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Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive tool used to manipulate activity in
specific neural circuits of the human brain. Clinical studies suggest that, in some patients with major de-
pression, rTMS has the potential to alleviate symptoms that may be related to functional abnormalities in
a frontocingulate circuit. This paper reviews the rationale for the use of rTMS in this context. The follow-
ing topics are discussed: symptoms and cognition in major depression, with special emphasis on the initia-
tion of speech; neuroimaging studies of depression; rTMS as treatment for depression; structure and func-
tion of the mid-dorsolateral frontal and anterior cingulate cortices; and combined TMS/positron emission
tomography studies of frontocortical connectivity.

La stimulation magnétique transcrânienne répétitive (SMTr) est un outil non effractif utilisé pour mani-
puler l’activité de circuits neuraux précis du cerveau humain. Les études cliniques indiquent que chez cer-
tains patients aux prises avec une dépression majeure, la SMTr peut atténuer les symptômes pouvant être
reliés à des anomalies fonctionnelles dans un circuit frontocingulaire. Cette communication passe en re-
vue la justification de l’utilisation de la SMTr dans ce contexte. On aborde les sujets suivants : symptômes
et cognition en cas de dépression majeure, avec accent sur l’initiation de la parole; étude de la dépression
par neuro-imagerie; SMTr comme traitement de la dépression; structure et fonction des cortex cingu-
laires frontal et antérieur mésodorsolatéral; et étude de la connectivité frontocorticale par SMT et tomo-
graphie par émission de positrons combinées.
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Introduction

Major depression is a common disorder with a lifetime

prevalence in the general population of about 13% in

men and 21% in women.1 Despite continuing advances

in the development of antidepressant drugs, the condi-

tion of about 30% of patients remains refractory to

drug treatment2 and may require electroconvulsive

therapy (ECT). Although ECT as currently practised is

a relatively safe procedure, it nevertheless requires

general anesthesia, muscular relaxation and induction

of a seizure, and it involves side effects such as mem-

ory disturbances.3 Over the past 5 years, repetitive

transcranial magnetic stimulation (rTMS) of the mid-

dorsolateral frontal cortex (MDLFC, also described as

the dorsolateral prefrontal cortex [PFC]) has been es-

tablished as a less invasive alternative to ECT. Its effec-

tiveness may be related to the functional abnormalities

in the left mid-dorsolateral and anterior cingulate cor-

tices often observed in patients with depression. The
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relevant mechanisms of action are, however, still un-

known. At least 2 possibilities exist. First, rTMS may

modulate activity in the specific neural circuits (e.g.,

frontocingulate system) that mediate a given group of

symptoms. Second, rTMS effects may be the result of a

facilitation of monoaminergic neurotransmission. This

review focuses on neuroimaging studies that address

these 2 neural mechanisms that may underlie TMS-

induced changes in depression-like symptoms, with a

particular emphasis on the role of the anterior cingu-

late cortex (ACC) in the initiation of speech. The fol-

lowing 5 topics are reviewed:

• Symptoms and cognition in major depression

• Neuroimaging studies of depression

• rTMS as treatment for depression

• Structure and function of the MDLFC and the ACC

• Combined TMS/positron emission tomography

(PET) studies of frontocortical connectivity

Symptoms and cognition in major depression

The defining symptom of major depression is that of

depressed mood; patients appear sad and often speak of

feeling “low” or “down.” The patient’s everyday be-

haviour is consistent with a state of decreased drive and
motivation; patients eat less and do not engage in, or en-

joy to a lesser extent (hence anhedonia), social activi-

ties, such as sports, seeing friends and going out. The

cognitive performance of depressed patients is im-

paired in many domains, including learning, memory

and attention, as well as executive, motor and percep-

tual functions.4,5 In terms of motor function, the speech

of depressed patients is often slow, quiet and monoto-

nous and infrequently initiated.5 Analyses of speech

acoustics have revealed the presence of quantitative

and qualitative differences between the speech of de-

pressed patients and control subjects, including speech

pitch, loudness and rate.6–12 The wide range of deficits

observed in depression is compatible with disease-

related changes in motivation and executive processes

and, by implication, with abnormalities in the neural

systems mediating these functions.

A number of neuropsychological studies have docu-

mented poor performance of patients with major de-

pression on tasks that test executive functions. For

example, Purcell et al13 administered the Cambridge

Neuropsychological Test Automated Battery

(CANTAB) to 20 patients (18–52 yr) with unipolar de-

pression and found significant impairment on intradi-

mensional and extradimensional set shifting and on

“subsequent movement times” in the Tower of London

task, the latter suggesting “that motor slowness in de-

pression occurs when sustained motor responses to

changing stimuli are required.”13 Using the Stroop task,

several authors found increased sensitivity to interfer-

ence in patients with major depression,14–16 although

Austin et al17 reported negative findings. Furthermore,

several studies found that depressed patients were

slower than control subjects when simply reading the

names of colours15,18 and displayed reduced verbal flu-

ency,18–20 which may suggest impairment in the initia-

tion of retrieval and/or utterance of words.

On the basis of the findings described here, patients

with major depression appear to suffer from a deficit in

2 aspects of volition, namely, the ability to resist inter-

ference and the ability to initiate actions.

Neuroimaging studies of depression

Early influential studies that examined resting cerebral

glucose metabolism and blood flow with PET in pa-

tients with depression found hypometabolism and hy-

poperfusion localized to the left MDLFC (Fig. 1).21–31

The discovery that decreased neural activity in the

MDLFC was correlated with severity of depression or

was reversed upon recovery from depression22,25,26 was

believed to support a critical role for this region in the

pathophysiology of depression. These initial imaging

findings were confirmed by later PET studies32–35 and

extended by electroencephalography studies that

demonstrated increased alpha power (alpha power is

thought to be inversely related to neural activity) in left

frontal regions of the brains of depressed patients.36–39

The apparent depression-related left frontal hypome-

tabolism or hypoperfusion was initially extended to in-

clude the ACC, with studies of cerebral blood flow and

metabolism also demonstrating reduced activity in

both supracallosal (areas 24a′, 24b′, 24c′ and 32′ as de-

fined by Vogt et al40), perigenual (areas 24a, 24b, 24c

and 32) and subcallosal (area 25) regions of the ACC

(Fig. 1).23,25,28,41,42 As was the case for the lateral PFC,

blood flow and metabolic abnormalities in ventral peri-

genual regions of the ACC (approximately perigenual

area 24 below z = 0) were thought to be related to the

reduction in grey-matter volume observed in this re-

gion in depressed patients.28,42 Unlike in the PFC, how-

ever, after correcting for the partial volume effect of the

reduced grey matter using a computer simulation, it



was later concluded that metabolic activity in the ven-

tral perigenual ACC was actually increased in de-

pressed patients relative to control subjects.43 The find-

ing of depression-related increases in neural activity in

the perigenual ACC has since been replicated35 and,

importantly, much research has demonstrated that

neural activity in this region decreases in response to an-

tidepressant treatment and is positively correlated with

severity of depression,43–46 but see Mayberg et al for op-

posite findings.33 Although less commonly found, in-

creased glucose metabolism has been observed in the

subcallosal ACC of depressed patients,32,47 and recovery

from depression has been associated with metabolic

decreases in this region.33,48

Whereas early studies also cited decreased neural ac-

tivity in dorsal regions of the ACC during depression,23,25

more recent work has not confirmed these findings. In-

stead, research has found that neural activity in the

supracallosal and dorsal perigenual ACC is also in-

creased in depression35,49,50 and that hyperperfusion and

hypermetabolism in these regions predict antidepres-

sant response.27,47,51,52 Note, however, that opposite find-

ings were reported by Brody et al53 and by Ketter et al.54

Altogether, these studies highlight 2 important issues:

1. the involvement of the MDLFC and ACC in depres-

sion; and

2. the reversibility of depression-related “abnormal-

ities” in the MDLFC and ACC with successful treat-

ment.

rTMS as treatment for depression

TMS is a noninvasive technique that allows investiga-

tors to stimulate specific cortical regions of the human

brain through the skull and, in turn, induce short-term

(milliseconds) and long-term (minutes to hours)

changes in behaviour.55 The duration of the effect de-

pends on the stimulation mode, and it is well charac-

terized in the case of single-pulse and paired-pulse

stimulation of the primary motor cortex.56 When ap-

plied in trains of pulses, namely, as repetitive TMS or

rTMS, stimulation typically interferes with specific cog-

nitive operations presumably executed by the stimu-

lated cortical region during the stimulation train. But

several studies have now demonstrated that rTMS may

also facilitate, or modulate, behaviour well beyond the

actual stimulation.57,58 The most common instance of

such long-lasting effects is that of rTMS-induced

changes in mood observed in both healthy and de-

pressed subjects after the stimulation of the frontal cor-

tex. In the early 1990s, several investigators initiated

studies of rTMS-induced changes of mood in both

healthy volunteers and in patients with major depres-

sion. In these studies, rTMS was applied at different
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Fig. 1: Comparison of brain locations (in standardized stereotaxic space) identified as
hypometabolic or hypoperfused in previous imaging studies of depression (labelled
2,27 323 and 428) with those targeted in our transcranial magnetic stimulation
(TMS)/positron emission tomography (PET) studies (labelled 129,30,31). The location of
the mid-dorsolateral frontal cortex (MDLFC) is also indicated; in repetitive TMS
(rTMS) studies of depression, this location is typically defined as a region located
5 cm anterior to the primary motor cortex (M1). Here, we established the “average”
location of the MDLFC as follows: magnetic resonance images (MRIs) obtained in 152
healthy subjects were used to label the brain locations located 5 cm in front of the
left M1 in each subject and to transform these “MDLFC” labels from native to stan-
dardized space. In the case of the anterior cingulate cortex (ACC), projections of
brain locations onto a single sagittal slice were used.
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locations (left and right MDLFC and the vertex), with

different stimulation parameters (0.3–20 Hz, 1-s to 10-s

trains, 20 trains/session) and for a variable total

amount of stimulation (up to 20 daily sessions). In

most depression studies, rTMS is applied over the left

MDLFC. To target this region, the coil is typically posi-

tioned 5 cm in front of the scalp location from which

single-pulse TMS elicits muscle twitches in the con-

tralateral hand (i.e., M1). As can be seen in Figure 1, the

average location (in Talairach space) of the MDLFC de-

fined in this way is about 10–15 mm dorsal to the hy-

pometabolic regions revealed in the neuroimaging

studies reviewed in the previous section (Dr. Irena

Rektorova, Masaryk University, Brno, Czech Republic,

and Dr. Tomáš Paus: unpublished data, 1998).

In healthy subjects, George et al59 and Pascual-Leone

et al60 described significant increases in sadness follow-

ing rTMS applied over the left MDLFC; no changes

were found when stimulating over the midline (5 cm

anterior to the leg M1). In the study by Pascual-Leone

et al,60 stimulation was delivered with a Cadwell High

Speed Magnetic Stimulator (Cadwell Laboratories, Inc.,

Kennewick, Wash.) and a large water-cooled figure-

eight coil using the following parameters: 110% motor

threshold, 10 Hz, 5-s trains, 10 trains every 25 s for a

total of 500 pulses at each site.

Since the first case report of potential treatment ef-

fects of rTMS on depression,61 a number of studies have

sought to establish that rTMS indeed alleviates the

symptoms of depression.62–64 Pascual-Leone et al65 and

George et al66 carried out crossover placebo-controlled

rTMS studies in patients with major depression and

observed significant decreases in scores on the Hamil-

ton Depression Rating Scale (HDRS); these decreases

were observed only when the left MDLFC was stimu-

lated. Similar findings were reported also by others

in placebo-controlled67 and open-label68–70 studies.

Grunhaus et al69 randomly assigned 40 patients with

drug-refractory major depression (with or without psy-

chosis) to either ECT (n = 20) or rTMS (n = 20) groups;

ECT included 7–14 sessions, and rTMS involved 20 ses-

sions of left MDLFC stimulation (10 Hz, 2-s or 6-s

trains, 20 trains/session, 90% motor threshold). At the

end of the treatment, both groups showed a statistically

significant decrease in HDRS scores (ECT: 61%, 16/20

responders; rTMS: 40%, 9/20 responders). The most im-

portant finding of this study was that of a differential

treatment response of patients with psychosis and those

without psychosis. The patients without psychosis ben-

efited equally from the ECT and rTMS treatments,

whereas the patients with psychosis showed only small

rTMS effects (patients without psychosis: ECT: 45%,

6/10 responders; rTMS: 53%, 7/11 responders; patients

with psychosis: ECT: 73%, 10/10 responders; rTMS:

28%, 2/9 responders).

The number of patients studied in published reports

is relatively small. In order to pool all the available

data, Avery et al have compiled a database of rTMS tri-

als carried out in over 20 centres.71 As of April 2003, a

total of 523 patients with drug-refractory depression

had received rTMS treatment. In most studies (88%),

the left MDLFC was the most effective site of stimula-

tion, high-frequency stimulation (> 1 Hz) was the most

common (98%) mode of rTMS, and 10 daily sessions

was the most frequent number of treatments. In these

studies, the mean before-versus-after decrease in the

HDRS scores was 34% (range 15%–62%). In 2 studies

(n = 85), a low-frequency (1 Hz) rTMS was applied

over the right MDLFC with a resulting 41% mean de-

crease in the HDRS scores. These data are consistent

with published reports and confirm the efficacy of

rTMS treatment of depression.

Structure and function of the MDLFC
and the ACC

As pointed out earlier, the left MDLFC and the ACC

have been implicated in the pathophysiology of de-

pression. Furthermore, the left MDLFC is the most

common target for rTMS treatment of depression and,

based on our TMS/PET studies,29,72 rTMS of the left

MDLFC modulates the blood-flow response in the

ACC. For these reasons, we shall provide a brief

overview of the corticocortical connectivity and func-

tions of these 2 cortical regions.

Major subdivisions of the human prefrontal cortex

have been recently re-examined by Petrides and

Pandya (Fig. 2).73,74 The MDLFC occupies the middle

frontal and superior frontal gyri and comprises cytoar-

chitectonic areas 46 and 9/46 (middle frontal gyrus)

and area 9 (superior frontal gyrus). Major corticocortical

connections of the MDLFC are bidirectional and link

this region with posterior neocortical areas that are in-

volved in the processing of visual (prestriate and infe-

rior temporal cortices), auditory (superior temporal cor-

tex) and somatosensory (parietal cortex) information.73

Importantly, the MDLFC also possesses reciprocal con-

nections with the anterior and, to a lesser extent, poste-



rior cingulate cortices.75–77 Patients with unilateral le-

sions involving the lateral frontal cortex show impair-

ment on tasks that typically require the subject to orga-

nize and plan sequences of responses, select

appropriate strategies and monitor self-generated ac-

tions.78–80 In the search for a critical contribution of the

MDLFC to such a host of executive processes, Petrides

and collaborators carried out a series of lesion and

imaging studies in human and nonhuman primates.78 In

these studies, they used different variations of self-

ordered and externally ordered working-memory tasks

and concluded that the MDLFC “is a specialized region

for the on-line monitoring and manipulation of cogni-

tive representations within working memory” (p. 167).78

The human ACC also represents a structurally and

functionally heterogeneous region.81 At a gross morpho-

logical level, we have subdivided the ACC region into

the caudal and rostral, supracallosal and subcallosal,

and limbic and paralimbic subdivisions (Fig. 3).81–86 Sev-

eral cytoarchitecturally distinct regions have been iden-

tified within area 24, including limbic areas 24a and 24b

and paralimbic area 24c in humans40,74,87 and mon-

keys.74,75,,88–90 Different cortical zones can also be distin-

guished along the rostral–caudal plane of the human

ACC, resulting in further subdivisions of areas 24 and

32 as they curve around the genu of the corpus callo-

sum.40,86 Cytoarchitectonic area 25 occupies the most

posterior portion of the subcallosal ACC and borders

orbitofrontal area 12. At a functional level, a distinction

has been made between the supracallosal or “cognitive”

and the subcallosal or “visceral” parts of the ACC.27,40 In

the monkey, these regions show somewhat distinct pat-

terns of connectivity. Areas 24 and 32 are predomi-

nantly supracallosal and are interconnected with the

MDLFC.88,91 Subcallosal area 25 is interconnected with

the posterior orbitofrontal area 13,88 hypothalamus,92

ventral striatum93 and periaqueductal grey,94 and has

been implicated in the control of respiration, blood

pressure and other autonomic functions.95,96

In the context of depression, the role of the supracal-

losal ACC in volitional control of behaviour, in general,

and speech and vocalization, in particular, are empha-

sized. In the monkey, lesions to the most rostral part of

the ACC were shown to reduce condition-specific vocal

output.97–99 In humans, bilateral cingulate lesions ini-

tially give rise to akinetic mutism100,101 and, on recovery,

speech output characterized by monotonous intonation

and a low frequency of spontaneous utterances.102 In our

neuroimaging studies of the ACC,103 the role of the ACC

in effortful as compared with automatic control of

speech has been established. In a number of studies, a

robust “activation” of the human ACC was observed

during the performance of Stroop tasks with verbal re-

sponses.104–106 More recently, we have shown that neural

activity in the ACC was correlated with paralinguistic

characteristics of speech production during sad affect.107

Combined TMS/PET studies of frontocortical
connectivity

As reviewed earlier, changes in mood observed in both

healthy and depressed subjects following the stimula-

tion of the frontal cortex are the most common instances

of long-lasting effects induced by repetitive TMS. The
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Fig. 2: Schematic diagrams of the lateral (left), medial (middle) and inferior (right) surfaces of the human frontal lobe
to illustrate its cytoarchitectonic parcellation. Reproduced with permission from Elsevier.74 
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neural mechanisms of these effects are unknown but, as

described earlier, at least 2 possibilities exist:

1. rTMS may modulate activity in the specific neural

circuits (e.g., frontocingulate system) that mediate a

given group of symptoms; and

2. rTMS effects may be the result of a facilitation of

monoaminergic neurotransmission.

We can assess both potential mechanisms by combin-

ing TMS with PET.

The first type of study uses 15O-H2O to measure re-

Fig. 3: Cytoarchitectonic subdivisions of human and monkey cingulate cortex.
A: Along a rostrocaudal axis, the cingulate cortex can be divided into (1) a posterior region (areas 23, 26, 29, 30, 31)
characterized mostly by a granular type of cortex and (2) an anterior agranular region (areas 24, 25, 32, 33). The ante-
rior cingulate cortex is an agranular type of cortex (i.e., layer IV is absent) with a prominent and deeply stained layer V.
Area 32 has an incipient granular layer IV. A ventrodorsal distinction, based on the degree of laminar differentiation, sets
apart the old periallocortical areas adjacent to the corpus callosum (area 33) from the proisocortical region (areas 24,
25) and the paralimbic region on the upper bank of the cingulate sulcus and in the paracingulate gyrus (area 32). In addi-
tion to these main rostrocaudal and ventrodorsal distinctions, subtle variations in cytoarchitecture define further subdi-
visions of area 32, often reflecting structural features of the adjacent neocortical areas.86 The approximate position of the
corticospinal fields is indicated relative to the vertical plane passing through the anterior commissure (VCA). VCP =
vertical plane passing through the posterior commissure.
B: Cytoarchitectonic areas superimposed on the flat map of the medial wall of the human brain. The bold lines outline
the cingulate region, the thinner dashed lines show the borders between the cingulate areas (e.g., between areas 24
and 23), and the dotted lines indicate the borders between subdivisions of each area (e.g., between areas 24b and 24c).
C: Location of the motor areas on the medial wall of the monkey brain. The dotted lines show the boundaries of the cy-
toarchitectonic areas. Shaded areas correspond to the territory of origin of corticospinal projections to cervical and up-
per thoracic segments. M1 = primary motor cortex, SMA = supplementary motor area, CMAr = rostral cingulate mo-
tor area, CMAd = caudal cingulate motor area, dorsal bank, CMAv = caudal cingulate motor area, ventral bank.
Reproduced with permission from Macmillan Magazines Ltd. (www.nature.com/reviews) (Nat Rev Neurosci 2001;2:417-
24).81



gional distribution of cerebral blood flow (CBF) as an

index of the net amount of excitatory postsynaptic neu-

rotransmission.55 One such TMS/PET experiment, car-

ried out in our laboratory, was aimed at studying cor-

ticocortical connectivity of the MDLFC and its

modulation by brief periods of rTMS (Fig. 4A).29,108 In

this study, the target region was chosen based on a

probabilistic location of the left MDLFC (x = –40, y =

32, z = 30), as revealed by a previous PET study of ver-

bal working memory (Fig. 4B). Importantly, the left

prefrontal region that displays hypometabolism in de-

pression described by Bench et al23 is close to this target

(Fig. 1). Using the inverse MRInative–MRITalairach transfor-

mation matrix, x, y and z coordinates of this location

were calculated for each individual’s “native” brain

space and a figure-eight coil was positioned over this

location using frameless stereotaxy; during the study,

the coil was held with a rigid arm mounted at the back

of the scanner’s gantry. The transmission scan was car-

ried out and used not only for the attenuation correc-

tions but also for the verification of coil positioning

(Fig. 4C).109 Six 60-second water-bolus (15O-H2O) emis-

sion scans were acquired afterward: 2 baseline scans

with no TMS applied and 4 TMS scans during which

30 pairs of pulses were administered with intensity at

the individual’s motor threshold (Fig. 4A). White noise

(90 dB) was played over insert earphones during all

scans to attenuate the coil-generated clicks. The double-

pulse TMS was applied during the scans at 0.5-Hz

frequency to provide us with a measure of cortical

excitability and connectivity of the left MDLFC. In ad-

dition, we investigated the putative modulatory effect

of high-frequency rTMS on MDLFC excitability and

connectivity. To do this, we applied 2 series of rTMS

between the first and last TMS scans; the following

TMS parameters were used for each series: 15 1-second

trains; 10 pulses in each train (i.e., 10 Hz); 10-second

between-train intervals; intensity at motor threshold

(Fig. 4A). The stimulation site was identical for the

double-pulse TMS and rTMS. In response to the double-

pulse TMS applied before rTMS, CBF decreased both at

the stimulation site and in several distal regions pre-

sumably connected to the site, including the ACC

(Fig. 4D, Fig. 4E). Although the precise mechanisms are

unknown, such CBF decreases most likely reflect a net

decrease in excitatory synaptic activity mediated by

TMS-induced release of γ-aminobutyric acid

(GABA).110–112 Following the 2 series of rTMS, this “sup-

pression” response was reversed, resulting in double-

pulse-induced increases in CBF that were maximal

during the last TMS scan (Fig. 4F). Using correlational

Paus and Barrett
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Fig. 4: Modulation of corticocortical connectivity by
rTMS. The flowchart (A) indicates the sequence of
events during the TMS/PETstudies; the PET scans were
repeated every 10 min (Base, no TMS applied; dpTMS,
double-pulse TMS). The target site (B) within the left
MDLFC was selected from a previous blood-flow activa-
tion study by Petrides et al;108 the “peak” is located just
above the left inferior frontal sulcus. The proximity of
the target site (crosshair) and the coil centre derived
from the transmission scans in the 8 subjects (colour
“bars”) demonstrate the successful positioning of the
coil with frameless stereotaxy (C). After subtraction
(D–F) and regression (G) analyses of blood-flow data,
the images depict the exact locations of statistically sig-
nificant decreases (D, E) and increases (F) in blood flow
and significant positive correlation with blood flow at
the stimulation site (G). The thresholded maps of t-
statistic values (t > 3.0 or t < –3.0) are superimposed on
coronal (D) and sagittal (E–G) sections through the av-
erage MRI of the 8 subjects. All images are aligned
within the standardized stereotaxic space. Reproduced
with permission from Blackwell Publishing (Eur J Neu-
rosci 2001;14:1405-11).29
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analysis, a network of cortical regions was revealed in

which the blood-flow response to double-pulse TMS

covaried with that at the stimulation site, including the

contralateral MDLFC and the ACC (Fig. 4G). Overall,

this study demonstrated that a mere 30 trains

(300 pulses) of 10-Hz rTMS can induce subtle changes

in cortical excitability and connectivity of the stimu-

lated region. Such a putative reversal of the initial “in-

hibitory” response to low-frequency TMS is akin to the

phenomenon of “long-term transformation,” namely,

the transformation of the hyperpolarizing GABA-

mediated inhibitory postsynaptic potentials into depo-

larizing responses as observed in vitro.113,114

The second type of study uses PET ligands that allow

the investigator to measure the regional release of neu-

rotransmitters. The measurement of TMS-induced re-

lease of specific neurotransmitters is particularly attrac-

tive, because it allows us to delineate the neurochemical

pathways involved in mediating behavioural and treat-

ment effects of TMS. We have begun this research

by studying TMS-induced release of dopamine; 11C-

raclopride was employed to measure the release of

dopamine in the human striatum in response to rTMS

of the left MDLFC, with the left occipital cortex being

used as a control site.30 On 2 successive days, 3 series of

15 10-Hz trains of rTMS were applied 10 minutes apart

with a circular coil at either of the 2 sites. 11C-raclopride

was injected immediately after the end of the last rTMS

series and the tracer uptake in the brain was measured

over the next 60 minutes. Voxel-wise 11C-raclopride

binding potential was calculated using a simplified ref-

erence tissue method115,116 to generate statistical paramet-

ric images of change in binding potential.117 This analy-

sis revealed a significant decrease in binding potential

in the left caudate nucleus after rTMS of the left

MDLFC, as compared with rTMS of the occipital cortex

(Fig. 5).30,31,118,119 Such a reduction in 11C-raclopride bind-

ing potential is indicative of an increase in extracellular

dopamine concentration.120,121 It is likely that this TMS-

induced focal release of dopamine in the ipsilateral cau-

date nucleus is mediated by excitatory corticostriatal

projections known to originate in high density in the

primate prefrontal cortex and to synapse at the vicinity

of nigrostriatal dopaminergic nerve terminals. More re-

cently, we used an identical stimulation and imaging

protocol but changed the stimulation site: the left pri-

mary motor cortex was stimulated instead of the left

MDLFC.31 The results of this study were clear:

dopamine was released in the ipsilateral putamen

rather than the caudate nucleus (Fig. 5). This finding is

consistent with the organization of the corticostriatal

loops, namely, the existence of dense projections from

the prefrontal and primary motor cortices targeting, re-

spectively, the head of the caudate nucleus and the

putamen (Fig. 5). Overall, these studies confirm the fea-

sibility of using PET to investigate TMS-induced

changes in specific neurotransmitter systems of the

human brain and open up new avenues for studies

of the pathophysiology of neurologic and psychiatric

disorders.

Studies of long-term (days, weeks) effects of rTMS

are crucial for our understanding of the neural mech-

anisms that mediate some of the treatment effects of

rTMS. Several reports have been published in which

single-photon emission computed tomography

(SPECT)122–124 or PET125,126 were used to measure neural

changes before and after rTMS treatment of major de-

pression; the treatment typically consisted of 10 days

of high-frequency (10–20 Hz) rTMS applied daily over

the left MDLFC. In most of these studies, such treat-

ment resulted in the increase of perfusion or metabo-

Fig. 5: Dopamine release induced by rTMS of the pre-
frontal cortex. Left: organization of corticostriatal pro-
jections to the monkey putamen.118

Top right: changes in dopamine release31 and cerebral
blood flow (CBF)119 in the human putamen after rTMS
was applied over the left primary motor cortex (M1).
Bottom right: changes in dopamine release30 in the hu-
man caudate nucleus after rTMS was applied over the
left MDLFC. Location (red markers) of the 2 stimulation
sites, the left MDLFC and the left occipital cortex, on
the MRI of 1 subject in stereotaxic space. PMd = dorsal
promoter, PMv = ventral promoter. Reproduced with
permission from Springer-Verlag (Exp Brain Res 1998;
120:114-28).118
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lism in the prefrontal cortex. Kimbrell et al126 and

Speer et al125 employed both high-frequency (20 Hz)

and low-frequency (1 Hz) stimulation and observed,

respectively, increases and decreases in CBF and/or

glucose metabolism in the frontal cortex and other

brain regions. Interpretation of previous studies is

somewhat limited, however, because of the lack of de-

tailed information about the exact coil position in rela-

tion to the underlying cortical regions and, in many

cases, the absence of adequate control stimulation or a

comparison group. Furthermore, in most of the pub-

lished studies, the blood-flow or metabolic measure-

ments were acquired during a resting baseline. In or-

der to facilitate interpretation of the long-term effects

of rTMS, it may be useful to evaluate the effect of

rTMS applied between scans on cortical excitability

and connectivity by “probing” neural activity with

TMS stimuli applied during the scanning (see earlier).

Overall, it is likely that future imaging studies will

provide useful information vis-à-vis potential thera-

peutic effects of rTMS in depression, as well as in

other psychiatric and neurologic disorders.127,128 The

combination of TMS and imaging may, in this con-

text, lead to improvement of the treatment protocols

as well as an increased understanding of the patho-

physiology of these brain disorders.
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