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Introduction

Autism (OMIM:209850) is a neurodevelopmental disorder 
that presents in childhood with clinical manifestations of im-
pairment in language and communication, social interaction 
and responsiveness, and restricted and repetitive patterns of 
interest or behaviour.1 Recent statistics estimate that the prev-
alence of autism has increased to 1 per 68 children younger 
than 8 years.2

Autism has a strong genetic component3,4 and has been as-
sociated with several genetic variants, such as copy number 
variants disrupting the genes NRXN1, CNTN4, NLGNs and 
SHANK35–10 and de novo mutations (e.g. CHD8, KATANAL2, 
SCN2A, NTNG1).11–13 Although these genes are functionally 
of interest and contribute to the understanding of the biology 
of autism,14 they account for only a very small proportion of 
patients. Some of these rare single point genetic mutations, or 
even common genetic variants, have also been associated in-

consistently with autism.4,9,15,16 At present, the diagnosis of 
autism relies mainly on some observational tools that may in-
volve a great variability. Few biomarkers are established for 
autism. Identifying metabolomic biomarkers may contribute 
to the improvement of the clinical diagnosis of autism and 
provide some objective tools that could be used to evaluate 
the outcome of interventions or treatment.

Metabolomics is the study of a biologic process involving 
all metabolites that are end products of the cellular process in 
a whole organism. Identifying metabolite fingerprints be-
tween patients and healthy individuals that specific cellular 
processes leave behind may provide insight into the patho-
physiology of human diseases.17 Metabolomics has been ap-
plied to identify serum and urine metabolic markers in sev-
eral complex human diseases, including obesity,18 diabetes19 
and coronary artery disease.20

Evidence suggests that central nervous system disease may 
present with metabolic pathway disturbance.21 Several 
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Background: Early detection and diagnosis are very important for autism. Current diagnosis of autism relies mainly on some observa-
tional questionnaires and interview tools that may involve a great variability. We performed a metabolomics analysis of serum to identify 
potential biomarkers for the early diagnosis and clinical evaluation of autism. Methods: We analyzed a discovery cohort of patients with 
autism and participants without autism in the Chinese Han population using ultra-performance liquid chromatography quadrupole time-
of-flight tandem mass spectrometry (UPLC/Q-TOF MS/MS) to detect metabolic changes in serum associated with autism. The potential 
metabolite candidates for biomarkers were individually validated in an additional independent cohort of cases and controls. We built a 
multiple logistic regression model to evaluate the validated biomarkers. Results: We included 73 patients and 63 controls in the discov-
ery cohort and 100 cases and 100 controls in the validation cohort. Metabolomic analysis of serum in the discovery stage identified 
17 metabolites, 11 of which were validated in an independent cohort. A multiple logistic regression model built on the 11 validated me-
tabolites fit well in both cohorts. The model consistently showed that autism was associated with 2 particular metabolites: sphingosine 
1-phosphate and docosahexaenoic acid. Limitations: While autism is diagnosed predominantly in boys, we were unable to perform the 
analysis by sex owing to difficulty recruiting enough female patients. Other limitations include the need to perform test–retest assess-
ment within the same individual and the relatively small sample size. Conclusion: Two metabolites have potential as biomarkers for the 
clinical diagnosis and evaluation of autism.
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 metabolomic studies have been conducted to map antipsy-
chotic effects and to identify potential metabolites as biomark-
ers for the diagnosis of schizophrenia.22,23 A few metabolomic 
 studies of autism have recently been carried out using differ-
ent techniques in a variety of biospecimens. A urine study 
 using a 1H nuclear magnetic resonance (NMR) spectroscopy 
method has shown an elevated level of taurine and decreased 
glutamate in urine samples of patients with autism.24 Another 
study conducted in Saudi Arabia has suggested plasma fatty 
acids as diagnostic markers for autism,25 specifically showing 
an increase in most saturated fatty acids and a decrease in 
polyunsaturated fatty acids. Ming and colleagues,26 using 
a combination of liquid and gas chromatography-based mass 
spectrometry, detected abnormal amino acid  metabolism, 
 increased oxidative stress and altered gut microbiomes in 
urinary specimens of individuals with autism-spectrum 
 disorder (ASD). Emond and colleagues,27 using a gas 
 chromatography–mass spectroscopy (GC-MS)–based ap-
proach in an analysis of urine samples, built a multivariate 
statistical model that captured global biochemical signatures 
of autistic individuals, which enabled them to be distin-
guished very well from healthy children. Kuwabara and col-
leagues,28 using capillary electrophoresis time-of-flight mass 
spectroscopy (CE-TOF MS) for high-throughput profiling of 
metabolite levels in plasma, identified deviated levels of 
plasma metabolites associated with oxidative stress and 
mito chondrial dysfunction in individuals with ASD.

Compared with other analytical technologies, ultra- 
performance liquid chromatography (UPLC) coupled with 
mass spectrometry (MS) has higher resolution, high sensitiv-
ity and rapid separation. This method has been widely used 
to investigate subtle metabolite alterations in complex mix-
tures.29–33 Here, we report a serum metabolomic analysis of a 
cohort of patients with autism and healthy individuals in the 
Han Chinese population using ultra-performance liquid 
chromatography quadrupole time-of-flight tandem mass 
spectrometry (UPLC/Q-TOF MS/MS) to identify metabolites 
and potential serum biomarkers associated with autism. We 
validated the potential biomarkers using an independent au-
tism case–control cohort.

Methods

Study design and participants

Our study involved a 2-stage design with a discovery cohort 
of autism cases and controls and an independent cohort of 
cases and controls for validation. The first cohort was used 
for a metabolomic discovery analysis of serum to identify 
metabolites that could contribute to the discrimination of 
cases and controls. Suggested metabolites were then vali-
dated in an independent cohort of cases and controls. Cases 
and controls in both cohorts were matched for sex and age. 
No participants used any dietary supplements, such as vita-
mins and fatty acids, or other medications. Before initiating 
the study, we obtained approval from the Ethics Committee 
of Harbin Medical University. Parents or legal guardians of 
all participants provided written informed consent for chil-

dren who participated in the study after all study procedures 
had been explained. The study was conducted in accordance 
with the Declaration of Helsinki.

We recruited patients with autism aged 3–6 years through 
the Child Development and Behavioural Research Center 
(CDBRC) of the Harbin Medical University in Harbin, the 
capital metropolitan city of Heilong jiang Province in north-
eastern China, between May 2010 and August 2011. All par-
ticipants were from the Chinese Han population. The diag-
nosis of each patient was made independently by at least 
2 experienced psychiatrists after evaluating potential partici-
pants according to DSM-IV criteria. We excluded individuals 
with Asperger syndrome, Rett syndrome, pervasive develop-
mental disorder not otherwise specified (PPD-NOS) and 
fragile X syndrome. We used the Autism Behaviour Checklist 
(ABC),34 Childhood Autism Rating Scales (CARS)35 and the 
developmental quotient (DQ)36 for development delay37 diag-
nosis to evaluate all patients with autism. We recruited 
healthy controls from 2 kindergarten classes in Harbin, and 
they were clinically examined to ensure they had no features 
of developmental delay or autistic traits.

Biospecimen collection and processing

We collected whole blood (5 mL) samples from each partici-
pant in the morning (7:30–8:30 am) following at least 
10 hours of fasting. Each participant had been given a stan-
dardized dietary recipe and had engaged in moderate phys-
ical activity for 1 week before blood was drawn. Samples 
were transferred into evacuated tubes that contained anti-
coagulant sodium dihydrogen phosphate (EDTA-K3), centri-
fuged at 2000g for 10 minutes at 4°C. Serum was extracted 
and stored at −80°C for sample analysis.

Prior to analysis, serum samples were thawed at 4°C. In 
 total 200 μL of serum was added into a vial and extracted 
with methanol (600 μL), followed by vigorous vortex for 
2 min and then by centrifugation at 14 000g for 10 min at 4°C. 
Supernatant was taken up and dried under nitrogen at 37°C. 
Residues were redissolved in 400 μL of acetonitrile/water 
(1:2), vortexed for 2 min and centrifuged at 14 000g for 10 min 
at 4°C. The supernatant was placed into an auto sampler vial 
for UPLC-QTOF-MS/MS analysis in both positive and nega-
tive electrospray ionization (ESI) modes.

Ultra-performance liquid chromatography and mass 
 spectrometry analysis

Both the discovery and validation cohort samples were pro-
cessed and analyzed using the same instrument and methods. 
We transferred a pretreated sample (2 μL) into a 100 μm × 
2.1  μm × 1.7 μm BEH C18 column (Waters Corporation) 
 using an Acquity ultra-performance liquid chromatography 
system. The column temperature was maintained at 35°C, 
and the flow rate was 0.35 mL/min. Samples from 5 children 
with autism and 5 controls were run alternately. The gradient 
consisted of 2 solutions: 1) water with 0.1% formic acid and 
2) acetonitrile. The proportioning of mobile phases in gradi-
ent elution were as follows. The positive mode involved 
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 2%–20% acetonitrile for 0–1.5 min, 20%–70% for 1.5–6 min 
and 70%–98% for 6–10 min; the concentration was held at 
98% for 2 min, then returned to 2% for 12–14 min and finally 
held at 2% for 14–16 min. The negative mode involved 2%–
30% acetonitrile for 0–2.0 min, 30%–70% for 2–3 min, 70%–
75% for 3–7.5 min and 75%–98% for 7.5–10.5 min; the concen-
tration was held at 98% for 1.5 min, returned to 2% for 
12–14 min and finally held at 2% for 14–16 min.

We performed MS analysis using a Waters Micromass Q-
TOF spectrometer. The MS parameters were set up as follows: 
the instrument operated with a positive or negative ion mode, 
capillary voltage of 3000 V (positive) or 2800 V (negative), 
sample cone voltage of 35 V, desolvation temperature of 
320°C, desolvation gas flow of 600 L/h, extraction cone volt-
age of 3.0 V, collision energy of 6 eV, source temperature of 
110°C and cone gas flow of 15 L/h. Centroid data were col-
lected from 50 to 1000 m/z, with a scan time of 0.4 s and an 
interscan delay of 0.1 s. To avoid possible contamination and 
keep the signal stable, the Q-TOF mass spectrometer system 
was tuned for optimum accuracy and reproducibility  using 
leucine enkephalin for the positive ESI mode ([M+H]+  = 
556.2771) and negative ESI mode ([M−H]− = 554.2615).

Analytical method validation and quality control

Precision and repeatability, measured by relative standard 
deviation (RSD), are important in analytical chemistry. To as-
sure precision and repeatability of our sample analysis, we 
used pooled samples in both the discovery cohort (total 
40 samples: 6 for precision and 14 for repeatability for each 
the positive and negative mode) and the validation cohort 
(total 52 samples: 6 for precision and 20 for repeatability for 
each the positive and negative mode) analyses for quality 
control (QC).38–40 The pooled samples were prepared by mix-
ing equal volumes of serum (100 μL) from 15 control and 
15  autism samples in each analysis, respectively. We ana-
lyzed these QC samples together with study samples. 
Whereas precision was evaluated using 6 continuous injec-
tions of the QC sample before the study sample sequence, 
 repeatability was evaluated using 1 QC sample injected for 
 every 10 study samples (5 autism and 5 control). Six single 
ions with different m/z were randomly selected according to 
retention time. We examined precision and reproducibility of 
the QC sample using the RSD of retention time and the peak 
intensity of 6 ions (RSD < 15% by U.S. Food and Drug Ad-
ministration guidance41). We also performed principal com-
ponents analysis (PCA) on all QC samples.

At the beginning of sample analysis, a new UPLC column 
was used and equilibrated after running 20 blanks under the 
chromatographic conditions described previously. We ran 
the UPLC/Q-TOF MS/MS first in negative ion mode and 
then in positive ion mode in both the discovery and valida-
tion samples. To avoid sequence effect, we used a random-
ized crossover approach for running the samples, along with 
a blank sample to clean chromatographic carryover effect. 
The running sequence was 1 blank, 5 autism, 1 blank, 5 con-
trol, 1 QC and 1 blank, with roughly 70 samples per day. 
When an examination of the blank injections showed any 

presence of carryover effect or long running peaks, we in-
serted a blank sample run into the sequence. All samples be-
fore and after the blank samples were reanalyzed to ensure 
the carryover effect was washed out. After negative and posi-
tive ion mode detection, the chromatographic system and MS 
interface was also flushed.

Data preprocessing and analysis

The UPLC/Q-TOF MS/MS data were imported to Marker-
Lynx Application Manager version 4.1 Masslynx SCN 714 
(Waters Corporation). We used the MarkerLynx ApexTrack 
peak integration for peak detection and alignment. The 
ApexTrack peak parameters were set as follows: peak width 
at 5% height, 1 s, and peak to-peak baseline noise (calculated 
automatically). Collection parameters were set as follows: 
mass window 0.05 Da, retention time window 0.2 min, min-
imum intensity 80, noise elimination level 6.0, and "Yes" for 
deisotope data. After being recognized and aligned, we nor-
malized the intensity of each ion to the summed total ion in-
tensity of each chromatogram. The data-reduction process 
was handled in accordance with the 80% rule.38 Only data in 
the range of 0.40–10.5 min were used. The data were in a 
3-dimensional matrix containing retention time, mass-to-
charge ratio (m/z) pairs and ion intensity information (vari-
ables). We performed a distribution-based data imputa-
tion42,43 for some nondetected values. The data were then 
exported to SIMCA-P 11.5 software (Umetrics AB, UMEA) 
for further analysis. We used the Pareto scaling method for 
data transformation before multivariate statistical analysis.

In metabolomic analysis, the confirmation of metabolite 
molecular weight and further structure elucidation are con-
sidered the most challenging steps. We determined a molecu-
lar formula according to the exact mass and isotope pattern. 
Additional tandem mass spectrometry (MS/MS) experi-
ments were carried out to identify metabolites. We con-
ducted MS/MS experiments to obtain fragmentation patterns 
of selected metabolites for producing their structure informa-
tion, and we calculated accurate molecular weight. The mass 
tolerance between measured m/z values and exact mass of 
the component of interest was set to within 30 ppm.44–46 The 
UPLC-MS/MS product ion spectrum of a metabolite was 
matched with its structure information using Mass Fragment 
application manager software (MassLynx version 4.1, Waters 
Corporation). A metabolite was detected and identified 
based on accurate mass, MS/MS information and metabolite 
structure information from related databases: HMDB (www 
.hmdb.ca) and METLIN (http://metlin.scripps.edu). Finally, 
metabolites were confirmed by comparison of retention time 
and fragmentation pattern with authentic standards. In addi-
tion, resolution and mass accuracy were 5000  ppm and 
10  ppm, respectively, which can provide high confidence 
level in compound identification.

As autism is more prevalent in boys than girls, we also ana-
lyzed male participants separately; we did not analyze female 
participants separately owing to insufficient samples, especially 
in the validation cohort. In the validation stage, we focused on 
analyzing those metabolites identified in the discovery stage; 
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metabolites were considered to be candidates if they could be 
replicated consistently in an independent sample.

We built a partial least squares discriminant analysis (PLS-
DA) model to assess the classification of autism and control 
participants while optimizing the identification of changes in 
serum metabolites. It is a type of PLS regression where the de-
pendent variable is a binary outcome (i.e., disease v. healthy), 
and the independent variables are multiple components de-
rived from metabolites detected and selected based on criteria 
of variable importance in projection (VIP). We evaluated 
goodness of fit using R2Y, which is the proportion of the vari-
ation in Y explained by the model.47 The predictability was 
measured using Q2, which is defined as 1 minus the ratio of 
the  prediction error sum of squares (PRESS) to the (mean cor-
rected) total sum of squares (TSS) of the response Y.47–50 Val-
ues of R2Y and Q2 close to 1.0 indicate a better model.50,51 We 
validated the PLS-DA model through permutation analysis 
(800 times) to reduce possible false-positive findings using 
SIMCA-P 11.5 (Umetrics AB, UMEA). This software displays 
the plots of correlation coefficients between the original Y and 
the permuted Y versus the cumulative R2Y and Q2 as well as 
fitted regression lines. The criteria for model validity are as 
follows: 1) all Q2 values on the permuted data set to the left 
are lower than the Q2 value on the actual data set to the right 
and 2) the regression line (line joining the point of observed 
Q2 to the centroid of a cluster of permuted Q2 values) has a 
negative value of intercept on the Y axis.47

Individual discriminating metabolites associated with au-
tism and controls were selected primarily according to the 
VIP (> 1.0) values and a statistical test for difference (p < 0.05) 
between patients wiht autism and controls. While some sug-
gest using a VIP greater than 252 as a criterion for selecting an 
individual metabolite, we chose a VIP greater than 1, similar 
to other studies,53,54 in order to analyze more metabolites. Our 
approach took into account both predicting capability and 
statistical significance of individual metabolites in association 
with autism. As some metabolites were not normally distrib-
uted, we used a t test and a nonparametric Mann–Whitney U 
test, which is robust to deviation from the assumption of data 

distribution that parametric methods require, to test for the 
difference in metabolites between cases and controls for 
metab olomics discovery.

Finally, we performed multiple logistic regression analysis 
of top potential metabolites from discovery and validation 
analysis using stepwise selection (criteria: entry = 0.15, re-
moval = 0.15). Receiver operating characteristics (ROC) an-
alysis was used to evaluate predictive ability of potential 
metabolic biomarkers. Area under the curve (AUC), best cut-
off point, sensitivity and specificity were determined using 
the maximum value of the Youden index. The analysis was 
performed using SPSS version 13.01. We performed stepwise 
logistic regression analysis of the validation sample to build a 
separate model to validate the multiple logistic regression 
model built on the discovery sample.

Results

The discovery cohort, comprising 73 patients with autism 
and 63 healthy controls, underwent the metabolomic discov-
ery analysis of serum to identify metabolites that could con-
tribute to the discrimination of cases and controls. Suggested 
metabolites were then validated in the independent cohort of 
100 cases and 100 controls. The discovery sample comprised 
59 male and 14 female patients with autism (mean age 4.6 ± 
0.8 [range 3–6] yr) and 51 male and 12 female controls (mean 
age 4.1 ± 0.7 [range 3–6] yr) matched for age and sex. The 
vali dation sample comprised 86 male and 14 female patients 
with autism (mean age 4.4 ± 0.8 [range 3–6] yr) and 81 male 
and 19 female controls (mean age 4.5 ± 0.8 [range 3–6] yr) 
matched for age and sex. The proportion of patients with de-
velopmental delay was 80.8% (59 of 73) in the discovery co-
hort and 74.0% (74 of 100) in the validation cohort. The char-
acteristics of study participants are shown in Table 1.

Serum metabolite profiling

The precision and repeatability of the sample analysis were ex-
cellent for both the discovery and validation samples (Appen-
dix 1, Table S1, available at jpn.ca). For the precision, the RSD 
for retention time ranged from 0.02% to 0.23% and for peak in-
tensity from 2.26% to 7.37% in the discovery sample; for the re-
peatability, the RSD for retention time ranged from 0.04% to 
0.22% and for peak intensity from 1.46% to 6.06%. These meas-
urements were far below 15%, indicating the analytical meth-
ods were good according to the FDA guidance. The PCA of the 
QC sample also provided confidence that our sample running 
was stable (Appendix 1, Fig. S1A and B). Representative base-
line peak intensity chromatograms of serum indicated that the 
sample metabolites attained suitable separation on UPLC C18 
column by gradient elution. Typical single UPLC-QTOF/MS 
base peak intensity chromatograms of a patient with autism 
and a healthy control are presented in Figure 1. At a retention 
time of 2.88 min in the patient with autism and 2.87 min in the 
control the relative abundance was much higher in the patient 
(almost > 95%) than the control (50%). A total of 1516 and 
1499 potential metabolites were determined in positive and 
negative modes, respectively, in the discovery analysis.

Table 1: Demographic and clinical characteristics of participants in 
the discovery and validation studies

Discovery cohort Validation cohort

Category Autism Control Autism Control

No. participants 73 63 100 100

No. male:female 59:14 51:12 86:14 81:19

Age, mean ± SD,      
  yr

4.6 ± 0.8 4.1 ± 0.7 4.4 ± 0.8 4.5 ± 0.8

DQ, no.

Healthy 14 63 26 100

Delayed 59 0 74 0

ABC total score,  
  mean ± SD

89.1 ± 28.6 — 95.3 ± 28.7 —

CARS total  
  score, mean ±  
  SD

36.5 ± 4.6 — 35.7 ± 4.9 —

ABC = Autism Behaviour Checklist; CARS = Childhood Autism Rating Scales; DQ = 
developmental quotient; SD = standard deviation.
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The PLS-DA analysis of the discovery sample revealed a 
clear clustering trend between patients with autism and con-
trols for metabolites in both the positive and negative mode 
(Fig. 2). Three principal components were extracted from 
 metabolites in positive mode (R2Y = 0.995; Q2 = 0.989) and 3 in 
negative mode (R2Y = 0.984; Q2 = 0.965), and the models fit 
well. The PLS-DA models built on permutated data sets 
showed that the observed model was unlikely obtained by 
chance. Except for the 1 value from the actual data, all per-
muted R2Ys were below or around 0.6 for positive and nega-
tive modes. Similarly, all permuted Q2s were below or around 
0 for positive and negative modes. All R2Ys and Q2s are much 
lower than the original points to the right (Fig. 3), suggesting 
the model fit was valid. This indicated that patients with au-
tism had distinct metabolite alterations in serum.

Difference in metabolic profiling between patients with 
 autism and healthy controls

A total of 63 of 228 potential metabolites (or UPLC/Q-TOF MS 
peaks) in the positive mode and 72 of 218 in the negative mode 
that met the criterion of VIP > 1 also showed significant differ-
ences (p < 0.05) between patients with autism and controls. Only 
17 metabolites (6 in the positive and 11 in the negative mode) 
were confirmed by available databases: phytosphingosine, ara-
chidonic acid (ARA), docosapentaenoic acid (DPA), sphingosine 
1-phosphate (S1P), uric acid (UA), adrenic acid, docosahexae-
noic acid (DHA), LysoPE(0:0/20:2(11Z,14Z)),  LysoPE (18:0/0:0), 
LPA (18:2(9Z,12Z)/0:0), LysoPE(0:0/16:0), L-acetylcarnitine, 
decanoylcarnitine, pregnanetriol, LysoPC (18:3(6Z,9Z,12Z)), 
 LysoPC (20:3 (5Z,8Z,11Z)) and 9,10- epoxyoctadecenoic acid 
(9,10-EOA) (Table 2). More detailed descriptions of the relative 
contents for 17 differential metabolites are provided in Appen-
dix 1, Table S2. Seven of 17 metabolites-— phytosphingosine, 

ARA, DPA, S1P, UA, adrenic acid and DHA — were identified 
using reference compounds; chemical structures and mass frag-
ment information on principal metabolites are shown in Appen-
dix 1, Figure S2. In particular, mass errors of adrenic acid and 
UA were 21.13 and 23.95, respectively, and were identified 
 using both databases and reference compounds, suggesting that 
the analysis was appropriate for compound identification. Al-
though authentic standards of the other 10 metabolites were not 
commercially available, they were supported by a library data-
base (Appendix 1, Fig. S3). Unfortunately, the rest of the metab-
olites were neither available in a related database nor verified 
using a standard substance.

Analysis of the male-only sample also revealed a similar 
set of metabolites (data not shown). Sixteen of the 17 metab-
olites differed significantly between patients with autism and 
healthy controls in the discovery sample (all p < 0.05; Appen-
dix 1, Table S3); LysoPC (20:3(5Z, 8Z, 11Z)) did not differ be-
tween the groups (p = 0.07). This was expected, because our 
samples were predominantly male and largely proportional 
to overall diagnosis of the disease.

Validation study of top metabolites associated with autism

A validation study of 17 metabolites was performed in the in-
dependent cohort of cases and controls. As in the discovery 
analysis, the experiments on the validation sample were car-
ried out with good precision and reproducibility (Appendix 1, 
Table S1 and Fig. S1C and D). We observed significant dif-
ferences between patients with autism and controls in over-
all samples for 12 of 17 metabolites: 3 in the positive mode 
(decanoylcarnitine, phytosphingosine, pregnanetriol) and 9 
in the negative mode (DHA, DPA, adrenic acid, S1P, 
LPA(18:2(9Z,12Z)/0:0), LysoPE(0:0/16:0), LysoPE(18:0/0:0), 
UA and 9,10-EOA). Unfortunately, 5 serum metabolites were 

Fig. 1: Typical ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF/MS)
base peak intensity (BPI) chromatograms for 1 autism and 1 control serum sample in both the positive and negative modes. 
Positive mode: (A) autism versus (B) control sample; negative mode: (C) autism versus (D) control sample. The Y axis shows 
relative abundance (%), and the X axis shows retention time in minutes, which was used to identify individual metabolites.
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not consistently validated (Appendix 1, Table S2). We noted 
that 1 metabolite, phytosphingosine, was validated in overall 
samples (p = 0.023), but was not replicated in the male-only 
sample (p = 0.32). Another metabolite, L-acetylcarnitine, was 
not validated in the overall sample (p = 0.11), but appeared sig-
nificant in the male-only validation sample (p = 0.026; Appen-
dix 1, Table S2 and S3). In summary, 11 of 17 metabolites were 
consistently validated in both overall and male-only samples, 

and all of them had a good predictability. Specifically, S1P and 
LPA(18:2(9Z,12Z)/0:0) each had a good predictability of dis-
ease status (AUC > 0.80; Table 3). We also observed an associa-
tion between the CARS score and decanoylcarnitine (r = 
–0.2564, p = 0.07) and pregnanetriol (r = –0.3240, p = 0.020) and 
between the ABC score and pregnanetriol (r = 0.2697, p = 0.06), 
DHA (r = –0.2611, p = 0.06), DPA (r = –0.3175, p = 0.023) and 
S1P (r = 0.2746, p = 0.05; Table 4).

Fig. 2: Partial least squares discriminant analysis 3-dimensional plot of 
principal component in children with autism and healthy controls, by 
positive and negative mode. (A) Positive mode: R2Y = 0.995, Q2 = 
0.989, 3 principal components. (B) Negative mode: R2Y = 0.984, Q2 = 
0.965, 3 principal components. Controls are shown in red, and patients 
with autism are shown in black. t[1] = first principal component; t[2] = 
second principal component; t[3] = third principal component.
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Fig. 3: Plot of R2Y and Q2 from 800 permutation tests in partial least 
squares discriminant analysis models for the metabolomics analysis in 
the discovery sample in the (A) positive and (B) negative modes. The Y 
axis shows R2Y and Q2, and the X axis shows the correlation of ob-
served and permuted data. The 2 points on the right side correspond to 
R2Y and Q2 of the observed data set. Other points on the left side cor-
respond to R2Ys and Q2s of permuted data sets. The 2 plots indicate 
that the 2 models were well-guarded against overfitting. The criteria for 
model validity are as follows: 1) all Q2 values on the permuted data set 
to the left are lower than the Q2 value on the actual data set to the right 
and 2) the regression line (line joining the point of observed Q2 to the 
centroid of a cluster of permuted Q2 values) has a negative value of 
 intercept on the Y axis.47
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Multiple logistic regression analysis

To assess how multiple metabolites collectively classify the 
disease status of autism, we built a logistic regression model 
using stepwise selection. The regression model was first built 
on 11 metabolites for the discovery sample, controlling for 
age and sex. Two metabolites entered the multiple regression 
model: DHA (standardized [std] β = –0.4838, p < 0.001) and 

S1P (std β = 0.5100, p < 0.001). These 2 metabolites were then 
entered in the model built on the independent validation 
sample: DHA (std β = –0.445, p < 0.001) and S1P (std β = 
1.124, p < 0.001; Table 5). We calculated the sensitivity and 
specificity based on estimates of the final model built on the 
discovery sample for the validation sample, and the model fit 
very well (AUC = 0.898, sensitivity = 90%, specificity = 74%; 
Appendix 1, Table S4 and Fig, S4).

Table 2: Metabolites identified as differentially expressed in the positive and negative modes in the discovery cohort

RT, min
Measured 
mass, Da*

Calculated 
mass, Da†

Mass error, 
ppm‡

Elemental 
composition

Postulated
identity VIP

Fold
change§

Positive

0.79 204.1255 204.1236 –9.308 C9H17NO4 L-acetylcarnitine 2.12 0.56

4.95 316.2504 316.2488 –5.0593 C17H33NO4 Decanoylcarnitine 1.64 0.59

5.4 318.3025 318.3008 –5.3408 C18H39NO3 Phytosphingosine 7.92 8.44

6.81 337.2764 337.2743 –6.2263 C21H36O3 Pregnanetriol 1.70 1.37

6.37 518.3271 518.3247 –4.6303 C26H48NO7P LysoPC(18:3(6Z,9Z,12Z)) 1.83 1.33

7.19 546.3535 546.3560 4.5758 C28H52NO7P LysoPC(20:3(5Z,8Z,11Z)) 1.53 1.13

Negative

0.82 167.0165 167.0205 23.9497 C5H4N4O3 Uric acid 2.63 0.74

4.66 295.221 295.2273 21.3399 C18H32O3 9,10-epoxyoctadecenoic acid 1.85 1.36

8.56 303.2283 303.2324 13.5212 C20H32O2 Arachidonic acid 3.09 0.66

7.97 327.2312 327.2324 3.6671 C22H32O2 Docosahexaenoic acid 3.79 0.37

9.44 329.2444 329.2481 11.2379 C18H32O3 Docosapentaenoic acid 1.95 0.41

10.06 331.2567 331.2637 21.1316 C22H36O2 Adrenic acid 1.72 0.38

4.14 378.2365 378.2409 11.6329 C18H38NO5P Sphingosine 1-phosphate 3.99 2.04

6.13 433.2403 433.2355 –11.0793 C21H39O7P LPA(18:2(9Z,12Z)/0:0) 2.35 2.36

4.90 452.2784 452.2777 –1.5477 C21H44NO7P LysoPE(0:0/16:0) 2.47 1.47

6.36 480.3128 480.3090 –7.9115 C23H48NO7P LysoPE(18:0/0:0) 2.49 1.64

4.54 504.3077 504.3090 2.5778 C25H48NO7P LysoPE(0:0/20:2(11Z,14Z)) 3.19 1.14

RT = retention time; VIP = variable importance in the projection. 
*Molecular weight of metabolites from UPLC-MS/MS. 
†Calculated using the molecular weight calculator in Mass Lynx version 4.1. 
‡(Calculated mass – measured mass) ÷ measured mass × 1 000 000. 
§Ratio of mean relative amount between the autism and control groups.

Table 3: Receiver operator characteristic curve analysis of 11 metabolites in positive and negative mode in the validation 
study

Biomarkers AUC
Best cutoff

(normalized peak intensity) Sensitivity, % Specificity, %
Maximum of 

Youden index*

Positive mode

Decanoylcarnitine 0.596 13.11 72 52 0.24

Pregnanetriol 0.607 24.59 36 89 0.25

Negative mode

Uric acid 0.639 120.04 69 58 0.27

9,10-Epoxyoctadecenoic acid 0.682 8.91 60 86 0.46

Docosahexaenoic acid 0.741 21.36 67 76 0.43

Docosapentaenoic acid 0.719 12.87 59 78 0.37

Adrenic acid 0.682 22.37 50 84 0.34

Sphingosine 1-phosphate 0.871 38.89 79 81 0.60

LPA(18:2(9Z,12Z)/0:0) 0.886 3.94 77 88 0.65

LysoPE(0:0/16:0) 0.721 41.66 61 81 0.42

LysoPE(18:0/0:0) 0.728 29.47 65 75 0.40

AUC = area under the curve.
*Sensitivity + specificty – 1.
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We also built a multiple regression model in the male-only 
sample, using metabolites that were predominant in both the 
discovery and validation samples. In the discovery sample, 
age, sex, DHA (std β = –0.3862, p = 0.008) and S1P (std β = 
0.7098, p < 0.001) were entered in the regression model and 
explained 37.40% of the variation. In the validation sample 
analysis, age, DHA (std β = –0.3473, p = 0.06) and S1P (std β = 
1.2561, p < 0.001) were entered in the regression model and 
explained 55.07% of variation (Table 5). Similarly, a logistic 
regression model built on the discovery sample fit well in the 
validation sample (AUC = 0.915, specificity = 82.6%, sensitiv-
ity = 86.4%; Appendix 1, Table S4 and Fig. S4).

Discussion

We performed a metabolomic analysis of serum in a cohort 
of patients with autism and controls and identified 17 metab-

olites that had best classification of the disease status. Eleven 
of these metabolites were validated in an independent cohort 
of cases and controls in both overall and male-only samples 
in a univariate analysis. Multiple logistic regression analysis 
of these 11 metabolites identified 2 metabolites, DHA and 
S1P, that were siginificant predictors of autism. These find-
ings were based on 2 independent case–control cohorts using 
multiple logistic regression analysis of 11 replicated metab-
olites, in which we controlled for potential heterogeneity.

We observed that DHA, DPA, UA and 9,10-EOA were as-
sociated with autism. The 9,10-EOA is a peroxidation product 
of linoleic acid, which consumes excessive unsaturated fatty 
acids, such as DHA, and leads to a lower level of DHA. Previ-
ous studies have revealed significant alterations in fatty acid 
profiles of patients with autism compared with age-matched 
healthy children.25,55,56 Children with autism tend to have a 
lower level of polyunsaturated fatty acid, which contributes to 

Table 4: Spearman correlation between of 11 metabolites relative contents with the total score 
of ABC, CARS, in validation stage

ABC CARS

Metabolites r p value r p value

Positive

Decanoylcarnitine –0.1359 0.34 –0.2564 0.07

Pregnanetriol 0.2697 0.06 0.3240 0.020

Negative

Uric acid 0.0453 0.75 –0.2228 0.12

9,10-Epoxyoctadecenoic acid 0.2066 0.15 –0.0471 0.74

Docosahexaenoic acid –0.2611 0.06 –0.1280 0.37

Docosapentaenoic acid –0.3175 0.023 –0.1637 0.25

Adrenic acid –0.1892 0.18 –0.1320 0.36

Sphingosine 1-phosphate 0.2746 0.05 –0.0657 0.65

LPA(18:2(9Z,12Z)/0:0) –0.0632 0.66 –0.0042 0.98

LysoPE(0:0/16:0) 0.0220 0.88 0.1833 0.20

LysoPE(18:0/0:0) –0.1230 0.39 0.1169 0.41

ABC = Autism Behaviour Checklist; CARS = Childhood Autism Rating Scales.

Table 5: Multiple logistic regression models for the discovery and validation cohorts

Discovery cohort* Validation cohort†

Factor Estimate SE Wald χ2 p value Std β Estimate SE Wald χ2 p value Std β

Overall sample

Intercept 0.2082 1.2091 0.0296 0.86 –0.5312 1.8438 0.0830 0.77

Sex 0.1669 0.4643 0.1293 0.72 0.0322 1.2835 0.5900 4.7329 0.030 0.2633

Age –0.3435 0.2135 2.5894 0.11 –0.1538 –0.7798 0.3039 6.5855 0.010 –0.3270

Docosahexaenoic acid –0.0514 0.0141 13.2953 < 0.001 –0.4838 –0.0719 0.0215 11.1970 < 0.001 –0.4450

Sphingosine 1-phosphate 0.0500 0.0121 17.0152 < 0.001 0.5100 0.1171 0.0184 40.6966 < 0.001 1.1242

Male-only

Intercept –0.3142 1.3564 0.0537 0.82 –0.2483 1.9556 0.0161 0.90

Age –0.4685 0.2489 3.5416 0.06 –0.2030 –0.7711 0.3525 4.7870 0.029 –0.3042

Docosahexaenoic acid –0.0398 0.0150 6.9810 0.008 –0.3862 –0.0575 0.0238 5.8337 0.016 –0.3473

Sphingosine 1-phosphate 0.0675 0.0146 21.3914 < 0.001 0.7098 0.1348 0.0223 36.6394 < 0.001 1.2561

SE = standard error; Std = standardized.
*Overall sample: R2 = 0.3081; max-rescaled R2 = 0.4108. Male-only sample: R2 = 0.374; max-rescaled R2 = 0.4632.
†Overall sample: R2 = 0.4572; max-rescaled R2 = 0.6096. Male-only sample: R2 = 0.4741; max-rescaled R2 = 0.6324.
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maintenance of the structural and functional integrity of the 
central nervous system.57–67 A double-blind randomized 
 placebo-controlled study found that DHA or eicosapentaenoic 
acid added to ARA supplementation could reduce behav-
ioural problems in children with autism.68–70 This is consistent 
with our findings that DHA was significantly associated with 
CARS score, which measures the severity of autistic behav-
iours (Table 4). These findings may further support that ab-
normalities of fatty acid are associated with autism.71

We also found that S1P was associated with autism. Sphin-
gomyelin metabolism has been associated with abnormality 
in cerebral white matter,72,73 and recent studies have provided 
support for the hypothesis of an abnormal developmental tra-
jectory of white matter in patients with autism.74,75 In addition, 
S1P may play some biological roles in immune function.76 We 
suspected that alterations of sphingolipid metabolism in chil-
dren with autism may be associated with abnormality in cere-
bral white matter. In addition, our study indicates that chil-
dren with autism tend to have a lower level of UA in serum. 
Although the mechanism underlying lower serum UA is not 
clear, it has been recommended for use in autism screening; a 
previous study reported that less than 5% (1 of 32) of patients 
with autism have been found to have lower serum UA.77

In the discovery cohort, our male-only analysis was largely 
consistent with that of the overall sample, except that 1 metab-
olite — LysoPC (20:3(5Z, 8Z, 11Z)) — was less significant. This 
was expected because both the discovery and the validation 
samples were predominantly male. However, the slight differ-
ences in validation analyses between the overall and male-only 
samples were noted. In the male-only validation analysis phy-
tosphingosine was not significant, likely owing to the reduction 
in sample size. It should be noted that while L-acetylcarnitine 
was not significant in the overall sample, it became significant 
in the male-only sample, even when the sample size was re-
duced, suggesting that the difference in L-acetylcarnitine be-
tween patients with autism and controls may be sex-sensitive, 
possibly owing to sex bias. Lower levels of L-acetylcarnitine 
and decanoylcarnitine have been found in children with autism 
and may reflect mitochondrial dysfunction.78, 79, 80 A double-
blind, parallel, multicentre comparison of L-acetylcarnitine 
with placebo in patients with attention-deficit/hyperactivity 
disorder and in boys with fragile X syndrome indicated that  
L-actylcarnitine significantly improved social behaviour.81

The alteration in these serum biomarkers could partly con-
tribute to the variety of clinical manifestations of autism. The 
significant changes in serum pregnanetriol between children 
with autism and controls indicated perturbations in estrogen 
metabolism in children with autism. Moreover, the estrogen 
could have significant effects on the metabolism of polyun-
saturated fatty acid.82,83 We speculated that altered metab-
olism of hormones may be one of the causes of abnormal 
fatty acid metabolism. We also found abnormal lysophospha-
tide metabolism, such as the level changes in LPA 
(18:2(9Z,12Z)/0:0), LysoPE(0:0/16:0), LysoPE(18:0/0:0), in 
children with autism. We suspected that alterations of lyso-
phosphatide metabolism in children with autism may be as-
sociated with abnormality in polyunsaturated fatty acids and 
sphingomyelin metabolism.

In our study, significant alterations in the fatty acid pro-
files (DHA, DPA and S1P) were found in the 2 cohorts. We 
present some evidence related to fatty acid β-oxidation and 
mitochondrial dysfunction (9,10-EOA and decanoylcarni-
tine). A multiple logistic regression model built on DHA and 
S1P in the discovery sample was confirmed in the validation 
sample with high specificity and sensitivity. If validated in 
additional larger samples, DHA and S1P could be used for 
clinical diagnosis of autism or clinical evaluation of treat-
ment in patients with autism.

Limitations

We should point out some limitations of this study. First, as 
autism was diagnosed predominantly in boys, we were unable 
to perform sex-specific analysis in girls owing to insufficient 
samples of female patients. Second, we did not examine the 
stability of the 11 significant metabolites over time after the in-
itial test in the discovery sample; instead, we validated the dis-
covery results in another independent sample. While this 
study was designed with 2 independent sample cohorts, the 
sample size was still relatively small. Our findings need to be 
further validated with a larger sample or with a longitudinal 
study that could control for intraindividual variations. Further 
assessment of the specificity for disease prediction should be 
carried out with other neurodevelopmental disorders, such as 
ADHD or some childhood metabolic diseases.

Conclusion

We identified 11 metabolites consistently in 2 independent co-
horts of patients with autism and controls that may have 
some clinical applications for autism. Two metabolites (DHA 
and S1P) were consistently replicated in a multiple logistic re-
gression model. Our study may also provide a novel insight 
into the genetic etiology of autism.
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