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Introduction

Attention-deficit/hyperactivity disorder (ADHD) is one of the 
most common neurodevelopmental disorders in childhood; it 
has a reported prevalence of 5.3% in school-age children1 and 
2.5% in adults2 worldwide. As well as behavioural problems (in-
appropriate hyperactivity and impulsivity, inattention symp-
toms), patients show deficits in executive functions (interference 
control, cognitive flexibility, working memory, planning and or-
ganization)3 that can impair academic and vocational perform
ance.4 This disorder is a childhood-onset condition, so the patho-
physiological profile in adult patients is more likely to be 
complicated by interactions with other factors during neuromat-
uration.5 Studies of children and adolescents with ADHD may 
therefore give a clearer view of its pathogenesis.

Neuroimaging methods have been useful in exploring 
ADHD pathophysiology. Much has been learned from 
macrostructural MRI about abnormalities in grey matter 
structures, such as the basal ganglia, prefrontal lobe, tem
poral and parietal cortices,6 and from fMRI about abnormal 
activation patterns in frontostriatal, frontotemporal and 
frontoparietal regions.7 This functional work has led to the 
notion of abnormal large-scale brain circuits in ADHD — 
notably the frontal–striatal–cerebellar circuit,8 with more re-
cent evidence implicating the default mode (DMN), limbic 
and visual networks.9 Attention has also turned to white 
matter microstructural alterations in patients with ADHD8 
and to models involving abnormal connections between 
multiple functional units in neural networks conceived as 
ensembles of neuronal bodies and axonal pathways.10 The 
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Background: Attention-deficit/hyperactivity disorder (ADHD) is an early-onset neurodevelopmental disorder with multiple behavioural 
problems and executive dysfunctions for which neuroimaging studies have reported a variety of abnormalities, with inconsistencies partly 
owing to confounding by medication and concurrent psychiatric disease. We aimed to investigate the microstructural abnormalities of 
white matter in unmedicated children and adolescents with pure ADHD and to explore the association between these abnormalities and 
behavioural symptoms and executive functions. Methods: We assessed children and adolescents with ADHD and healthy controls using 
psychiatric interviews. Behavioural problems were rated using the revised Conners’ Parent Rating Scale, and executive functions were 
measured using the Stroop Colour-Word Test and the Wisconsin Card Sorting test. We acquired diffusion tensor imaging data using a 
3 T MRI system, and we compared diffusion parameters, including fractional anisotropy (FA) and mean, axial and radial diffusivities, be-
tween the 2 groups. Results: Thirty-three children and adolescents with ADHD and 35 healthy controls were included in our study. In 
patients compared with controls, FA was increased in the left posterior cingulum bundle as a result of both increased axial diffusivity and 
decreased radial diffusivity. In addition, the averaged FA of the cluster in this region correlated with behavioural measures as well as ex-
ecutive function in patients with ADHD. Limitations: This study was limited by its cross-sectional design and small sample size. The 
cluster size of the significant result was small. Conclusion: Our findings suggest that white matter abnormalities within the limbic net-
work could be part of the neural underpinning of behavioural problems and executive dysfunction in patients with ADHD.
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importance of white matter deficits in patients with ADHD 
is supported by the observation that the effect sizes for vol-
ume reductions in total brain and lobar volumes are larger 
in white matter (0.30–0.64) than in grey matter (0.27–0.35).11

Diffusion tensor imaging (DTI) offers a sensitive and 
neurobiologically relevant way to characterize microstruc-
tural white matter alterations in vivo.12 Of several DTI-
derived indices, fractional anisotropy (FA) is the most com-
monly used, reporting the local and regional directional 
coherence of water diffusion.13 Additional information is 
provided by the decomposition of FA into axial diffusivity 
(AD) and radial diffusivity (RD), which reflect diffusion 
parallel to and perpendicular to the axons, respectively, and 
by mean diffusivity (MD), which reflects the magnitude of 
diffusion in white matter pathways.13 Of the various ana-
lytic approaches to DTI, whole-brain analysis provides the 
best unbiased measure of brain regions that may be missed 
by region of interest  (ROI) analysis based on a priori as-
sumptions and thus offers greater reliability in screening 
distributed anomalies in patients with ADHD.14

Nine published DTI studies have used whole-brain ap-
proaches in children and adolescents with ADHD,5,15–22 re-
porting altered FA over diverse white matter structures. 
Such discrepancies may be owing to the differences in sam-
ple sizes, demographic characteristics and analysis pipe-
lines (see the Appendix, Table S1, available at jpn.ca). Two 
of these factors deserve particular attention. Most of these 
studies included patients who either were currently taking 
medication or who had a history of taking medication; as 
medication has been reported to normalize white matter 
deficits,11 the potential effect of medication is an important 
confounding factor. The other main confounding factor is 
comorbid presentation with other psychiatric and/or de
velopmental disorders that may have unique etiological 
pathways or share pathophysiology with ADHD.23

Another important issue about ADHD is the poorly under-
stood association between the atypical brain circuitry 
revealed with neuroimaging methods and the executive 
dysfunctions measured with neuropsychological tests.24 Al-
though fMRI studies have suggested an association with the 
aberrant frontoparietal circuit,7 debate remains about which 
core deficits of brain function lead to the impairments of 
ADHD.25 Diffusion tensor imaging may provide evidence of 
microstructural abnormalities in the brain circuits underlying 
specific executive deficits.

We therefore set out to study a relatively large sample of 
medication-naive children and adolescents with pure ADHD, 
defining white matter microstructural abnormalities through 
a whole-brain DTI approach and testing for their correlations 
with clinical symptoms and executive dysfunctions.

Methods

Participants

We recruited patients with ADHD from the Department of 
Psychiatry at West China Hospital, Sichuan University. Diag-
nosis of ADHD was determined by 2 experienced clinical 

psychiatrists (L.G. and N.H.; 28 and 5 yr of experience in clin-
ical psychiatry, respectively) using the Chinese modified ver-
sion of Structured Clinical Interview for DSM-IV-TR Axis I 
Disorders, Research Version (SCID-I, patient edition).26 We 
excluded patients with oppositional defiant disorder, con-
duct disorder, Tourette disorder or any other Axis I psychiat-
ric comorbid disorders. Other exclusion criteria were a full-
scale IQ lower than 90 based on an age-appropriate Wechsler 
Intelligence Scale for Children — Chinese Revision,27 current 
use of or history of taking psychotropic medication, left-
handedness as assessed using the Annett Hand Preference 
Questionnaire,28 pregnancy or substantial physical illness and 
standard MRI scanning contraindications.

We recruited healthy controls via advertisement in local 
schools; controls were also screened using the Chinese 
modified version of SCID-I (nonpatient edition) to exclude 
any Axis I psychiatric diagnosis and use of any psychotro-
pic medications. Controls were required to have no family 
history of psychiatric illness in first-degree relatives. Other 
exclusion criteria were the same as those for the ADHD 
group.

Two neuroradiologists (L.C. and X.H., 3.5 and 3 yr of ex
perience in neuroimaging, respectively) inspected conven-
tional MRIs of all participants to exclude gross abnormalities. 

Approval for this study was granted by the ethical com-
mittee of Sichuan University and the research ethics board 
at the West China Hospital of Sichuan University. All par-
ticipants and their parents were fully informed about the 
purpose and procedures of this study, and written informed 
consent was obtained from the parents.

Behavioural measures and executive function tests

We used the Chinese version of the revised Conners’ Parent 
Rating Scale (CPRS)29 to measure the behavioural problems 
of ADHD patients. The CPRS is a battery of questions to 
evaluate problematic behaviour across areas such as sleep, 
temper and peer relationships. The parent rates each behav-
iour on a 4-point Likert-type scale; the behaviours are ag-
gregated into 6 factors: conduct problems, study problems, 
psychosomatic, impulsive–hyperactive, anxiety and hyper-
activity index. Higher scores indicate more severe problems.

The Stroop Colour-Word (Stroop-CW) Test30 and the Wis-
consin Card Sorting Test (WCST)31 are commonly used 
neuropsychiatric tests of executive abilities. The Stroop-CW 
Test, in which the participant is shown a list of names of 
colors printed in mismatching colors and is asked to name 
the colour instead of the word, is often used to measure ex-
ecutive interference control;32 the dependent variables are 
number right, number error, number correction and total 
time. The WCST (64-card version), in which the participant 
is asked to change matching strategies after correctly match-
ing a card according to a certain stimulus feature (number, 
colour, form) for 10 consecutive trials, mainly reflects cogni-
tive flexibility,33 involving perceptual learning, set-shifting, 
working memory and executive control; the dependent 
variables are perseverative errors, nonperseverative errors, 
total errors and categories completed.
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Data acquisition

Whole brain MRI data were acquired in the West China Hospi-
tal, Sichuan University, using a Siemens Trio 3 T MRI system 
with an 8-channel phase-array head coil. Sequences included a 
spoiled gradient-recalled echo sequence to acquire the T1-
weighted images (repetition time [TR] 1900 ms, echo time [TE] 
2.26 ms, section thickness 1 mm; matrix 256 × 256; field of view 
[FOV] 256 mm) and a single-shot echo-planar sequence (TR 
6800 ms, TE 93 ms, section thickness 3 mm with no intersection 
gaps, matrix 128 × 128, FOV 230 mm) to obtain DTIs in 50 axial 
planes with 20 noncollinear diffusion sensitization gradients 
(b = 1000 s/mm2) as well as a reference image with no diffusion 
weighting (b0 image). Earplugs were used, and participants lay 
supine with their heads fixed by foam pads to minimize head 
movement. We took several steps to ensure optimal scan qual-
ity: good communication with participants and their parents al-
layed any worries and helped the participants cooperate during 
scanning. If monitoring detected any movement, the scanning 
sequence was halted and repeated; the acquired images were 
checked immediately by 2 neuroradiologists (L.C. and X.H.), 
and those with suspected artifacts were rescanned. Finally, dur-
ing preprocessing all DTI maps were checked for artifacts in 
order to discard all data from the affected participants.

Statistical analysis

Diffusion-weighted images of each participant were analyzed 
using the Diffusion Toolbox FSL software version 1.1 (FMRIB 
Software Library). First, the data were corrected for head mo-
tion and eddy currents using affine registration to the b0 image 
volume. Next, brain extraction was performed to delete non-
brain tissue from the whole head image. Finally, we calculated 
parameter maps for FA, MD, AD and RD using “dtifit,” which 
fits a diffusion tensor model to each voxel and estimates the 
principal directions of diffusion. Voxel-based analysis was 
then performed using SPM8 (Welcome Trust Centre for 
Neuroimaging; http://fil.ion.ucl.ac.uk) running in MatLab 
2012 (MathWorks). Each b0 image was nonlinearly normalized 
using the echo-planar imaging template supplied with SPM8 
to estimate the normalization parameter, which was applied to 
all parameter maps, each voxel being 2 × 2 × 2 mm3. Finally, 
the normalized parameter maps were smoothed using an iso-
tropic Gaussian filter (6 mm full-width at half-maximum).

We performed a voxel-wise comparison of FA and MD be-
tween patients with ADHD and controls using a 2-sample 
t test in SPM8 with age and sex as covariates. The threshold 
was taken as p < 0.05 for false discovery rate (FDR) correc-
tion. The resultant clusters were defined as ROIs through the 
MarsBaR toolbox in SPM8, and we extracted their averaged 
FA and MD values. We performed a 2-tailed Pearson correla-
tion analysis in the ADHD group between the extracted val-
ues and multiple measurements, including CPRS, Stroop-CW 
Test and WCST results, using SPSS version 20.0 (IBM).

We extracted AD and RD values from clusters identified 
with significant FA differences through the MarsBaR tool-
box and compared them between the ADHD and control 
groups using a 2 sample t test in SPSS.

As adolescents are undergoing rapid brain development, 
we performed a subgroup analysis on participants younger 
than 12 years. To minimize sex influences, we also per-
formed a subgroup analysis on male participants.

Results

Participants

Our study included 33 patients aged 7–16 years with ADHD 
(all combined subtype) who were drug-naive and did not 
have any comorbidities. We also included 35  healthy 
controls aged 7–14 years. All participants were from the 
Chinese Han population and were right-handed. As shown 
in Table 1, demographic variables, including age, sex, IQ 
scores, birth weight and parental education years were not 
significantly different between the 2 groups.

Behavioural measures and executive function tests

Table 1 shows the results of behavioural measures and execu-
tive function tests. As expected, patients with ADHD had more 
severe behavioural problems and worse executive function than 
controls. In the CPRS, patients scored higher than controls in all 
indices (p < 0.001) except anxiety (p = 0.30). In the Stroop-CW 
test, patients had fewer right answers (p < 0.001), more errors 
(p < 0.001) and corrections (p < 0.001) and longer total time (p < 
0.001) than controls. In the WCST, patients achieved fewer total 
correct reponses (p = 0.002) and categories completed (p = 0.001) 
and made more total errors (p = 0.001), perseverative errors (p = 
0.001) and nonperseverative errors (p = 0.006) than controls.

Group differences in diffusion characteristics and 
correlation analysis

As shown in Figure 1, relative to controls, patients with ADHD 
had 1 cluster showing increased FA in the left posterior cingu-
lum bundle (MNI coordinates: x, y, z = –6, –20, 32, t = 5.23, clus-
ter size 8 voxels). In no instance did patients with ADHD show 
significantly lower FA than controls, and there were no signifi-
cant differences in MD between the ADHD and control groups. 
For the cluster with significant FA differences, the ADHD group 
had significantly higher AD and lower RD than controls (AD: 
ADHD 12.00 ± 0.60 v. control 11.42 ± 0.57, p < 0.001; RD: ADHD 
7.17 ± 0.53 v. control 7.42 ± 0.40, p = 0.036; all units 10-4 mm2/s).

As shown in Figure 2, the average FA of the cluster in the 
left posterior cingulum bundle showed significant negative 
correlations with the scores for the CPRS study problems 
factor (r = –0.41, p = 0.019) and the WCST total errors factor 
(r = –0.41, p = 0.017) and positive correlations with the 
WCST total correct factor (r = 0.48, p = 0.005) and the cate-
gories completed factor (r = 0.36, p = 0.046). No other sig
nificant correlation was detected.

Subgroup analysis

Our subgroup analysis of participants younger than 12 years 
included 26 patients (mean age 8.7 ± 1.3 yr, all boys) and 
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Table 1: Demographic characteristics, behavioural measures and executive functions of patients with 
ADHD and healthy controls

Group, mean ± SD*

Characteristic Patients (n = 33) Controls (n = 35) p value Statistic

Age, yr 9.7 ± 2.2 10.5 ± 1.8 0.12 t66 = –1.67

Male:female, no. 32:1 33:2 0.59 F1 = 0.29

IQ scores 104.2 ± 5.2 107.1 ± 6.4 0.05 t66 = –1.99

Birth weight, kg 3.3 ± 0.8 3.6 ± 0.9 0.26 t66 = –1.14

Parental education, yr 12.2 ± 3.0 11.2 ± 2.9 0.15 t66 = 1.45

Conners’ Parent Rating Scale

Conduct problem 13.1 ± 7.4 5.6 ± 4.9 < 0.001 t54 = 4.69

Study problem 7.7 ± 2.9 3.1 ± 2.3 < 0.001 t66 = 6.83

Psychosomatic 1.3 ± 1.4 0.4 ± 0.8 < 0.001 t49 = 2.88

Hyperactivity–impulsivity 6.2 ± 3.0 2.4 ± 2.0 < 0.001 t54 = 5.92

Anxiety 1.4 ± 1.7 1.7 ± 1.8 0.304 t66 = –1.01

Hyperactivity index 14.0 ± 6.2 5.4 ± 4.3 < 0.001 t55 = 6.39

Stroop Colour-Word Test

Total time, s 291 ± 99 186 ± 48 < 0.001 t46 = 5.40

No. right 94.5 ± 7.6 105.1 ± 4.0 < 0.001 t47 = –7.00

No. errors 17.5 ± 7.6 6.0 ± 4.1 < 0.001 t49 = 7.56

No. corrections 9.3 ± 5.7 3.1 ± 2.2 < 0.001 t41 = 5.79

Wisconsin Card Sorting Test

Total correct 27.4 ± 10.1 33.8 ± 5.2 0.002 t47 = –3.20

Total errors 19.2 ± 11.7 11.0 ± 7.2 0.001 t53 = 3.42

Perseverative errors 5.5 ± 5.4 2.1 ± 2.3 0.001 t43 = 3.30

Nonperseverative errors 13.8 ± 8.0 8.9 ± 5.6 0.006 t55 = 2.81

Categories completed 3.8 ± 1.9 5.1 ± 1.2 0.001 t52 = –3.26

ADHD = attention-deficit/hyperactivity disorder; SD = standard deviation. 
*Unless otherwise indicated.

Fig. 1: Regions with significantly increased fractional anisotropy (FA) in patients with attention-deficit/hyperactivity disorder 
(ADHD). One cluster with increased FA in the left posterior cingulum bundle in patients compared with controls, corrected 
for multiple comparison (p < 0.05 after false-discovery rate correction).

x=109 y=105 z=104

T=6

T=0
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23 controls (age 9.7 ± 1.2 yr, all boys); there was a significant 
age difference between the 2 groups (p = 0.013). Voxel-wise 
comparison of FA between the 2 groups revealed no cluster 
with significant FA differences after multiple comparison cor-
rection (p < 0.05 for FDR correction). At a relaxed threshold of 
p < 0.001 for voxel level, 1 cluster was revealed to have higher 
FA in patients with ADHD than controls and was located close 
to the cluster identified by the whole group analysis in the left 
posterior cingulum bundle (MNI coordinates: x, y, z = –6, –22, 
32, t = 4.17, cluster size 20 voxels). In the whole-group analysis 
the larger sample size probably enhanced the effect size of this 
cluster so that it survived multiple comparison correction.

Our subgroup analysis of boys only included 32 patients 
(mean age 9.6 ± 2.3 yr) and 33 controls (mean age 10.6 ± 
1.7  yr), with no significant age difference between the 
2  groups (p = 0.07). After multiple comparison correction 
(p < 0.05 for FDR correction), 1 cluster was revealed to have 
elevated FA in the ADHD group and was located close to 
the cluster identified by the whole group analysis in the left 
posterior cingulum bundle (MNI coordinates: x, y, z = –6, 
–22, 32, t = 5.28, cluster size 14 voxels).

No cluster with decreased FA was found in the ADHD 
group in either subgroup analysis.

Discussion

Using whole brain DTI analysis we have characterized white 
matter microstructural abnormalities in a relatively large 
sample of medication-naive children and adolescents with 
pure ADHD. Compared with healthy controls, patients 
showed increased FA in the left posterior cingulum bundle. 
Furthermore, the elevated FA in this cluster also showed sig-
nificant correlations with behavioural measures on the CPRS 
and executive function scores on the WCST, supporting a 
role for white matter microstructure abnormalities in the 
pathophysiology of ADHD. This anomalous microstructure 
was also found in subanalyses of boys only and of children 
younger than 12 years, suggesting the independence of sex 
and maturation effects.

The cingulum bundle is the longitudinally oriented aggre-
gate of myelinated axons underlying the cingulate cortex, 
whose projections connect different parts of the cingulate cor-
tex with other brain areas, especially the medial frontal lobe, 
the temporal lobe and the parahippocampal gyrus.34 As an im-
portant component of the limbic system, the cingulum bundle 
is involved in emotions and cognitive functions, including at-
tention, memory and motivation,35,36 and shows abnormalities 

Fig. 2: Correlations of fractional anisotropy (FA) in left posterior cingulum bundle (CB). The averaged FA of the cluster in 
the left posterior CB showed significant negative correlations with the study problem scores on the Conners’ Parents Rating 
Scale (CPRS) and the total errors scores on the Wisconsin Card Sorting Test (WCST; upper panels) and positive correla-
tions with the total correct and categories completed scores on the WCST (lower panels).
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in psychiatric disorders, including schizophrenia, major de-
pression and obsessive–compulsive disorder.37–39

Previous DTI studies of ADHD have reported FA abnor-
malities in the cingulum bundle, but the results have been in-
consistent. Four studies have reported decreased FA.10,40–42 
Makris and colleagues10 found decreased FA in the right cin-
gulum bundle in adults with childhood ADHD compared 
with healthy controls, suggesting the persistence of structural 
abnormalities into adulthood. Konrad and colleagues40 repli-
cated this finding with a larger sample of medication-naive 
adult patients.40 Two studies using diffusion spectrum im
aging tractography41 and DTI tractography,42 respectively, 
also found lower FA in the bilateral cingulum bundle in 
youths with ADHD. In contrast, our study and 2 others16,32 re-
ported increased FA of the cingulum bundle in children and 
adolescents with ADHD; 1 study,16 based on a detailed analy-
sis of eigenvalues (l1, l2 and l3), further proposed reduced 
neural branching as an explanation for this FA increase. 
Finally, several studies have reported no abnormalities in the 
cingulum bundle in patients with ADHD.43–45 These discrep-
ancies might be explained by variations in methodology and 
demographic characteristics (e.g., medication status, different 
comorbidities and subtypes) of participants. To minimize 
such confounding, the present study included only drug-
naive patients with the combined ADHD type, and partici-
pants were carefully screened for comorbidities.

Our finding of increased FA in the cingulum bundle at the 
posterior cingulate gyrus region is therefore consistent with 
those of 2 previous studies.16,21 Little consideration has been 
given in the pathophysiology of ADHD to dysfunction of 
the posterior cingulum bundle, although it is a plausible hy-
pothesis given that this carries the major efferent and affer-
ent fibres to the posterior cingulate cortex, which partici-
pates in the regulation of attention46 and internally directed 
cognition47 and is a key component of the DMN. The DMN 
is a brain network associated with self-reflection, self-
referential cognitions and mind-wandering. It is active in a 
state of rest and deactivated during tasks that make cogni-
tive demands, with stronger deactivation corresponding to 
increasing attentional demands.48,49 Increasingly, ADHD is 
considered as a DMN disorder50 in which attentional lapses 
derive from an inappropriate persistence of DMN activa-
tion49; for example, a study using a stop signal task found 
that failure to suppress the DMN was associated with 
greater errors.51 Recent pathophysiological models of ADHD 
recognize it as a disorder encompassing large-scale neural 
networks, such as the cognitive control network and limbic 
networks, not only abnormal connectivity within the DMN 
itself. For instance, studies have found a negative correlation 
between the cognitive control network and the DMN in con-
trols, whereas this inverse correlation was attenuated in pa-
tients with ADHD.52 In this conception, the interplay of the 
DMN with other neural networks is likely crucial to subopti-
mal neural functioning.9 As the posterior cingulum bundle is 
a junction containing reciprocal connections between the 
prefrontal cortex, anterior cingulate cortex and posterior cin-
gulate cortex,53 the abnormality we have identified is in 
agreement with this hypothesis.

Our correlation analysis provides further support for a 
pathophysiological role of the posterior cingulum bundle in 
patients with ADHD and is consistent with the hypothesis 
that components of executive functions may be associated 
with the limbic system in addition to the prefrontal re-
gions.54,55 However, it is interesting to note that in our study 
patients with higher FA displayed better executive functions, 
albeit still worse than those of healthy controls. This phenom-
enon was first noted in one of our previous studies,19 in 
which we found a positive correlation between increased FA 
of right frontal white matter and the Stroop-CW Test scores 
in another group of children with ADHD.

As for the reason why FA is increased in patients with 
ADHD, further analysis of AD and RD showed that this re-
sulted from both increased water mobility along the principal 
fibre direction (AD) and decreased mobility perpendicular to 
the fibre direction (RD), with the former component being 
predominant. Numerous factors, such as fibre myelination, 
fibre crossings, fibre density and caliber, influence AD and 
RD, so the exact pathological mechanism of the increased FA 
is uncertain. Some previous studies identifying increased FA 
in patients have suggested abnormally decreased dendritic 
branching or anomalous white matter development.16,21 
However, as both the present study and our earlier study 
published in 201019 found better executive function in pa-
tients with higher FA, we are more inclined to postulate a 
compensatory mechanism in children and adolescents with 
ADHD; for (hypothetical) example, excessive myelin hyper-
plasia in initially defective fibres, perhaps partially compen-
sating for the cognitive deficits.

Limitations

Our study has some limitations. First, the sample size was 
small, although it was larger than those of previous whole 
brain DTI studies in children and adolescents with ADHD. 
Second, the adoption of FDR correction enhanced the impact of 
our result, but the small cluster size (8 voxels) limited its inter-
pretation. FInally, a cross-sectional study cannot shed light on 
the development of the condition; longitudinal studies are 
therefore required to confirm and extend our conclusions.

Conclusion

We found that medication-naive children and adolescents 
with ADHD (combined type) have increased FA in the left 
posterior cingulum bundle and that the FA value of this clus-
ter was associated with behavioural problems as well as ex
ecutive dysfunctions. Our results suggested that, beyond the 
frontal–striatal–cerebellar circuit, children and adolescents 
with ADHD also have pathophysiological abnormalities in 
the limbic network. Moreover, such microstructural altera-
tions might be a potential substrate for abnormal behaviours 
and executive deficits in patients with ADHD.
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