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The mechanisms by which administration of interferon-α induces neuropsychiatric side effects, such as
depressive symptoms and changes in cognitive function, are not clear as yet. Direct influence on seroton-
ergic neurotransmission may contribute to these side effects. In addition, the enzyme indoleamine 2,3-
dioxygenase (IDO), which converts tryptophan into kynurenine, may play an important role, first, because
IDO activation leads to reduced levels of tryptophan, the precursor of serotonin (5-HT), and thus to re-
duced central 5-HT synthesis. Second, kynurenine metabolites such as 3-hydroxy-kynurenine (3-OH-
KYN) and quinolinic acid (QUIN) have toxic effects on brain function. 3-OH-KYN is able to produce ox-
idative stress by increasing the production of reactive oxygen species (ROS), and QUIN may produce
overstimulation of hippocampal N-methyl-D-aspartate (NMDA) receptors, which leads to apoptosis and
hippocampal atrophy. Both ROS overproduction and hippocampal atrophy caused by NMDA overstimula-
tion have been associated with depression.

Les mécanismes par lesquels l’administration d’interféron alpha provoque des effets secondaires neu-
ropsychiatriques comme des symptômes de dépression et des changements de la fonction cognitive ne
sont pas encore clairs. L’influence directe sur la neurotransmission sérotoninergique peut contribuer à
ces effets secondaires. La 2,3-dioxygénase (IDO), enzyme qui convertit le tryptophane en cynurénine,
peut en outre jouer un rôle important tout d’abord parce que l’activation de l’IDO entraîne une réduc-
tion des concentrations de tryptophane, précurseur de la sérotonine (5-HT) et, par conséquent, une
baisse de la synthèse centrale de 5-HT. De plus, des métabolites de la cynurénine, comme la 3-hydroxy-
cynurénine (3-OH-KYN) et l’acide quinolinique (QUIN), ont des effets toxiques sur la fonction cérébrale.
La 3-OH-KYN peut produire un stress oxydatif en élevant la production d’espèces réagissant à l’oxygène
(ERO) et la QUIN peut produire une surstimulation des récepteurs de la N-méthyl-D-aspartate (NMDA)
de l’hippocampe, qui entraîne l’apoptose cellulaire et une atrophie de l’hippocampe. La surproduction
d’ERO et l’atrophie de l’hippocampe causée par la surstimulation de la NMDA ont toutes deux été asso-
ciées à la dépression.
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Introduction

The proinflammatory cytokine interferon-α (IFN-α) is
commonly used in the treatment of patients with hep-

atitis C and cancer, but its administration induces neu-
ropsychiatric side effects.1,2 Symptoms frequently asso-
ciated with IFN-α treatment are fatigue, both increased
sleepiness and difficulty sleeping, irritability, loss of
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appetite, weight loss and low mood. A full-blown de-
pressive disorder is reported in up to 36% of cases.3

Cognitive changes involving verbal memory, cognitive
speed and executive function are also reported.4–6

Administration of proinflammatory cytokines, such
as interleukin-1β (IL-1β), IL-6, IFN-α and tumour
necrosis factor-α (TNF-α), in rats or mice induces a be-
havioural pattern referred to as “sickness behaviour,” 7

which includes increased sleep,8 reduced locomotor ac-
tivity,9,10 decreased sucrose consumption (as a measure
for anhedonia),11 weight loss and decreased social ex-
ploration.12 These symptoms resemble the vegetative
symptoms of depression in humans.2,13

The development of sickness behaviour14 and depres-
sion15,16 is linked to dysregulation of the neurotransmit-
ter serotonin (5-HT). Several neurochemical changes in
both the peripheral and central 5-HT system are seen
in depressed patients, such as lower levels of periph-
eral tryptophan (TRP), the precursor of 5-HT;17 changes
in central 5-HT transporter (5-HTT) function;18 and
changes in 5-HT1A

19 and 5-HT2A brain receptors.20 There-
fore, one way in which IFN-α may induce depressive
symptoms is by affecting the serotonergic system.

IFN-αα and central 5-HT neurotransmission

IFN-α exerts direct influence on 5-HT brain neuro-
transmission. IFN-α and other proinflammatory cy-
tokines, such as IFN-γ, TNF-α and IL-1, have been
shown to upregulate 5-HTT, causing a decrease of ex-
tracellular 5-HT.21–23 IFN-α may also indirectly influence
5-ΗΤΤ activity by increasing the production of IFN-γ,
TNF-α and IL-1. In addition, IFN-α modulates the 5-
HT1A

24 and 5-HT2
25 brain receptors.

IDO activity causes TRP depletion

A second pathway by which IFN-α modulates the 5-
HT system is by induction of the enzyme indoleamine
2,3-dioxygenase (IDO). IDO is the rate-limiting enzyme
in the L-TRP–kynurenine pathway that converts L-TRP,
the precursor of 5-HT, to N-formylkynurenine, result-
ing in a diminished synthesis of central 5-HT. IDO is
widely distributed in various tissues, including the
brain, lung, heart, kidney and intestine.26 

Cytokines, such as IFN-α, IFN-β, TNF-α and IFN-γ,
have been shown to upregulate IDO expression.26–31

IFN-α has a weak direct effect on IDO induction and
an indirect effect through a 15-kD protein, which is a
product of IFN-α-stimulated monocytes and lympho-
cytes and stimulates IDO and IFN-γ production.32

IFN-α therapy in patients with hepatitis C causes a
decrease in TRP (4–6 months after starting therapy) and

an increase in kynurenine plasma levels seen at 2 weeks
after starting therapy, with kynurenine plasma levels
remaining the same as at 2 weeks when measured at
weeks 4, 16 and 24, indicating higher IDO activity.33 In
addition, IDO induction is also mediated by an IFN-γ-
independent mechanism involving the proinflamma-
tory cytokine TNF-α.26 Anti-inflammatory cytokines,
such as IL-4 and IL-10, diminish TRP metabolism.34

Overstimulation of IDO leads to depletion of plasma
concentrations of TRP and, therefore, to reduced synthe-
sis of 5-HT in the brain,35 which may play a role in the
development of depressive symptoms. In addition, not
only TRP but also 5-hydroxytryptophan (5-HTP) and 5-
HT itself can be substrates for IDO.36 Therefore, it can be
postulated that in addition to lowering peripheral levels
of TRP, 5-HT synthesis in the brain can also be reduced
by central degradation of 5-HT by IDO. However, there
is another possible way in which IFN-α-induced over-
stimulation of IDO may produce depressive symptoms.
By upregulating IDO expression, IFN-α can initiate the
kynurenine pathway leading to the production of a vari-
ety of neuroactive metabolites. These kynurenine
metabolites themselves may play a causative role, be-
cause the ratio of kynurenine to TRP is positively associ-
ated with depression and anxiety scores.33,37

Neurotoxic metabolites of the kynurenine
pathway

Several metabolites formed along the kynurenine path-
way are found to have neurotoxic effects, such as 3-
hydroxy-kynurenine (3-OH-KYN), a direct metabolite
of kynurenine, and quinolinic acid (QUIN), which is
formed later in the kynurenine pathway.38–42 Peripheral
kynurenine is transported through the blood–brain
barrier by a large neutral amino acid carrier and thus
may easily reach the central nervous system. In the
brain it is taken up by glia cells, by which it is further
metabolized.43,44 In this way, neurotoxic metabolites are
formed in the brain that can cause neurodegeneration. 

The neurotoxicity of these kynurenine metabolites
has been demonstrated in animals45–50 and in vitro,41

whereas data for humans show elevated levels in sev-
eral degenerative disorders. Increased production of 3-
OH-KYN or QUIN, or both, is found in certain neu-
rodegenerative conditions in humans,38 such as in
Huntington's disease,51,52 Parkinson's disease53 and in
the AIDS–dementia complex.54,55 In the last condition,
QUIN levels are increased in the cerebrospinal fluid
up to 20-fold and are correlated with the severity of
cognitive and motor dysfunctions. Increased produc-
tion of 3-OH-KYN and QUIN may also contribute to
neuronal damage in cognitive decline of aging,56 infec-
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tions of the central nervous system,57 malaria,58 is-
chemia,59 hypoxia at birth,60 traumatic injury61 and
epilepsy.62 In addition, they may play a role in the de-
velopment of psychiatric diseases such as anxiety,63 de-
pression64 and schizophrenia.65

The following mechanisms may account for the ef-
fect of 3-OH-KYN and QUIN on neurodegenerative
diseases and depressive symptoms (Fig. 1). Even rela-
tively low levels of 3-OH-KYN may cause neurotoxic-
ity by inducing oxidative stress and neuronal apopto-
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Fig. 1: The role of indoleamine 2,3-dioxygenase (IDO) in cytokine-induced lowered tryptophan (TRP) levels and produc-
tion of neurotoxic metabolites. The dotted arrows indicate that IL-4 and IL-10 diminish IDO activity. The diagonal arrows
leading from IFN-αα and TNF-αα to IDO indicate that these cytokines increase IDO activity and, thus, cause increased me-
tabolism of TRP, resulting in decreased availability of TRP that crosses the BBB to synthesize 5-HT. The horizontal ar-
rows between IFN-αα and IFN-γγ and between TNF-αα and IFN-γγ refer to the fact that IFN-αα and TNF-αα increase production
of IFN-γγ, which exerts a powerful stimulating effect (thick vertical arrow) on IDO activity. NMDA = N-methyl-D-aspartate,
QUIN = quinolinic acid, 3-OH-KYN =3-hydroxy-kynurenine, 5-HT = serotonin, KYN = kynurenine, KYNA = kynurenate,
BBB = blood–brain barrier, IL-4 = interleukin-4, IFN-αα = interferon-αα, TNF-αα = tumour necrosis factor-αα. 



sis.40,41 3-OH-KYN is transferred into cells by neutral
amino acid transporters. Only after interaction with
cellular xanthine oxidase is 3-OH-KYN capable of pro-
ducing sufficient amounts of reactive oxygen species
(ROS), such as superoxide radical, hydrogen peroxide
and hydroxyl radical, to induce internucleosomal DNA
cleavage leading to apoptosis. Various antioxidative
agents prevent cell death induced by 3-OH-KYN. The
cortex and the striatum are most sensitive to 3-OH-
KYN insults. Differences in vulnerability to 3-OH-KYN
for different brain regions are likely to result from dif-
ferences in their ability to take up large neutral amino
acids.41 Overproduction of ROS has been associated
with depression. An association between overproduc-
tion of ROS and increased monoamine oxidase (MAO)
activity has been suggested.66 In addition, polyunsatu-
rated fatty acids (PUFAs) are vulnerable to oxidation.
Overproduction of ROS might result in destruction of
phospholipids and reduce the viscosity of cell mem-
branes.67 Alterations in membrane viscosity may influ-
ence receptor density or function of serotonergic or cat-
echolaminergic receptors.68 Overproduction of
proinflammatory cytokines, increased MAO activity
and, thus, lower levels of catecholamines, disturbances
in PUFA structures and ratios, and the decrement of
serotonergic and catecholaminergic receptor densities
and functioning are all associated with depression.2,69,70

Furthermore, selective serotonin reuptake inhibitors
have antioxidant properties and reverse the overpro-
duction of ROS.71

QUIN is a potent N-methyl-D-aspartate (NMDA) re-
ceptor agonist. Overstimulation of NMDA receptors
increases calcium influx into the target neurons, which
will lead to neuronal damage.47,72 In addition, QUIN can
contribute to the formation of free radicals, first, be-
cause the influx of calcium ions into neurons after acti-
vation of glutamate receptors may lead to the genera-
tion of ROS.73,74 Furthermore, with the generation of
free radicals, QUIN induces lipid peroxidation in mem-
brane lipids and proteins, leading to changes in neu-
ronal membrane fluidity, receptor function and ion
permeability.75 Finally, QUIN and 3-OH-KYN act syn-
ergistically in the production of free radicals, so that
even low doses of QUIN potentiate the excitotoxicity of
3-OH-KYN.76,77

Intrahippocampal injection of QUIN in rats causes
substantial loss of hippocampal neurons.45,48,75 QUIN-
induced neurotoxicity can be significantly reduced by
pharmacologic blockade of kynurenine 3-hydroxylase,
the enzyme responsible for the formation of 3-OH-
KYN from L-kynurenine or by administration of
kynurenate (KYNA), another metabolite of the
kynurenine pathway, which inhibits NMDA receptor

function and thus protects against excitotoxic insults.48

Hippocampal neurodegeneration and
depression

Major depression is associated with hippocampal vol-
ume loss.78,79 Hypothalamic-pituitary-adrenal (HPA)
axis inhibition appears to be mediated by negative
feedback from circulating glucocorticoids.80 Destruction
of the hippocampus attenuates the negative feedback
via loss of glucocorticoid receptors, which will increase
HPA activity. Loss of the normal glucocorticoid feed-
back has been reported in humans with depression and
animals in chronic stress paradigms.81–83 Hippocampal
atrophy results from an excess of excitatory amino acid
neurotransmitters, such as glutamate that acts on the
NMDA receptor, which can be produced by glucocorti-
coid overexposure.84–86 However, Magariños and
McEwen87 found a dissociation between parameters in-
dicating the glucocorticoid stress response and hip-
pocampal atrophy in rats. Dendritic atrophy occurred
in spite of the habituation of the glucocorticoid stress
response after days of repeated stress. In addition, hy-
percortisolism occurs in about half of the patients with
depression, whereas atrophy seems to be demonstrable
in a far higher percentage of individuals.86 This sug-
gests that, besides glucocorticoids, other factors con-
tribute to neurodegeneration, for example, the neuro-
toxic metabolites of kynurenine, whose levels are
raised in depression. Therefore, we assume as a hy-
pothesis a second mechanism in which kynurenine
metabolites, such as QUIN, cause NMDA receptor
overstimulation, leading to hippocampal atrophy and
subsequent interference with the normal negative feed-
back function of HPA axis activity.

Conclusion

Administration of IFN-α causes the development of
depressive symptoms in a high percentage of patients.
This may be caused by direct influence of IFN-α on
central 5-HT transmission, or indirectly via induction
of the enzyme IDO. The latter may play an important
role in the pathophysiology of IFN-α-induced depres-
sion through its effect on brain TRP availability that is
crucial to the formation of central 5-HT. Furthermore,
IDO is the rate-limiting step in the brain kynurenine
pathway that leads to the formation of neurotoxic sub-
stances, such as 3-OH-KYN and QUIN, which cause
neurodegeneration that may contribute to the develop-
ment of depression. 
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2004 Jock Cleghorn Prize

This prize, which will consist of a cheque for $500, will be awarded by the CCNP for the
best poster presentation by a research trainee (graduate student or clinical resident) at the
Annual Meeting of the CCNP. Candidates wishing to have their poster presentation con-
sidered should send a covering letter and a copy of their submitted abstract to Dr. Sidney
Kennedy at the address below. Those already applying for travel bursaries will automati-
cally be considered for the Jock Cleghorn Prize. All others can contact Dr. Kennedy.

The poster presentations will be judged at the Annual Meeting by a committee consisting
of at least 3 members of the Awards Committee (or substitute judges to be chosen by the
Council from the CCNP membership if Awards Committee members are unable to attend
the Annual Meeting). Topics on either basic or clinical aspects of neuropsychopharma-
cology will be considered. The poster should represent research in which the graduate
student or resident is the primary investigator, and (s)he should be the first author of the
submitted abstract. The winner of the award will be announced in the first newsletter
after the Annual Meeting.

Please send a copy of the abstract and a covering letter to: Dr. Sidney Kennedy,
Psychiatrist-in-Chief, University Health Network, 200 Elizabeth St., 8th Fl., Eaton
Wing, Rm. 222, Toronto ON  M5G 2C4; fax 416 340-4198; sidney.kennedy@uhn.on.ca

Deadline for submissions: April 2, 2004


