been shown
to significantly increase synaptic expression of α-amino-3-
 hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors
that underlie changes in synaptic strength.57,58 Therefore, food
and water deprivation in the previous study may have been
beneficial for rodents to cope with the adaptation of synaptic
function without altering phosphorylated p70s6k and rps6 and
ultimately normalized the mTOR signalling. Altogether, these
results support the hypothesis that 7-CTKA has fast-acting anti-
depressant effects by activating the mTOR.

Limitations

Numerous lines of evidence have shown that glutamate neuro -
transmission dysfunction may be a core feature of psychiatric
disorders. Accordingly, both traditional antidepressants and
rapid-antidepressant ketamine reduce glutamate release and
synaptic transmission and are likely contributing to their
therapeutic action. Thus, a limitation of our study is that the
effects of 7-CTKA on glutamate release were not directly in-
vestigated. Future studies are warranted, particularly to in-
vestigate the sites of regulation of the glutamate synapse by
7-CTKA, including presynaptic release of glutamate and
postsynaptic NMDA receptors. Additionally, previous inves-
tigations have shown that the rapid antidepressant effect of
ketamine involved the changes of dendritic spines; thus,
whether 7-CTKA has an effect on the modulation of dendritic
remodelling and morphological changes also requires further
investigation.

Conclusion

The present data showed that acute 7-CTKA administration
produced rapid antidepressant-like effects and had no addic-
tive potential. Our results suggest that inhibition of the
GSK3β pathway and activation of mTOR in the mPFC are in-
volved in the rapid behavioural response of 7-CTKA. The ad-
vantages of quick actions and no abuse potential suggest that
specific agents that target the glycine site of NMDA receptors
may be promising for the treatment of depression.
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