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Introduction

Interhemispheric cooperation allows for more efficient 
information processing during complex cognitive tasks.1–4 
Schizophrenia is considered a disconnectivity syndrome 
characterized by disrupted functional connectivity between 
brain areas, including areas in opposite hemispheres.5 These 
abnormalities in interhemispheric connectivity have been 
confirmed at the behavioural level and by brain activity 
measures using various neuroimaging methods.6–9

Behavioural studies have reported that healthy individ-
uals show an advantage in processing information pre-
sented bilaterally compared with the same information 
presented initially to a single hemisphere.10 However, this 
bilateral advantage is generally absent in patients with 

schizophrenia, suggesting a deficit in interhemispheric co-
operation.11–13 Accumulating evidence from resting-state 
functional magnetic resonance imaging (rs-fMRI) also sup-
ports the hypothesis of regional interhemispheric coopera-
tion abnormalities in both early-onset and adult schizo-
phrenia, regardless of medication use.9,14–16 Moreover, 
these interhemispheric cooperation impairments have 
been strongly correlated with symptom severity and, 
along with clinical symptoms, have been shown to im-
prove with drug therapy.17,18 In addition, it has been re-
ported that interhemispheric cooperation increased signifi-
cantly in specific brain regions compared with healthy 
controls.19 Therefore, interhemispheric cooperation abnor-
malities appear throughout the course of schizophrenia 
and contribute to pathogenesis.
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Background: Interhemispheric cooperation is one of the most prominent functional architectures of the human brain. In patients with 
schizophrenia, interhemispheric cooperation deficits have been reported using increasingly powerful neurobehavioural and neuroimaging 
measures. However, these methods rely in part on the assumption of anatomic symmetry between hemispheres. In the present study, 
we explored interhemispheric cooperation deficits in schizophrenia using a newly developed index, connectivity between functionally 
homotopic voxels (CFH), which is unbiased by hemispheric asymmetry. Methods: Patients with schizophrenia and age- and sex-
matched healthy controls underwent multimodal MRI, and whole-brain CFH maps were constructed for comparison between groups. We 
examined the correlations of differing CFH values between the schizophrenia and control groups using various neurotransmitter receptor 
and transporter densities. Results: We included 86 patients with schizophrenia and 86 matched controls in our analysis. Patients with 
schizophrenia showed significantly lower CFH values in the frontal lobes, left postcentral gyrus and right inferior temporal gyrus, and sig-
nificantly greater CFH values in the right caudate nucleus than healthy controls. Moreover, the differing CFH values in patients with 
schizophrenia were significantly correlated with positive symptom score and illness duration. Functional connectivity within frontal lobes 
was significantly reduced at the voxel cluster level compared with healthy controls. Finally, the abnormal CFH map of patients with 
schizophrenia was spatially associated with the densities of the dopamine D1 and D2 receptors, fluorodopa, dopamine transporter, sero-
tonin transporter and acetylcholine transporter. Conclusion: Regional abnormalities in interhemispheric cooperation may contribute to 
the clinical symptoms of schizophrenia. These CFH abnormalities may be associated with dysfunction in neurotransmitter systems 
strongly implicated in schizophrenia.
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In previous fMRI studies, interhemispheric cooperation 
was typically quantified by the correlation between a given 
voxel in 1 hemisphere and its mirrored voxel in the opposite 
hemisphere.20 However, the bilateral hemispheres are not 
anatomically symmetric.21 Regardless, investigators have nor-
malized individual brain connectivity maps using a standard 
symmetric template, which may produce unexpected biases. 
The advantages of using functional rather than anatomic cor-
respondence have also been clearly shown by the construc-
tion of precise cross-hemispheric cortical maps.22 Thus, a bet-
ter option would be to define homotopic regions based on 
function rather than structural features.

In the present study, we examined changes in interhemi-
spheric cooperation among patients with schizophrenia rela-
tive to matched healthy controls using a newly developed 
index, connectivity between functionally homotopic voxels 
(CFH), in which the functional homotopic region of a given 
voxel is defined as the point with the largest functional con-
nectivity (FC) value in the contralateral hemisphere. Thus, 
regions with higher CFH values communicate more exten-
sively across hemispheres. Recently, CFH was used to mea-
sure the interhemispheric cooperation in patients with Par-
kinson disease.23 To facilitate the development of future 
treatments, we also examined whether the CFH differences 
were associated with neurotransmitter receptor and trans-
porter densities.

Methods

Participants

We recruited right-handed patients with schizophrenia aged 
17–53 years from the Anhui Mental Health Center, Hefei, 
China. Schizophrenia was diagnosed by 2 psychiatrists using 
the Structured Clinical Interview for the Diagnostic and Statis-
tical Manual of Mental Disorders, Fourth Edition (SCID-IV). All 
patients were assessed for symptom severity using the Posi-
tive and Negative Syndrome Scale (PANSS). We excluded 
patients with a history of significant head trauma or neuro-
logic disorders, history of addiction (including alcohol or 
drugs), focal brain lesions on T1- or T2-weighted fluid-
attenuated inversion-recovery images and any contraindica-
tions to MRI. Age- and sex-matched healthy controls were re-
cruited from the local community. The healthy controls had 
no history of psychiatric or neurologic disorders and met the 
safety criteria for MRI. 

This study was approved by the Ethics Committee of An-
hui Medical University. All participants provided written in-
formed consent before examination.

MRI data acquisition

Functional and structural MRI data were acquired at the Uni-
versity of Science and Technology of China (Hefei, Anhui 
Province) using a 3.0 T scanner (Discovery 750, GE Health-
care) with the same parameters as in our previous studies.24 
Briefly, functional images (217 volumes) were acquired using 
a single-shot gradient-recalled echo planar imaging sequence 

(repetition time [TR] 2400 ms, echo time [TE] 30 ms, flip angle 
90º). Images of 46 transverse sections (field of view [FOV] 192 
× 192 mm2, 64 × 64 in-plane matrix, section thickness 3 mm 
without intersection gap) were acquired parallel to the 
anteroposterior commissure line. High spatial resolution T1-
weighted anatomic images were then acquired in the sagittal 
orientation using a magnetization-prepared rapid gradient-
echo sequence (TR 8.16 ms, TE 3.18 ms, flip angle 12º, FOV 
256 × 256 mm2, 256 × 256 matrix, section thickness 1 mm 
without intersection gap, voxel size 1 × 1 × 1 mm3, 188 sec-
tions). Foam fillers and earplugs were used to minimize head 
motion and attenuate scanner noise during image acquisi-
tion. All participants were instructed to keep their eyes 
closed and rest without falling asleep during scanning.

Resting state-MRI data preprocessing

All fMRI data preprocessing steps were performed using the 
WhiteMatter toolkit (https://github.com/jigongjun/
Neuroimaging-and-Neuromodulation), which includes 
selected functions of AFNI,25 SPM12 (http://www.fil.ion.ucl.
ac.uk/spm/software/spm12) and FSL (http://fsl.fmrib.ox.
ac.uk/fsl). Briefly, preprocessing consisted of the following 
steps: deletion of the first 5 functional volumes; despiking; 
slice timing correction and realignment; coregistering indi-
vidual functional data to structural images and segmenting 
structural images into grey matter, white matter and cerebro-
spinal fluid (CSF); regressing out 27 nuisance signals (aver-
age white matter, CSF and whole-brain signals as well as 
24 head motion parameters, including the 6 head motion par
ameters, 6 head motion parameters 1 time point before and 
12 corresponding squared items26); smoothing of functional 
images using a 4-mm isotropic Gaussian kernel; temporal 
band-pass filtering (0.01–0.1 Hz); and spatial normalization 
to the Montreal Neurological Institute (MNI) space using the 
matrix produced by structural image segmentation and the 
DARTEL algorithm of SPM12. Whole scan images were dis-
carded if head motion exceeded 3 mm of translation or 3º of 
rotation during scanning.

CFH calculation

We developed a new index to measure interhemispheric co-
operation, CFH. The method for calculating CFH was de-
scribed in detail in our previous study.23 Briefly, each voxel 
was used as a seed to calculate whole-brain FC maps, which 
were then averaged across all participants. The voxel with 
the maximal resting-state FC value in the contralateral hemi-
sphere was defined as the homotopic voxel for the seed 
voxel. Pearson correlations between seed and homotopic 
voxels were then Z-score transformed to improve the nor-
mality. The resulting values were defined as the CFH value 
used to quantify the interhemispheric cooperation and were 
used for subsequent group-level analyses. A higher CFH 
value is considered indicative of stronger communication 
with the opposite hemisphere.

The homotopic regions of a given voxel were defined as its 
mirrored voxel in the opposite hemisphere in most previous 
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fMRI studies. However, we define homotopic regions based 
on function rather than structural features in our study. Here, 
we calculate the distances between the anatomically homo-
topic voxels and functionally homotopic voxels (Appendix 1, 
available at https://www.jpn.ca/lookup/doi/10.1503/
jpn.230037/tab-related-content).

Spatial correlation with receptor and transporter density

We also examined whether CFH abnormalities were associ-
ated with specific transmitter systems implicated in schizo-
phrenia by comparing the pattern of group differences in CFH 
values to the densities of various neurotransmitter receptors, 
transporters and synaptic markers from density atlases. These 
atlases were obtained from previous positron emission tomog-
raphy (PET) studies of healthy individuals. Density maps of 
the following molecules were selected based on known or 
hypothesized associations with schizophrenia pathology: 
dopamine receptors (D1R,27 D2R

28), serotonin receptors (5-HT1AR,29 
5-HT1BR,30 5-HT2AR,30 5-HT4R

30), dopamine transporter (DAT),31 
serotonin transporter (5-HTT),30 fluorodopa (F-DOPA; a reflec-
tion of presynaptic dopamine synthesis capacity),32 
γ-aminobutyric acid type A receptor (GABAAR),31 norepineph-
rine transporter (NAT),33 vesicular acetylcholine transporter 
(VAChT)28 and metabotropic glutamate receptor (mGluR).28 
Subsequently, density values were extracted from each PET 
atlas, and averaged within 360 regions based on the the HCP-
MMP 1.0 atlas (https://cjneu rolab. org/).34 We calculated the 
t values for CFH differences between the schizophrenia and 
control groups (independent sample t tests) and then extracted 
the t values and averaged them within 360 regions based on 
the HCP-MMP atlas. Finally, we used Spearman correlation 
analysis to investigate the associations between CFH differ-
ences (t values) and neurotransmitter receptor and transporter 
density values. The significance threshold was set at 0.05 
(2-tailed) with false discovery rate (FDR) correction.

Statistical analysis

Continuous variables were compared between the schizo-
phrenia and control groups with the Mann–Whitney U test, 
and categorical variables were compared with the Fisher ex-
act test. Group differences in CFH values at a given location 
were compared using permutation testing with age and sex 
as covariates. This comparison test was performed within a 
grey matter mask using the Statistic nonParametric Mapping 
(SnPM13) toolbox of SPM12.35 To control for family-wise 
error in multiple comparisons, we first set a cluster-defined 
threshold of t = 3.14 (corresponding to p = 0.001 at the voxel 
level). Only clusters surviving the cluster-level correction at 
pcorr < 0.01 are reported. Pearson correlation analysis was then 
used to test the association between imaging data and clinical 
symptoms in schizophrenia. The significant threshold of cor-
relation analysis was set at 0.05 (2-tailed), uncorrected. For 
visualization of MRI results we used Surf Ice (https://www.
nitrc.org/projects/surfice/), MRIcroGL (https://www.nitrc.
org/projects/mricrogl/) and BrainNet software (http://
www.nitrc.org/projects/bnv/).36

Results

Participants

We included 86 patients with schizophrenia and 86 healthy 
controls in the final analysis. There was no significant differ-
ence in age or gender ratio between groups. The demo-
graphic and clinical characteristics of the schizophrenia and 
healthy control groups are summarized in Table 1.

Group differences in the CFH

The CFH maps of the schizophrenia and healthy control 
groups exhibited similar patterns (Figure 1 A and B). How-
ever, patients with schizophrenia showed significantly 
lower CFH values in the left middle orbitofrontal cortex 
(OFC), left postcentral gyrus, right superior OFC, right 
medial OFC and right inferior temporal gyrus (ITG; 
Figure 1C). Patients with schizophrenia also showed sig
nificantly greater CFH values in the right caudate nucleus 
(Figure 1C). The details of the 6 clusters with significantly 
altered CFH values in patients with schizophrenia are sum-
marized in Table 2.

To exclude the effect of head motion, we reanalyzed the 
group differences by adding mean frame displacement (FD) 
as a covariate. The results were very similar to our original 
findings. The peak MNI coordinates of the 6 clusters with sig-
nificantly altered CFH values were the same. Only the num-
ber of voxels and the peak t value of the clusters changed 
slightly (Appendix 1, Table S1).

Correlations with clinical characteristics

The PANSS positive score was negatively correlated with 
CFH values of the left middle OFC (r  =  −0.23, p  =  0.03; 
Figure 2A), while illness duration was positively correlated 
with CFH values in the right superior OFC (r  =  0.28, 
p  =  0.01; Figure 2B) and negatively correlated with CFH 
values in the right ITG (r = −0.27, p = 0.01; Figure 2C). No 

Table 1: Demographic and clinical characteristics of study 
participants

Characteristic

Schizophrenia, 
mean ± SEM* 

n = 86

Control,  
mean ± SEM* 

n = 86 p value

Gender, F/M 51/35 51/35 0.999†

Age, yr 26.02 ± 0.92 26.10 ± 0.91 0.92‡

Illness duration, yr 6.03 ± 0.54 NA NA

PANSS Total 68.92 ± 1.82 NA NA

PANSS positive 16.24 ± 0.93 NA NA

PANSS negative 16.37 ± 0.53 NA NA

PANSS general 30.88 ± 0.83 NA NA

F = female; M = male; NA = not applicable; PANSS = Positive and Negative Syndrome 
Scale; SEM = standard error of the mean.
*Unless indicated otherwise.
†Mann–Whitney U test.
‡Fisher exact test.
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significant correlations were found between other CFH val-
ues with significant group differences and PANSS total, 
positive, negative and general scores or illness duration 
(Appendix 1, Table S2).

Correlations with receptor and transporter densities

The group difference in CFH (Figure 3A) was positively cor-
related with the densities of 5-HT1AR (r  =  0.35, p  <  0.0001), 
5-HT2AR (r = 0.16, p = 0.006), 5-HT4R (r = 0.18, p = 0.002), 5-HTT 
(r = 0.19, p = 0.002), D1R (r = 0.24, p < 0.0001), D2R (r = 0.23, 
p  <  0.0001), F-DOPA (r  =  0.15, p  =  0.011), DAT (r  =  0.17, 
p = 0.005), GABAAR (r = 0.16, p = 0.006) and VAChT (r = 0.12, 
p = 0.04) (Figure 3B), but not with densities of the other recep-
tors and transporters examined (Appendix 1, Table S3).

Discussion

Interhemispheric cooperation was significantly altered in pa-
tients with schizophrenia compared with matched controls, 
and these abnormalities were correlated with clinical variables 

and with the densities of multiple neurotransmitter signalling 
proteins implicated in schizophrenia pathogenesis. Moreover, 
we found substantially reduced FC within the frontal lobes of 
patients with schizophrenia. These findings suggest that sub-
optimal interhemispheric cooperation, especially in the bilat-
eral OFC, contributes to the cognitive and behavioural deficits 
in schizophrenia. Further, these interhemispheric cooperation 
deficits may involve dysfunction of dopamine, serotonin and 
cholinergic transmitter systems.

Abnormal interhemispheric cooperation in schizophrenia

Hemispheric cooperation in the right caudate nucleus was sig-
nificantly greater in patients with schizophrenia than healthy 
controls, in accordance with the results of a previous study.37 
The striatum and associated cortical structures contribute to 
many cognitive and affective processes that are affected in 
schizophrenia,38–40 and the caudate nucleus is an important 
node within corticostriatal circuits. Consistent with this find-
ing, several studies have also reported abnormalities in cau-
date anatomy.41–43 Moreover, the classic dopamine hypothesis 

Figure 1: Differences in interhemispheric cooperation between (A) patients with schizophrenia and (B) age- and sex-matched healthy con-
trols. (C) Regions showing significantly weaker interhemispheric cooperation (low connectivity between functionally homotopic voxels) in 
patients with schizophrenia relative to healthy controls are shown in blue, and regions with stronger interhemispheric cooperation in patients 
with schizophrenia are shown in red (pcorr < 0.01).
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posits that the positive symptoms of schizophrenia are asso-
ciated with hyperactive dopaminergic transmission within 
the caudate,44,45 and mean dopamine system densities were 
correlated with the alteration in mean CFH in the current 
study. Taken together, these results provide evidence that 
abnormal FC within the right caudate nucleus, possibly 
involving dopaminergic system dysfunction, contributes to 
schizophrenia pathology.

Patients with schizophrenia also showed significantly re-
duced interhemispheric cooperation in a large span of the 
frontal lobes encompassing the left middle OFC, right 
superior OFC and right medial OFC. Damage to the OFC af-
fects cognitive functions, emotion regulation and social be-
haviours, resulting in a host of psychiatric syndromes.46–48 
Structural and functional impairment of the OFC have been 
reported in patients with schizophrenia. For example, studies 
have provided evidence of volume and thickness reductions 
of the OFC in medication-naïve patients with schizophre-
nia.49,50 Previous fMRI studies have shown altered OFC acti-
vation during social decision-making in patients with schizo-
phrenia.51 People with OFC damage have been shown to 

make disastrous life choices, such as bad investments or 
breaking the law.46 Finally, using voxel-mirrored homotopic 
connectivity, interhemispheric cooperation in the OFC has 
been found to be significantly decreased in schizophrenia.18 
While our current findings support those of previous neuro-
imaging studies, the characterization of the role of the OFC is 
complicated by multiple factors. More research is therefore 
needed to demonstrate the role of the OFC in psychiatric dis-
orders such as schizophrenia.

We also found significantly reduced CFH values in the 
right ITG and left postcentral gyrus. The temporal cortex is a 
key structure for auditory and language processing, both of 
which are impaired in schizophrenia.52,53 Consistent with our 
findings, several previous studies have reported impaired 
interhemispheric cooperation in the temporal cortex of pa-
tients with schizophrenia.15,16 In addition, several morpho-
metric studies have reported structure deficits in the tem
poral gyrus of patients with schizophrenia.54–57 Our findings 
suggest that impaired connectivity with the right ITG may 
contribute to schizophrenia pathology. Furthermore, this 
dysfunction appears to worsen with disease progression, as 
we found a negative correlation between interhemispheric 
cooperation and disease duration. The postcentral gyrus re-
ceives and processes somatosensory information,58–60 and re-
duced interhemispheric cooperation of the postcentral gyrus 
has also been reported in schizophrenia.9,15 A growing body 
of literature indicates that the somatosensory cortex contrib-
utes to emotional and cognitive processing, and impaired 
somatosensory processing is a common symptom of schizo-
phrenia.61 Future studies are warranted to examine whether 
sensory impairments in schizophrenia contribute to deficits 
in higher-order cognition.

Correlations with molecular substrate densities

Neurotransmitter receptors and transporters support the 
propagation of signals and shape network-wide communi-
cation in the human brain. The dopamine hypothesis was 

Table 2: Significant group differences in CFH

Brain regions

Peak MNI 
coordinates

No. of 
voxels

Peak t 
valuex y z

Schizophrenia > controls

   Right caudate nucleus 6 15 3 24 4.32

Schizophrenia < controls

   Left middle OFC –21 27 –18 62 5.84

   Right superior OFC 21 33 –21 49 5.64

   Left postcentral gyrus –51 –12 30 23 5.26

   Right medial OFC 12 36 –9 36 4.86

   Right ITG 48 –66 –6 25 4.23

CFH = connectivity between functionally homotopic voxels; ITG = inferior temporal 
gyrus; MNI = Montreal Neurological Institute; OFC = orbitofrontal cortex.

Figure 2: Correlations between regional CFH values and clinical characteristics. (A) PANSS positive subscale score was negatively correlated 
with CFH values in the left middle OFC. Illness duration was (B) negatively correlated with CFH values in the right ITG and (C) positively correl
ated with CFH values in the right superior OFC. The significance threshold was set at 0.05 (2-tailed), uncorrected. CFH = connectivity between 
functionally homotopic voxels; ITG = inferior temporal gyrus; OFC = orbitofrontal cortex; PANSS = Positive and Negative Symptom Scale.
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the first neurochemical theory of schizophrenia, and it is still 
widely accepted to explain some symptoms of the disorder.62 
We found that group differences in CFH between patients 
with schizophrenia and healthy controls were significantly 
correlated with the densities of D1R, D2R, DAT and F-DOPA. 
The dopamine system is implicated in motor behaviour, cog-
nition and emotion, all of which are affected by schizophre-
nia.63 The classic formulation of the dopamine hypothesis 
posits that hypoactive dopamine transmission in the pre-
frontal cortex leads to negative symptoms such as flat affect 
and anhedonia, while hyperactivity of mesolimbic dopa-
mine neurons leads to positive symptoms.45,64 This theory is 
strongly supported by the efficacy of dopamine receptor 
antagonists to treat behavioural and cognitive symptoms in 
patients with schizophrenia.

However, it has long been appreciated that dopaminergic 
dysfunction alone cannot account for the full spectrum of 
psychopathology in schizophrenia.65,66 Consistent with con-
tributions of serotonergic and cholinergic signalling dys-
functions in schizophrenia, we found significant positive 
correlations between the mean group difference in CFH and 
the densities of 5-HTT, GABAAR and VAChT. The serotonin 
system interacts with the dopamine system at multiple 
levels. Moreover, 5-HTT signalling is critical for proper 
neurodevelopment, and the appearance of prodromal symp-
toms before clinical disease suggests neurodevelopmental 
deficits in schizophrenia. Furthermore, changes in 5-HTT are 
associated with cognitive deficits in patients with schizo-

phrenia.67 Associations of both serotonergic dysfunction and 
5-HTT polymorphisms68 with schizophrenia pathophysiol-
ogy have also been reported.66,69 Moreover, some newly de-
veloped antipsychotic medications preferentially target the 
serotonin system.70,71 The pathophysiology of schizophrenia 
and/or symptom expression may also involve altered cho-
linergic transmission. Tobacco smoking rates are high 
among patients with schizophrenia, suggesting self-
medication with nicotine (a nicotinic acetylcholine receptor 
[nAChR] agonist).72–75 Reduced expression of α7 ionotropic 
nAChR expression has been observed in the postmortem hip-
pocampus and cingulate cortex of patients with schizophre-
nia.74,76 The role of GABA in patients with schizophrenia has 
also been reported in clinical and basic neuroscience 
studies.77,78 The GABA system has been shown to be effective 
in improving symptoms of schizophrenia.79

Recent studies have implicated glutamate and norepineph-
rine in addition to dopamine, serotonin, GABA and acetyl-
choline in the pathobiology of schizophrenia.80 However, our 
findings show that the density maps of these neurotransmit-
ter receptors and transporters were independent of the CFH 
group differences. These molecular substrates may be in-
volved in other cognitive dysfunction or symptoms of schizo-
phrenia, but not in interhemispheric cooperation. Our find-
ings may provide a host of additional therapeutic targets for 
schizophrenia. However, further research is needed to eluci-
date the potential therapeutic mechanisms and roles of differ-
ent neurotransmitters in the treatment of schizophrenia.

Figure 3: Correlations of group CFH differences with neurotransmitter receptor and transporter densities. (A) The CFH difference (t value) map with-
out correction. (B) The CFH difference was positively correlated with the mean densities of 5-HT1AR, 5-HT2AR, 5-HT4R, 5-HTT, D1R, D2R, F-DOPA, DAT, 
GABAAR and VAChT. The vertical axis of the radar map indicates the correlation coefficient (r value). 5-HT1AR = serotonin receptor 1A; 5-HT2AR = sero-
tonin receptor 2A; 5-HT4R = serotonin receptor 4; 5-HTT = serotonin transporter; D1R = dopamine receptor 1; D2R = dopamine receptor 2; F-DOPA = 
fluorodopa; DAT = dopamine transporter; GABAAR = γ-aminobutyric acid type A receptors; mGluR = metabotropic glutamate receptor; NAT = norepi-
nephrine transporter; VAChT = vesicular acetylcholine transporter.*p < 0.05, **p < 0.01, *** p < 0.001 (false discovery rate–corrected, 2-tailed). 
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Limitations

This study has several limitations. First, all patients with 
schizophrenia were treated with antipsychotic medications 
before the scan, which could have had unpredictable effects 
on our findings. Therefore, the alterations of interhemi-
spheric cooperation should be investigated in drug-naïve pa-
tients with schizophrenia. Second, we used a cross-sectional 
design to investigate interhemispheric cooperation. A longi-
tudinal study is necessary to assess how abnormalities in 
interhemispheric cooperation emerge and change with dis-
ease progression. Third, the sample sizes of some receptor 
and transporter atlases were relatively small and came from 
healthy individuals. Atlases from a large sample of patients 
with schizophrenia are necessary to validate our findings.

Conclusion

We have shown that interhemispheric cooperation is signifi-
cantly altered in patients with schizophrenia and that these 
alterations are associated with clinical symptoms. In addi-
tion, region of interest–based analysis showed markedly re-
duced FC between bilateral frontal lobes in patients with 
schizophrenia. Finally, abnormal CFH values were correlated 
with the densities of several neurotransmitter receptors and 
transporters. Interventions to enhance interhemispheric co-
operation, especially in the frontal lobe, may be an effective 
treatment strategy for schizophrenia.
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