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Despite robust evidence for the heritability of schizophrenia, postmortem studies have not traditionally
linked cellular and molecular neuropathology with underlying genetic mechanisms in this disorder. The
completion of the first draft of the Human Genome Project and the use of novel strategies in studying
complex genetic disorders including schizophrenia have led to the identification of a growing list of schizo-
phrenia susceptibility genes. In this review, we describe the strategy used to incorporate 2 potential
schizophrenia susceptibility genes in the postmortem investigation of the pathophysiology of schizophre-
nia driven by 2 well-established hypotheses, the dopamine hypothesis and the neurodevelopmental hy-
pothesis. The first gene codes for catechol-O-methyltransferase, an enzyme involved in catecholamine
degradation, and the second gene codes for brain-derived neurotrophic factor, a growth factor implicated
in cell survival, synaptogenesis and the development of cortical pyramidal neurons.

En dépit de solides preuves du caractére héréditaire de la schizophrénie, les études postmortem n’ont pas
habituellement établi de liens entre la neuropathologie cellulaire et moléculaire et les mécanismes géné-
tiques sous-tendant cette affection. L’achévement de la premiére version préliminaire du Projet du
génome humain et le recours a des stratégies nouvelles pour étudier des troubles génétiques complexes,
y compris la schizophrénie, ont permis d’identifier une liste croissante de génes de sensibilité a la schizo-
phrénie. Dans cette étude, nous décrivons la stratégie suivie pour intégrer deux génes possibles de sensi-
bilité a la schizophrénie dans I'étude postmortem de la pathophysiologie de la schizophrénie en fonction
de deux hypothéses bien établies, celle de la dopamine et celle du neurodéveloppement. Le premier géne
code la catéchol-O-méthyltransférase, enzyme qui joue un réle dans la dégradation des catécholamines, et
le deuxieme code un facteur neurotrophique dérivé du cerveau, facteur de croissance qui intervient dans
la survie des cellules, la synaptogéneése et le développement des neurones pyramidaux du cortex.

Introduction toms typically manifesting themselves in adolescence

and early adulthood.' Studies of the pathophysiology of
Schizophrenia is a neuropsychiatric disorder character- this disorder have focused on the heritability of schizo-
ized by hallucinations, delusions, thought disorder, phrenia, the affected neurotransmitter systems and neu-
deficit symptoms and cognitive dysfunction, with symp- roanatomical abnormalities. A number of relatively

Correspondence to: Dr. Joel E. Kleinman, Clinical Brain Disorders Branch, National Institute of Mental Health, 10 Center Dr.,
Rm. 4S237A, Bethesda, MD 20892-1384; fax 301 480-7795; kleinmaj@intra.nimh.nih.gov

Medical subject headings: brain-derived neurotrophic factor; catechol-O-methyltransferase; dopamine; genetic predisposition to disease; glutamate; pre-
frontal cortex; schizophrenia; substantia nigra; tyrosine hydroxylase.

J Psychiatry Neurosci 2004;29(4):287-93.

Submitted July 4, 2003; Revised Feb. 4, 2004; Accepted Feb. 17, 2004

© 2004 Canadian Medical Association

J Psychiatry Neurosci 2004;29(4) 287



Perlman et al

consistent findings have emerged from these ap-
proaches. First, twin concordance rates, adoption studies,
and genetic linkage and association analyses strongly
suggest that schizophrenia has a heritable component.*®
Second, the neurotransmitters dopamine (DA) and gluta-
mate have been implicated through pharmacologic inter-
ventions that either mimic or exacerbate (N-methyl-D-
aspartate [NMDA] receptor antagonists) or reduce (DA
receptor antagonists) psychotic symptoms of schizophre-
nia.*” Third, structural abnormalities in the brain include
increased ventricular size along with reduced brain vol-
ume in the dorsolateral prefrontal cortex (DLPFC) and
the entorhinal cortex, hippocampus and thalamus®*** of
patients with schizophrenia. The function of the DLPFC
is also affected in schizophrenia, as demonstrated by de-
creased activation during the performance of cognitive
tasks that are impaired in this disorder.”*

Postmortem studies of schizophrenia have been ham-
pered by a host of confounding variables. Although it is
possible to match experimental subjects on the basis of
gender, ethnic origin and postmortem interval (PMI), or
time since death, other variables are more difficult to
control. These include agonal state, ambient tempera-
ture after death and the accurate calculation of PMIL
Moreover, the assumption that patients with schizo-
phrenia and healthy controls can be matched ignores the
higher incidence of alcohol and substance abuse in pa-
tients with schizophrenia, the consequences of a lifetime
of treatment with neuroleptics and other drugs, the
stress of acute exacerbations of illness and admissions to
hospital, and the effects of a chronic mental illness on
quality of life.” On the other hand, postmortem studies
allow a level of resolution not yet available through the
use of imaging approaches and are invaluable in eluci-
dating the pathophysiology of this disorder.

The completion of the first draft of the Human
Genome Project followed by the discovery of allelic
variants has presented schizophrenia researchers with
an opportunity to link heredity to neurochemistry and
neuroanatomy. It also allows genotyping of subjects
with schizophrenia and controls, so that we can further
elucidate the role of genes in systems of interest and re-
fine the design of postmortem studies. Several strate-
gies have been used in the study of the role of genes in
schizophrenia. One approach is a top-down strategy,
initially targeting large chromosomal loci implicated in
schizophrenia by linkage analyses,"*"” with subsequent
study of single nucleotide polymorphisms (SNPs) or
groups of SNPs (haplotypes) within the implicated re-

gion. These SNPs and haplotypes are then examined in
clinical association studies to determine whether they
are associated with schizophrenia itself or intermediate
phenotypes of the disorder. If so, then a gene can pre-
sumably be identified that contains the associated SNP
or haplotype. Currently, at least 8 genes have been
identified as schizophrenia susceptibility genes. Sev-
eral of the genes under investigation as schizophrenia
susceptibility genes are involved in glutamatergic sig-
nalling (G72, DAAO, RGS4 and NRG1),” providing a
link between hypotheses generated from imaging and
neuropathologic studies and modern genetic ap-
proaches. Another gene implicated in schizophrenia by
linkage analysis and involved in neurotransmission,
the 07 nicotinic acetylcholine receptor subunit gene
(CHRNA?), has been identified as a schizophrenia sus-
ceptibility gene based on polymorphisms in the pro-
moter region that appear more frequently in patients
with schizophrenia as compared with unaffected con-
trols.” In addition to genes involved in neurotransmis-
sion, a growing number of genes implicated in synapse
formation, maintenance and plasticity have emerged as
schizophrenia susceptibility genes. This list includes
the aforementioned NRG1,* as well as DTNBP1* and
brain-derived neurotrophic factor (BDNF).*?* Surely
the list of schizophrenia susceptibility genes will con-
tinue to grow; the question is, however, how can we
understand the functional implications of a susceptibil-
ity gene product on neurobiology in order to elucidate
the pathophysiology of schizophrenia and eventually
develop successful treatments? In this manuscript, we
will describe the strategy we have used in the study of
2 genes in an attempt to link genetic vulnerability to
the neurobiology of schizophrenia. The first gene codes
for a DA-metabolizing enzyme catechol-O-methyl-
transferase (COMT), which was recently added to the
list of schizophrenia susceptibility genes based on the
discovery of an association between a haplotype of
COMT and schizophrenia.* A common SNP in this
DA-metabolizing enzyme alters enzymatic activity and
has functional implications for both cortical function
and dopaminergic neurotransmission. The second gene
examined is the gene for BDNF. At present, the status
of the BDNF gene as a schizophrenia susceptibility
gene is controversial; however, BDNF is an important
neurotrophic factor for cortical glutamatergic pyrami-
dal neurons and may play a role in synaptic pathology
observed in the syndrome. More importantly, BDNF
expression is known to be altered in schizophrenia™*
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and, therefore, if it is not itself a susceptibility gene, it is
likely to be a downstream target of such a gene.

COMT

The COMT gene provides an excellent example of the use
of new genetic information to understand an old hypoth-
esis (the DA hypothesis of schizophrenia). The protein
product of the COMT gene is an enzyme that catabolizes
DA. Recently, COMT has been shown to contain a func-
tional polymorphism resulting from a Val->Met substitu-
tion at the 108/158 locus in the peptide sequence. The Val
allele substitution increases the efficiency of the enzyme
4-fold in comparison with the Met allele.” On the basis of
differential enzymatic activity, Val/Val individuals are
expected to have decreased synaptic DA levels in the pre-
frontal cortex (PFC), Met/Met individuals to have high
DA levels and Val/Met individuals to have intermediate
DA levels. In imaging studies of healthy controls, this dif-
ference in COMT genotype has been shown to affect PFC
function®* during working memory and other cognitive
tasks known to depend on PFC DA levels. Patients with
schizophrenia perform poorly on these cognitive tasks,**
and their PFC is not normally activated during perfor-
mance of these tasks.”** These functional abnormalities
have been related to cortical DA activity in in-vivo stud-
ies,*** and the dopaminergic innervation of the PFC in
schizophrenia is reduced.” Last, inheriting a COMT Val
allele has been found in association studies to increase the
risk for schizophrenia slightly,”**** implicating COMT as
a susceptibility gene for schizophrenia. Thus, this COMT
polymorphism, a susceptibility gene for schizophrenia, al-
ters performance in healthy controls on a task that is
known to depend upon DA levels in the PFC and is im-
paired in this disorder.

Dopaminergic signalling in schizophrenia is altered
not only in the PFC but in subcortical structures such as
the striatum as well. Dopaminergic tone in the PFC has
indirect downstream effects on mesencephalic DA neu-
rons.*“* A possible explanation for the relation between
PFC excitatory cortical neurons and mesencephalic DA
neurons has emerged from rodent experiments.” In this
proposed mechanism, prefrontal neurons tonically in-
hibit striatal DA projections, presumably through -
aminobutyric acid (GABA)-ergic interneurons
(Fig. 1).#** This model predicts that decreased PFC DA
tone will result in a lessening of indirect tonic inhibition
of mesencephalic DA neurons and, consequently, DA
release from the mesencephalic neurons projecting to

the striatum. Animal studies have substantiated this
model,”*® which provides a parsimonious explanation
for the coexistence of cortical hypodopaminergia and
subcortical hyperdopaminergia in schizophrenia.**%

If this COMT polymorphism alters DA levels in the
PFC, does it also influence subcortical DA? One would
predict that inheritance of a Val allele, which is associ-
ated with increased COMT enzymatic activity, pre-
sumably leading to decreased DA levels in the PFC,
would result in relatively increased recruitment of
mesencephalic DA activity. To test this hypothesis, us-
ing in situ hybridization, we examined the expression

Prefrontal cortex
COMT (Val)
DA
TH mRNA
GABA
Striatum
DA
GABA  (GABA DA
SN VTA

Fig. |: Diagram of proposed circuitry and its role in the ef-
fects of the catechol-O-methyltransferase (COMT) geno-
type on tyrosine hydroxylase (TH) gene expression in the
brain stem. We predict that the Val/Val genotype of the
COMT enzyme leads to reduced dopamine (DA) levels in
the prefrontal cortex (PFC) relative to the Val/Met geno-
type and that indirect PFC projections via y-aminobutyric
acid (GABA) neurons in the striatum or mesencephalon
lead to increased gene expression of TH mRNA in DA
cell groups projecting subcortically. Some of the GABA
projections remain to be confirmed; see question mark.
SN = substantia nigra, VTA = ventral tegmental area. Fig-
ure adapted with permission from the Society for Neuro-
science (J Neurosci 2003;23:2008-13).
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of mRNA for tyrosine hydroxylase (TH), the rate-
limiting enzyme for DA biosynthesis, in 5 mesen-
cephalic DA cell groups in postmortem human brain
specimens from healthy subjects carrying the Val/Val
or the Val/Met genotypes.” In addition, we examined
the expression of dopamine transporter (DAT) mRNA
and cyclophilin mRNA as controls for DA-related and
DA-unrelated genes, respectively, in the same cell
groups. A significant main effect of genotype on TH
mRNA levels was found in the dorsal and ventral tiers
of the substantia nigra pars compacta (SND and SNV,
respectively). There was no effect of genotype on DAT
or cyclophilin mRNA expression. The SNV and SND in
nonhuman primates project to the striatum and amyg-
dala,* suggesting that the effects of the COMT geno-
type on TH regulation are greatest in cell groups that
do not project back to the PFC. Our results are consis-
tent with the theoretical model outlined earlier and
suggest a mechanism by which the COMT Val allele in-
creases risk for schizophrenia (decreased DA signalling
in PFC and increased DA signalling subcortically).

In summary, we were able to use postmortem studies
to elucidate some of the biologic effects of COMT poly-
morphisms on the circuitry involved in schizophrenia.

BDNF

The gene for BDNF has been reported to be a schizo-
phrenia susceptibility gene,”” and some association
studies suggest that inheritance of certain BDNF alleles
may relate to age of onset of the disease, responsive-
ness to treatment and parietal lobe volume in patients
with schizophrenia.**”” However, no clear association
with the clinical diagnosis of schizophrenia was found
in a number of studies.**' It is important to note that
further study of genetic association of allelic variation
in the BDNF gene with schizophrenia is required be-
fore a determination can be made as to whether or not
BDNF is a schizophrenia susceptibility gene.
Reductions in BDNF mRNA** and protein” in the
PFC of patients with schizophrenia, which cannot be
readily explained by allelic variation in the BDNF gene
itself, have been recently described in separate cohorts.
These data suggest that the BDNF gene may be an im-
portant downstream target of one or more schizophre-
nia susceptibility genes. Therefore, future studies of the
role of BDNF in schizophrenia should explore the rela-
tion between the genotypes of the schizophrenia sus-
ceptibility gene(s) under investigation and BDNF ex-

pression levels. Similarly, other genes shown to display
reliable alterations in mRNA or protein expression in
patients with schizophrenia should be examined as po-
tential targets of schizophrenia susceptibility genes.

As previously described, one of the prevailing hy-
potheses concerning the pathophysiology of schizophre-
nia involves abnormalities in glutamatergic signalling.
Patients with schizophrenia demonstrate cortical gluta-
mate dysfunction as evidenced by a reduction in both
glutamate and a neurochemical marker of glutamatergic
neuronal integrity, N-acetyl-aspartate.®** Recent evi-
dence points to synaptic pathology as a possible compo-
nent of glutamatergic dysfunction in the cortex of pa-
tients with schizophrenia. Glutamatergic neurons in the
DLPFC of patients with schizophrenia show a reduction
of mRNAs encoding presynaptic proteins,“* as well as a
reduction in synapse-associated proteins.®”> Both the
density of dendritic spines in layer III pyramidal
neurons”™”* and the cortical neuropil are reduced in the
DLPFC of patients with schizophrenia, the latter relating
to increased neuronal density and decreased soma size of
pyramidal neurons.”™ Upregulation of BDNF increases
both neuronal size and synaptic density, making it an ex-
cellent candidate for investigation in schizophrenia.”

BDNF is synthesized by neurons in the rodent
frontal cortex®* and by pyramidal neurons in the
DLPFC of primates, including humans.”** This neu-
rotrophin is a trophic factor for glutamatergic neurons,
as evidenced by increases in cell survival in vitro”*
and stimulation of the growth of dendrites and in-
creases in spine density of glutamatergic pyramidal
neurons in the neocortex.””" In addition to synthesis
and release in response to afferent activity, BDNF also
modulates synaptic density and long-term potentiation
of glutamatergic cortical neurons.”* Last, BDNF is crit-
ical for the formation of excitatory synapses, as evi-
denced by in-vivo temporal contiguity between in-
creases in cortical BDNF mRNA and cortical neuron
dendrite growth and synapse formation.””

We recently tested the hypothesis that glutamate-
related pathology in the brain of patients with schizo-
phrenia is associated with abnormal BDNF expression in
the DLPFC.” Using quantitative Western blotting,
RNase protection assays and in situ hybridization, we
detected a reduction in both BDNF protein and mRNA
in postmortem specimens from patients with schizo-
phrenia as compared with matched healthy controls.
BDNF mRNA was localized to pyramidal neurons
throughout layers II, III, V and VI, with patients with
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schizophrenia showing a reduction in BDNF expression
in layers III, V and VI, suggesting that these neurons
may provide less trophic support to their targets. In sup-
port of the mRNA data, quantitative Western blotting
revealed a 40% reduction in BDNF protein in patients
with schizophrenia as compared with healthy controls.
With careful attention to experimental design, we were
able to test for the effects of age, PMI, neuroleptic treat-
ment history and history of depression, all of which may
influence BDNF mRNA levels.*''%% Because BDNF
exerts potent effects on forebrain systems believed to be
involved in schizophrenia, our results further our un-
derstanding of glutamatergic dysfunction in schizophre-
nia and provide new avenues of research in synaptic
pathology. Our results, coupled with the possible associ-
ation of the BDNF gene with schizophrenia, raise the im-
portant question of how inheritance of certain forms of
the BDNF gene may affect BDNF gene expression or
BDNF functions within the DLPFC and how this, in
turn, may confer increased risk for schizophrenia.

Conclusion

The addition of a genetic component to the existing
neuropathologic approach to understanding the patho-
physiology of schizophrenia has far-reaching implica-
tions. We now have the tools required to subtype exper-
imental subjects genetically, thereby eliminating a
heretofore uncontrolled-for confounding variable inher-
ent in postmortem studies. By understanding which al-
lelic variants of genes such as COMT are more often as-
sociated with schizophrenia, experiments can focus on
specific gene products and, potentially, on interacting
gene products or biologic pathways. In this way, infor-
mation can be generated implicating specific proteins,
cell populations, neural circuits and neuroanatomical
structures altered in schizophrenia. The identification of
these genetic susceptibilities may ultimately lead to
clinical interventions with an emphasis on developing
more effective treatments for this debilitating disorder.

Competing interests: None declared.
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