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Objective: Morphometric studies of postmortem brains from subjects with mood disorders have reported altered density of glial cells in
the amygdala; however, the nuclear regions have not been examined individually. Methods: We assessed the size and density of both
neuronal and glial cells in discrete amygdalar nuclei in postmortem sections from subjects with major depressive disorder, bipolar disor-
der (BD) and schizophrenia and from nonpsychiatric control subjects. Three adjacent Nissl-stained sections were examined from each
individual. Results: We report significantly decreased neuron somal size in the lateral amygdalar nucleus (LAN) and the accessory basal
parvocellular nucleus (ABPC) in subjects with BD, relative to control subjects. These changes in cellular morphology were most promi-
nent in the LAN in sections obtained from the left hemisphere. Conclusions: These findings add to increasing evidence for neuropatho-
logical changes in the amygdala of subjects with BD and specifically implicate the LAN and ABPC in this disorder.

Obijectif : Des études morphométriques réalisées postmortem sur le cerveau de sujets atteints de troubles de 'humeur ont signalé une
altération de la densité des cellules gliales des amygdales, mais les régions nucléaires n’ont pas été examinées individuellement. Méth-
odes : Nous avons évalué la taille et la densité des cellules neuronales et gliales des noyaux amygdaliens discrets dans des coupes
postmortem provenant de sujets atteints de trouble dépressif majeur, de trouble bipolaire et de schizophrénie, ainsi que de sujets té-
moins non psychiatrisés. On a examiné trois coupes adjacentes de chaque sujet, révélées par coloration de Nissl. Résultats : Nous
signalons une diminution importante de la taille du soma neuronal dans le noyau amygdalien latéral et le noyau parvocellulaire central
accessoire chez les sujets atteints de trouble bipolaire par rapport aux sujets témoins. Ces changements de la morphologie cellulaire
étaient les plus évidents dans le noyau amygdalien latéral des coupes tirées de 'hémisphére gauche. Conclusions : Ces constatations
ajoutent aux données de plus en plus nombreuses sur les changements neuropathologiques qui surviennent dans les amygdales de su-
jets atteints de trouble bipolaire et mettent en cause spécifiquement le noyau amygdalien latéral et le noyau parvocellulaire central

accessoire dans ce trouble.

Introduction

Bipolar disorder (BD) is a complex neurobiological disease
characterized by episodes of mania and depression exhibit-
ing increasing chronicity and severity over time. Long-term
illness is associated with increasing resistance to treatment,
and chronic relapse has been shown to occur in at least 80%

of patients."” As such, BD is a major contributor to morbidity
and mortality worldwide, as demonstrated by studies report-
ing increased risk of suicide ranging from 15% to 20%." Un-
derstanding the pathology and pharmacotherapy of this dis-
order is therefore of critical importance to ensuring effective
patient management leading to better long-term outcomes.
Recently, increasing attention has been focused on the role
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of cell death and subsequent neurogenesis in the etiology of
mood disorders.” Duman and colleagues,® have proposed
that, in depression precipitated by stress, vulnerable neurons
and glia may undergo atrophy or damage caused by in-
creased levels of glucocorticoids. These circulating glucocorti-
coids may alter cytoarchitectural features in specific brain
regions critical to the stress response, including the amygdala
and prefrontal cortex (PFC).” Further, studies have shown that
many growth factors, including brain-derived neurotrophic
factor (BDNF), are differentially expressed in various brain re-
gions, and depending on the local environment, most can af-
fect the viability of at least some types of neurons in vitro.*
Brain imaging studies and various histological techniques
have presented evidence implicating cellular loss or reduction
in cell density in several key brain regions in subjects with
mood disorders, including the PFC and the amygdala.”"

The amygdala plays a crucial role in the formation and
recollection of emotional memories and is involved in pro-
cessing anxiety and fear.”” These functions are particularly
relevant to mood disorders, which are characterized by inap-
propriate emotional responses to external events. In addition,
the amygdala is intimately connected to other brain regions,
enabling the storage and processing of emotional stimuli in
relation to other sensory events by way of interactions be-
tween the amygdala and prefrontal cognitive areas, sensory
processing systems and the long-term memory system in-
volving the hippocampus and related areas of the temporal
lobe.”*"® As such, dysfunction in key amygdaloid regions
may lead to dysfunction of other key neuronal systems impli-
cated in affective and behavioural regulation.

It is therefore not surprising that increased amygdalar ac-
tivity has been reported in subjects with BD,” and there is
some evidence to suggest that sustained activity in the amyg-
dala during emotional processing might be associated with
depression as well.** In support of these findings, volumet-
ric changes have been observed in this region in subjects with
major depressive disorder (MDD)*?* and BD.** Moreover,
2 recent postmortem studies report reduced glial density and
glia : neuron ratio in subjects with depression who were tak-
ing antidepressant medication.®®” However, the inconsisten-
cies between the findings reported in these studies remains a
significant challenge, with some reporting increased and oth-
ers reporting decreased amygdalar volume in subjects with
mood disorders. One possible factor might be the amygdalar

Table 1: Subject demographics

heterogeneity—there are significant functional and cytoarchi-
tectural differences between the nuclei that constitute the
amygdalar formation. One study* observed volumetric re-
ductions associated with MDD only in the core amygdalar,
consisting of the accessory basal, basal and lateral nuclei.
Therefore, to extend previous findings in light of amygdalar
heterogeneity, we examined changes in neuron and glial cell
size and density in each of these nuclei.

Methods
Postmortem brain tissue

Formalin fixed human postmortem amygdala sections were
generously provided by the Stanley Foundation Neu-
ropathology Consortium. The family of each deceased indi-
vidual was contacted by a pathologist to make a preliminary
diagnosis and to request permission for donation of the brain
and release of the deceased’s medical records. Samples con-
sisted of 4 adjacent 10-um thick coronal sections from sub-
jects with MDD, BD and schizophrenia (SCZ) and from
nonpsychiatric, nonneurological comparison subjects
matched for age, sex, postmortem interval (PMI), brain pH
and messenger ribonucleic acid (mRNA) quality. We ex-
cluded 7 subjects from our analyses, because the levels of the
amygdala sampled in these sections were outside the rostral-
caudal boundaries used in the current study; the final sample
size comprised 15 control subjects, 11 subjects with BD,
14 with MDD and 13 with SCZ. The demographic character-
istics of these subjects are provided in Table 1. Diagnoses
were independently established by 2 senior psychiatrists
from past medical and psychiatric records and by telephone
interviews with relatives, where necessary, using the Diag-
nostic and Statistical Manual of Mental Disorders, fourth edition
(DSM-1V)® criteria; a third psychiatrist was consulted in cases
of disagreement. Detailed information on the composition
and characteristics of this sample are available in previously
published papers.*~

Histochemical staining
One section from each subject was stained for myelin, using

Luxol Fast Blue (Luxol Fast Blue MBSN, Solvent 38; Sigma-
Aldrich Canada Ltd., Oakville, Ont.). Tissue sections were

Group; mean (SD); and range*

Demographics Control subjects, n= 15

BD subjects, n= 11

MDD subjects, n= 14 SCZ subjects, n= 13

Age, yr 48.1 (10.7); 29-68
Sex (male/female) 9/6
Hemisphere (left/right) 8/7

Treated with lithium (+/-)t —
Formalin fixation, mo 4.4 (3.9); 1-13
PMI, hr 23.7 (9.9); 8-42

44.0 (10.2); 30-57

9.73 (4.2); 2-16
32.9 (16.4);13-62

46.9 (9.6); 30-65 46.6 (12.9); 25-62

7/4 8/6 8/5
6/5 8/6 8/5
4/7 2/12 —

8.6 (6.8); 1-19
28.9 (9.5); 12-47

9.3 (7.1); 3-31
32.8 (13.1);12-61

SD = standard deviation; BD = bipolar disorder; MDD = major depressive disorder; SCZ = schizophrenia; PMI = postmortem interval.

*Unless otherwise indicated.
T+ = treated with lithium at time of death; — = not treated with lithium at time of death.
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deparaffinized by exposure to xylenes and hydrated through
a graded alcohol series. Sections were immediately
immersed in a 0.1% solution of Luxol Fast Blue in 96%
ethanol and 0.05% acetic acid. After staining overnight at
56°C, sections were washed in distilled water, followed by
an additional wash in phosphate buffered saline (PBS). Sec-
tions were then incubated in 0.05% aqueous lithium carbon-
ate followed by 70% ethanol, until staining intensity was
adequate for differentiation of cells as determined by exami-
nation under an Eclipse E600 microscope at 4 x magnifica-
tion (Nikon Canada, Mississauga, Ont.) and counterstained
for Nissl substance before dehydration by passage through a
graded alcohol series.

Three additional adjacent sections from each subject were
stained for total cell number with the Nissl method. Briefly,
tissue sections were deparaffinized by exposure to xylenes
and hydrated through a graded alcohol series. Subsequently,
sections were washed in PBS for 5 minutes and incubated in
0.1% thionin (Sigma-Aldrich Canada Ltd., Oakville,
Ont.)/0.1 M sodium acetate for 30 minutes at room tempera-
ture. Sections were then incubated in 95% ethanol until
staining intensity was adequate for differentiation of cells as
determined by examination under an Eclipse E600 micro-
scope at 4 x magnification (Nikon Canada, Mississauga,
Ont.) and dehydrated by passage through a graded alcohol
series. Subsequently, slides were mounted with cover slips
using VECTASHIELD® mounting medium (Vector Labora-
tories, Burlington, Ont.).

Delineation of amygdalar nuclei

The amygdala consists of several nuclei that can be distin-

Fig. 1: A representative image of a section of postmortem brain
stained for myelinated fibres (Luxol Fast-Blue) and Nissl substance
(Thionin). Myelinated tracts and cellular architecture were com-
pared with criteria and illustrations presented in various brain at-
lases, which allowed us to delineate the amygdalar nuclei, as
demonstrated by dotted lines. The nuclei included the accessory
basal magnocellular and parvicellular (accessory basal parvocellu-
lar [ABPC] and accessory basal magnocellular [ABMC], respec-
tively) basal and lateral nuclei.

guished on the basis of cell size and configuration and the
tracts of myelinated fibres that run between them. Therefore,
to accurately delineate amygdalar nuclei, myelin/Nissl
stained sections were examined for myelinated tracts and cel-
lular architecture under a dissecting microscope. With refer-
ence to criteria and illustrations presented in various brain
atlases” and using the same amygdalar regions identified in a
previous study conducted by our laboratory in this subject
sample,* we delineated 4 selected nuclei: accessory basal par-
vocellular (ABPC) and accessory basal magnocellular
(ABMC), basal and lateral nuclei (see Fig. 1). The resulting
nuclear boundaries were overlaid on each of the 3 adjacent
Nissl-stained sections for each subject and further refined
based on cellular architecture observed under a light micro-
scope with a 4 x objective lens. We confirmed these bound-
aries, using a series of acetylcholinesterase-stained sections
encompassing the full rostral-caudal extent of the amygdala
(generously provided by Dr. Gregory Ordway). The
anatomic position of each slide was established relative to
this series to ensure comparison of equivalent levels in the
amygdala; all samples were obtained from a level approxi-
mately 10 mm-11 mm caudal from the rostral pole of the
amygdalar complex.

Quantitative analyses

Nissl-stained sections were examined blind to experimental
groups with a Retiga camera (Q-Imaging Corporation, Burn-
aby, BC) attached to an Eclipse E600 microscope fitted with
an Optiscan motorized stage (Prior Scientific, Cambridge,
UK). Using a computer running Histometrix 6.0 imaging
software (Medical Solutions PLC, Nottingham, UK), the sur-
face area of each amygdalar nucleus was determined and
overlaid with a uniform random grid. At each intercept, an
unbiased sampling frame (USF) corresponding to 65% of the
field of view was observed through a 100 x objective lens; the
number of USFs for each region of interest was determined,
such that the corresponding coefficient of error was no
greater than 0.1. Nissl stained cells were identified as neurons
based on the presence of a clearly visible nucleolus and
stained cytoplasm; glial cells were identified by their rela-
tively smaller nucleus and the absence of nucleoli and visible
cytoplasm. Only neurons with clearly visible nucleoli and
glial nuclei were counted, contingent on the occurrence of
these structures in the XY inclusion frame of the USF. The
cross-sectional area in micrometers of each cell was deter-
mined by the nucleator probe; this consisted of 3 isotropic
lines drawn through the nucleolus (neurons) or nucleus
(glia), upon which were marked the points of intersection
with the visible margin of the cell soma (see Fig. 2). Results
were averaged across all 3 sections for each subject.

Data and statistical analyses

We included differences in demographic characteristics be-
tween diagnostic groups in age, formalin fixation time and
PMI by analyses of variance (ANOVAs); we assessed differ-
ences in sex and hemisphere with Pearson’s chi-square analy-
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sis (p < 0.05 in all cases). Changes in measures of cell size or
density were expressed as the mean, standard error of the
mean (SEM) for each amygdalar subregion. We used inde-
pendent-sample Student’s ¢ tests to assess the influence of sex
and we used multiple correlation analyses to examine the ef-
fects of age, formalin fixation time and PMI on neuronal and
glial cell densities and soma sizes (p < 0.05). Differences in in-
dividual parameters were analyzed with separate repeated-
measures (nuclei) analyses of covariance (ANCOVAs), with
age, sex, formalin fixation time and PMI as covariates. Be-
cause all comparisons were made with the CTL group, the
critical value was adjusted with Dunnett’s post hoc test; this
value was further adjusted by the Bonferroni procedure to re-
flect the number of nuclei examined (diagnosis: p < 0.0042,
4 nuclei, CTL vs. BD, MDD, SCZ; treatment: p < 0.0063, 4 nu-
clei, CTL vs. treatment). Analyses were repeated on subjects
stratified by brain hemisphere.

Results

There were no differences between diagnostic groups in age
(Fosp = 3.52, p = 0.824), formalin fixation time (F,q; = 3.52,
p =0.61), PMI (F, = 3.52, p = 0.207), sex (x%z = 0.118,
p = 0.990) or hemisphere (x2;:,= 0.215; p = 0.975). Further, there
were no significant differences in neuronal or glial size or den-
sity across sex and no significant correlations were observed
between neuronal or glial size or density and age, formalin fix-
ation time or PMI in any amygdalar nucleus (Table 2).

As described above, the full extent of the amygdala was
unavailable for analysis. Within the available sections, we
found no differences between diagnostic groups in the sur-
face area of any amygdalar nucleus (data not shown). In ad-
dition, we found no differences between diagnostic groups in

Fig. 2: A representative image acquired from a Nissl-stained sec-
tion of postmortem brain showing a typical unbiased sampling
frame (UFS) at 100 x magnification. Neurons are identified by a
clearly visible darkly stained nucleolus in a lighter stained nucleus,
the presence of an axon hillock or dendrites, or both, and their
larger size; glial cells are smaller, with generally little visible cyto-
plasm.

either glial density, glial size, or neuron density (Fig. 3 a-c).
However, we did observe a significant effect of diagnosis on
neuron somal size across nuclei (F,, = 3.489, p = 0.023).
Specifically, although no changes were observed between the
control and either the MDD or SCZ groups, somal size was
significantly decreased (29.7%) in the lateral amygdalar
nucleus (LAN) in subjects with BD compared with control
subjects (p = 0.003) and decreased (28.3%) in the ABPC nu-
cleus (p = 0.009; Fig. 3 d). However, we found no effect of
treatment with lithium, antidepressant drugs, or anticonvul-

Table 2: Correlation of age and postmortem interval with measures
of cellular morphology in each subnuclear region

Pearson correlation

Measure Region Age Formalin PMI
Neuron size ABMC -0.077 -0.175 0.111
ABPC —-0.003 0.189 -0.116
Basal 0.121 0.057 —-0.033
Lateral 0.036 0.166 0.06
Neuron density ABMC —0.001 -0.107 —0.088
ABPC 0.027 0.021 -0.198
Basal 0.045 0.081 —-0.032
Lateral 0.039 -0.012 -0.114
Glial size ABMC —-0.101 -0.223 —0.001
ABPC 0.086 0.124 -0.215
Basal 0.102 0.005 —0.066
Lateral 0.031 0.047 -0.14
Glial density ABMC 0.026 -0.087 -0.102
ABPC 0.06 0.144 —-0.203
Basal 0.025 -0.076 -0.035
Lateral 0.144 0.252 -0.076

PMI = postmortem interval; ABMC = accessory basal magnocellular; ABPC =
accessory basal parvocellular.
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Fig. 4: Changes in neuron somal size in the amygdala from psychi-
atric subjects compared with control subjects, stratified by hemi-
sphere. Graphs of neuron somal size in the left (a) and right (b)
hemispheres from nonpsychiatric control subjects (C) and subjects
with bipolar disorder (B), major depressive disorder (M) and schiz-
ophrenia (S) in the lateral amygdalar nucleus. Each symbol repre-
sents 1 subject. Bar graphs indicate the average, with the standard
error of the mean for each group. *p < 0.0042 (Bonferroni adjusted
Dunnett's post hoc tests).
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sants (i.e., valproate or carbamazepine) at the time of death
on measures of cellular pathology in any of the 4 amygdaloid
nuclei examined (data not shown). We were unable to ob-
serve an association between any measure and family history
of BD or MDD, compared with control subjects (data not
shown). This is an important variable in some earlier findings
using this same subject sample.* Similarly, there where no
discernable effects of suicide as a cause of death (data not
shown).

Given the importance of laterality in previous studies of
the amygdala,® we repeated our analyses on subjects strati-
fied by hemisphere. Diagnosis had a significant effect on neu-
ron somal size in the left hemisphere (F;,; = 3.485, p = 0.033),
with smaller soma in the LAN of BD subjects (1 = 6) relative
to control subjects (n = 8; average decrease 39%; p = 0.003;
Fig. 4a); no significant effects of any other factor were ob-
served. Moreover, no significant changes were observed in
any measure in the right hemisphere (Fig. 4 b).

Discussion

This is, to our knowledge, the first study to examine changes
in cellular morphology in discrete amygdalar nuclei. We re-
port decreased neuron somal size in the LAN and ABPC
regions — findings that add to evidence linking BD with cel-
lular changes in the amygdala. Decreased somal size is sug-
gestive of reduced axodendritic arbours or aberrant synaptic
connections.®*" Thus, our observations suggest that neurons
in certain amygdalar regions may have less extensive arbori-
sation or decreased afferent or efferent (or both) connectivity
in people with BD. This may result from altered expression of
neurotrophins or postreceptor signalling molecules. Alterna-
tively, these changes may occur subsequent to a loss of input
from other brain regions; this is especially relevant given re-
ports of abnormal cellular morphology in the prefrontal cor-
tex and anterior cingulate cortex," both of which project to
the basolateral complex (basal, lateral and AB nuclei) of the
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Fig. 3: Measures of cellular pathology in amygdala from psychiatric subjects, compared with control subjects. Graphs of glial cell density (a),
glial cell size (b), neuron density (c), and neuron somal size (d) in nonpsychiatric control subjects (C) and subjects with bipolar disorder (B),
major depressive disorder (M) and schizophrenia (S) in each subnuclear region, including the accessory basal magnocellular and parvicellular
(ABMC and ABPC, respectively), basal and lateral nuclei. Each symbol represents 1 subject. Bar graphs indicate the average, with the stan-
dard error of the mean for each group. *p < 0.0042, tp < 0.01 (Bonferroni adjusted Dunnett's post hoc tests).
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amygdala.”® As such, the current findings suggest a possible
cellular basis for the volumetric changes observed in subjects
with mood disorders.

From a clinical perspective, these results are especially in-
teresting given the well-documented role of the amygdala
in regulating emotional responses. The LAN in particular is
thought to link cortical brain regions involved in processing
sensory stimuli with structures responsible for eliciting
emotional responses to these stimuli.”® As lesions to this re-
gion eliminate conditioning to aversive stimuli® and lead to
inappropriate responses to threatening situations,” the aber-
rant neuronal morphology observed here may be particu-
larly relevant to understanding the increased risk-taking
behaviour and poor judgement demonstrated by subjects in
the manic state.

Although several postmortem cytoarchitectural studies
have been published showing neuronal and glial pathology
in the prefrontal cortex, anterior cingulate and thalamus, only
2 other such studies have been conducted to date in the
amygdala, and neither of these assessed measures of cell
size.®®® Consistent with these studies, we were unable to de-
tect any significant changes in neuronal or glial density in the
amygdala of BD subjects. Our results are at variance with
prior observations of decreased glial density and gliameuron
ratio in BD subjects not treated with lithium, although the
previous studies included only 2 subjects who were not
treated with lithium. Likewise, reports of decreased glial cell
density in subjects with MDD were not confirmed in our
sample; however, Hamidi and colleagues® recently reported
that the reduction in glial cell density in subjects with MDD
may be primarily due to changes in oligodendrocytes. We
have not assessed these cells directly in our sample, indicat-
ing that further experimentation is required. In addition, the
average age of MDD subjects in both studies (77.7 yr,
range 59-90) was markedly older than that of our sample
(46.9 yr, range 30-65). This suggests that age, or perhaps the
duration or severity of the illness or both, may play a role in
abnormal glial measures in MDD.

Interestingly, 2 recent postmortem studies of the amyg-
dala, although they reported decreased glial density in
subjects with MDD, observed left-lateralized cellular abnor-
malities.” In the current study, stratification of the sample by
hemisphere led to the observation that neuron somal size is
decreased predominantly in the left hemisphere. Despite the
smaller sample size resulting from this stratification, these
findings indicate that abnormalities in neuron cell size may
be left-lateralized in subjects with BD and suggest that fur-
ther investigation is warranted. Moreover, several imaging
studies in the amygdala from patients with BD have also
reported left-lateralized abnormalities in both metabolic ac-
tivity and volume.?®*** There are also studies reporting
bilateral changes,” and at least one study has shown right-
lateralized changes in metabolic activity in the amygdala of
BD patients.” The difficulty in accurately delineating amyg-
dalar nuclei with brain imaging techniques and the differ-
ences in cellular composition and morphology between
discrete amygdalar nuclei may in part account for the dis-
crepancies between these findings.

As in subjects with BD, imaging studies of the amygdala in
patients with SCZ exhibit a great deal of variability. Meta-
analyses of early imaging studies generally report slight but
significant volume reductions in this region in subjects with
SCZ.*** However, many of these studies considered the hip-
pocampus and the amygdala jointly, and their findings may
not be attributable to the amygdala specifically. Studies that
have attempted to evaluate the amygdala independently
tend to report no significant differences in amygdalar vol-
umes between people with SCZ and control subjects®**;
reduced amygdalar volumes have been reported in some
studies.”® With respect to investigations conducted in post-
mortem brain tissue, 1 early study reported a reduction in
amygdalar volume in subjects with SCZ,* but more recent
studies have reported no statistically significant changes in
the volume of this structure between people with SCZ and
control subjects.®* Moreover, Pakkenberg,” who examined
neuron and glial cell number in the basolateral nucleus of the
amygdala, was also unable to observe changes in these mea-
sures in postmortem brain tissue from people with SCZ. This
study supports and extends these latter findings, further sug-
gesting that SCZ is not characterized by overt changes in
neuronal or glial morphology or density in the constituent
nuclei of the amygdala.

There are several potential limitations to this study. First,
the thickness of the tissue sections did not allow for the use of
an optical dissector method of cell counting with defined up-
per and lower guard zones; thus, our results may be biased as
a result of overcounting. We did, however, conduct our analy-
ses in 3 adjacent sections to ensure the intersample reliability
of our data and used nucleoli as discrete counting units for
neurons to minimize these effects. Second, we did not have
access to the entire rostral-caudal extent of the amygdala. Be-
cause random sampling of an entire structure is necessary to
determine total cell number, we can only present data on neu-
ronal and glial density for a specific anatomic level corre-
sponding to 10 mm-11 mm caudal from the rostral pole of the
amygdalar complex. The anatomic position of each section
was confirmed by comparison with a complete series of
acetylcholinesterase-stained amygdalar sections. Third, de-
creased neuron somal size in the LA and ABPC regions in BD
may be secondary to the effects of medication used by these
patients. However, the number of patients treated with multi-
ple drugs in this study complicates attempts to definitively
segregate the individual contribution of these medications to
the current findings. Similarly, sufficient data on each sub-
ject’s medication history, dosage and length of time ill were
not available, given the retrospective nature of each subject’s
clinical assessment entailed by the use of postmortem sam-
ples. In the current sample, only 2 subjects with BD were both
never treated and negative for a history of substance abuse,
which precluded focused analyses on these subjects. There-
fore, although we report no significant medication effects, fur-
ther postmortem studies in subjects for whom a detailed med-
ical history is available are needed. Finally, we present data
indicating a lateralization of changes in neuron somal size to
the left hemisphere, which is concordant with several investi-
gations.**** Although these findings are interesting, their
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confirmation in a larger sample, and in subjects from which
both hemispheres are available, is required.

Conclusion

We observed a marked reduction in neuron somal size in the
LAN and ABPC nuclei of the amygdala of subjects with BD;
these changes are especially pronounced in sections obtained
from the left hemisphere. Since somal size is considered a
marker for axodendritic outgrowth,” this finding extends
previous reports of neuronal pathology in several brain re-
gions previously associated with BD, including the prefrontal
cortex, anterior cingulate and hippocampus, in addition to
the amygdala." The present study emphasizes the need to
recognize the heterogeneous nature of the amygdala, as re-
flected in the cytoarchitectonic composition of different
amygdalar nuclei.
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