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Introduction

Symptoms of hyperactivity/impulsivity and inattention are 
dimensionally distributed in the population. Evidence sup-
porting this idea comes from the study of twin pairs from 
the general population, which demonstrate high heritability 
estimates for these behavioural traits, ranging from 0.60 to 
0.91.1–3 The low end of the distribution would be repre-
sented by few behavioural problems and better cognitive 
function than the high and symptomatic end. This extreme 
and impairing end would probably be represented by the 
categorical diagnosis of attention-deficit/hyperactivity dis-
order (ADHD).4 A study on inhibition, an executive func-
tion whose impairments are part of the cognitive deficits 
seen in individuals with ADHD, demonstrated that perfor-
mance on inhibition-related tasks were positively associated 

with ADHD-like traits in a large sample of healthy adults 
who did not have a first-degree relative with ADHD.5

The heritability estimates for ADHD are essentially the 
same for both continuous and categorical approaches, con-
sistent with a dimensional view of ADHD and a strong 
 genetic component.1–3,6 Based on the normal distribution of 
ADHD traits in the general population, the identification 
and understanding of ADHD susceptibility genes may 
bene fit from studies of this dimensional characteristic of 
ADHD in nonclinical samples.2 Despite high heritability es-
timates, the identification of ADHD genetic susceptibility 
markers has been difficult, with few replicable findings 
 described so far.7,8 The main candidates for ADHD molecu-
lar genetic studies have been genes involved in the dopa-
mine pathway, given considerable evidence supporting 
the  dopaminergic hypothesis. According to this theory, an 
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Background: Attention-deficit/hyperactivity disorder (ADHD) symptoms are dimensionally distributed in the population. This study aimed 
to assess the role of the catechol-O-methyltransferase (COMT) and of the dopamine transporter (DAT1) genes on ADHD symptoms in 
the general population. Methods: We investigated 4101 individuals from the 1993 Pelotas Birth Cohort Study using the parent version of 
the Strengths and Difficulties Questionnaire (SDQ) at ages 11 and 15 years. The SDQ hyperactivity/inattention scores were the main 
outcomes. Results: Linear regression analyses demonstrated that the increasing number of COMT158Val and DAT1 10R alleles signifi-
cantly predicted increasing SDQ hyperactivity/inattention scores in boys at both 11 and 15 years of age (β coefficient = 0.049, t = 2.189, 
p = 0.029, R2 = 0.012, and β coefficient = 0.064, t = 2.832, p = 0.005, R2 = 0.008, respectively). The presence of both COMT158Val and 
DAT1 10R alleles was also associated with full categorical ADHD diagnosis at 18 years of age in boys (χ2 = 4.561, p = 0.033, odds ratio 
2.473, 95% confidence interval 1.048–5.838) from this cohort. We did not observe these associations in girls. Limitations: Our analyses 
of SDQ hyperactivity/inattention scores were not corrected for SDQ scores of conduct problems because these variables were highly 
correlated. Conclusion: This study demonstrates a role for COMT and DAT1 genes on hyperactivity/inattention symptoms and provides 
further support for ADHD as the extreme of traits that vary in the population. It also confirms previous evidence for sexual dimorphism on 
COMT and DAT1 gene expression.



Akutagava-Martins et al.

406 J Psychiatry Neurosci 2016;41(6)

underlying dopamine deficit would be responsible for at 
least part of the ADHD phenotype spectrum.9,10

The catechol-O-methyltransferase (COMT) enzyme is in-
volved in catecholamine’s clearance from the synaptic cleft 
in an extraneuronal degradation process. It is one of the 
mechanisms involved in dopamine signalling termination, 
which is particularly important to control frontal lobe dopa-
mine levels.11,12 The COMT gene has a common functional 
polymorphism, a valine to methionine change at codon 158 
(Val158Met, rs4680). Val allele homozygosity determines a 3- 
to 4-fold increase in enzyme activity, resulting in faster cate-
cholamine catabolism.13,14 Three meta-analyses have failed 
to detect an association between this polymorphism and 
ADHD.7,15,16 Discrepancies may be attributed to sexual di-
morphism given that the  COMT ADHD susceptibility allele 
may differ according to sex.17,18

The dopamine transporter gene (DAT1 or SLC6A3) codes 
for the dopamine transporter protein (DAT) that is responsi-
ble for the reuptake of dopamine from the synaptic cleft 
back into the presynaptic neuron. Similarly to COMT, DAT 
is involved in control of the strength and duration of the do-
pamine signal. However, DAT is the main mechanism of do-
pamine regulation in other brain regions: the striatum and 
nucleus accumbens.19 The most investigated DAT1 polymor-
phism is a 40 base pairs (bp) variable number of tandem re-
peats (VNTR) located at the gene’s 3’-untranslated region 
(3’UTR). Ten (10R) and 9 (9R) repeat alleles are the most 
common.20 A study has demonstrated that DAT messenger 
RNA (mRNA) expression in postmortem midbrain tissue is 
higher for homozygous 10R carriers.21 However, 2 meta-
analyses of neuroimaging studies detected increased DAT 
activity for 9R carriers in striatal brain regions.22,23 This result 
is intriguing, given that 3 meta-analyses have reported a 
small but significant association between the 10R allele and 
genetic susceptibility to ADHD.6,7,24

Despite all data from the literature demonstrating that 
ADHD traits are normally distributed in the population, a 
recent study suggested a different genetic architecture for 
ADHD and ADHD traits.25 In this context, genes identified 
as risk factors for a full categorical diagnosis of ADHD 
would not necessarily be associated with ADHD traits in 
the general population. Thus, to explore this hypothesis, we 
aimed to investigate the role of the ADHD candidate genes 
COMT and DAT1 on hyperactivity/inattention traits in a 
large birth cohort. There is no evidence to support sex dif-
ferences regarding the influence of genetic and environmen-
tal factors acting on the ADHD continuum,2,3 but because 
the dopaminergic system seems to be particularly sensitive 
to estrogen,26 we investigated the role of these genes sepa-
rately for boys and girls.

Methods

The Institutional Review Board of the School of Medicine 
from Universidade Federal de Pelotas approved this study. 
Parents or legal guardians signed an informed consent form 
authorizing their own participation and that of the children 
in the study.

Participants

The individuals included in this study were born in 1993 in 
Pelotas, Brazil. The data collection methodology and demo-
graphic data from this birth cohort are fully described else-
where.27,28 Of the children born alive (n = 5249), 87.5%, 
85.7%, and 81.4% were reassessed at ages 11, 15 and 
18  years, respectively. During the 15-year assessment, 
4101 participants provided a saliva sample for DNA inves-
tigations; they were included in the present study.

Phenotypic assessments

To evaluate hyperactivity/impulsivity and inattention 
symptoms, the primary caregiver answered the validated 
Brazilian Portuguese version of the Strengths and Difficul-
ties Questionnaire (SDQ).29,30 The SDQ subscale of hyperac-
tivity and inattention problems allows computation of a 
score ranging from 0 to 10. We used these scores as the 
main outcome measures for the present study. The data 
were collected at ages 11 and 15 years.

A general psychiatric assessment was performed at 18 years 
of age using the validated Brazilian Portuguese version of the 
MINI International Neuropsychiatric Interview (M.I.N.I.), a 
short semistructured diagnostic interview for the DSM-IV, and 
the International Classification of Diseases, tenth revision 
(ICD-10) codes for psychiatric disorders, which provided prev-
alence estimates of the most common anxiety (generalized 
anxiety disorder and social phobia) and mood disorders (bi-
polar disorder and major depressive disorder).31,32 The ADHD 
assessment was performed using a structured interview based 
on DSM-5.33 Further details are available elsewhere.34,35

DNA collection and genotyping

We obtained DNA samples from saliva using an Oragene 
OG-250 DNA self-collection kit following the manufacturer’s 
recommended protocol (DNA Genotek Inc.). We genotyped 
the COMT Val158Met polymorphism using the TaqMan allelic 
discrimination system following the manufacturer’s recom-
mended protocol (Applied Biosystems Inc.). The DAT1 
3’UTR VNTR was genotyped as previously described.36,37

Statistical analysis

Allele and genotype frequencies were estimated by count-
ing. We tested Hardy–Weinberg equilibrium using Gene-
pop 4.0 software.38 In this investigation we chose COMT-
158Val as the reference allele based on functional studies 
demonstrating higher enzymatic activity of this allele,13,14 
consistent with a dopamine deficit hypothesized to underlie 
at least part of ADHD symptoms.9,10 We chose the DAT1 
10R allele as the reference based on the results of previous 
meta-analyses.6,7,24 Other alleles (3R, 5R, 6R, 7R, 8R, 9R, 11R, 
and 12R) were pooled owing to low frequency.

We assessed possible confounders using a χ2 test for cate-
gorical variables and a t test for continuous variables. Co-
variates were included in the models if they were associated 
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with study factors and outcomes at p ≤ 0.20. The potential 
confounders evaluated were anxiety disorders, IQ, mood 
disorders and skin colour as a marker of race. These data 
were obtained from the mothers following the Brazilian 
census method of classification based on ethnoracial self-
classification, which includes 5 groups: white, mixed, black, 
Asian, and indigenous. A study of genomic ancestry involv-
ing the 1982 Pelotas Birth Cohort reported statistically sig-
nifi cant associations between ancestry and the phenotype of 
self-classified ethnoracial group, both at population and in-
dividual levels. The study also demonstrated that European 
ancestry is predominant in Pelotas (85.3%).39 In our analy-
ses, we dichotomized the variable skin colour as white 
(66.8%) and others (33.2%).

Sample power was estimated based on sample size and a 
small effect size using G*Power version 3.1 software.40 We 
performed linear regression analyses to verify the associa-
tion between COMT and DAT1 independently and to de-
termine whether the increasing number of COMT158Val 
and  DAT1 10R alleles predicted increasing hyperactivity/ 
inattention symptoms at the 11- and 15-year assessments. 
Two-way analyses of variance were performed to test for a 
possible interaction between COMT and DAT1 genes and 
hyperactivity/inattention symptoms at the 11- and 15-year 
assessments. To test whether the presence of COMT158Val 
and DAT1 10R alleles were associated with full ADHD 
diag nosis at 18 years of age, we used the χ2 test. We per-
formed these analyses separately for boys and girls using 
SPSS for Windows, version 18.0 (IBM Corp.). All tests were 
2-tailed. We considered results to be significant at p < 0.05 
in all analyses.

Results

The prevalence of a full ADHD diagnosis assessed at 
18 years of age was 3.5%. Of these cases, 33.1% and 31.3% 
presented SDQ hyperactivity/inattention scores of 8 or 
higher at the 11- and 15-year assessments, respectively. This 

observation is similar to that in a previous report of adult 
ADHD from another birth cohort in which the majority of 
cases lacked childhood history of ADHD.41 The COMT158Val 
allele and DAT1 10R allele were the most frequent alleles in 
both male (57.4% and 71.2%, respectively) and female par-
ticipants (57.2% and 71.4%, respectively). The genotype fre-
quencies did not significantly deviate from those expected 
according to Hardy–Weinberg equilibrium. The SDQ scores 
at the 11- and 15-year assessments for both boys and girls 
deviated significantly from normality (Kolmogorov–
Smirnov test all p < 0.05). However, skewness indicated an 
approximately normal distribution of the variables (values 
ranging from 0.014 to 0.56).42 No evidence of heteroscedas-
ticity (Levene test p values ranging from 0.12 to 0.84) or de-
viation from linearity (p  values ranging from 0.22 to 0.82) 
was observed. Therefore, considering these results and the 
large sample size, we opted to conduct linear regression 
analyses on untransformed SDQ scores.

We performed linear regression analyses to verify COMT 
and DAT1 main effects independently, but no significant re-
sults were detected for boys or girls (Table 1 and Table 2). 
As COMT and DAT have a synergistic effect on dopamine 
clearance from the synaptic cleft, we divided the sample 
into 3 groups according to the presence of COMT158Val and 
DAT1 10R alleles as follows: 1) no COMT158Val or DAT1 10R 
allele, 2) presence of COMT158Val or DAT1 10R allele, or 3) 
presence of both COMT158Val and DAT1 10R allele. The 
 linear regression analyses were performed with skin colour 
as a covariate given its association with study factors and 
outcome at a significance level of p ≤ 0.20. These analyses 
demonstrated that the number of COMT158Val and DAT1 
10R  alleles significantly predicted an increase in SDQ 
 hyperactivity/inattention scores in boys at both the 11- and 
15-year assessments (β coefficient = 0.049, t = 2.189, p = 
0.029, R2 = 0.012 and β coefficient = 0.064, t = 2.832, p = 
0.005, R2 = 0.008, respectively;  Table 3). The results re-
mained significant for both the 11- and 15-year assessments 
after we excluded the smallest subgroup of individuals not 

Table 1: Linear regression analyses for COMT Val158Met polymorphism on hyperactivity/inattention scores from the 
Strengths and Difficulties Questionnaire according to sex

Sex Age, yr Genotype n SDQ score, mean ± SD β coefficient t p value R2

Male 11 Met/Met 363 4.45 ± 3.15 0.043 1.908 0.06 0.012

Met/Val 937 4.84 ± 3.08

Val/Val 653 4.95 ± 3.08

15 Met/Met 364 3.87 ± 3.04 0.030 1.305 0.19 0.005

Met/Val 938 4.37 ± 3.13

Val/Val 654 4.27 ± 3.19

Female 11 Met/Met 396 3.86 ± 2.94 –0.004 –0.167 0.87 0.002

Met/Val 962 3.80 ± 3.02

Val/Val 687 3.85 ± 3.07

15 Met/Met 395 3.22 ± 2.72 0.013 0.609 0.54 0.003

Met/Val 963 3.47 ± 2.97

Val/Val 688 3.40 ± 2.92

SD = standard deviation; SDQ = Strengths and Difficulties Questionnaire.
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carrying COMT158Val or DAT1 10R (β coefficient = 0.049, t = 
2.132, p = 0.033, R2 = 0.012 and β coefficient = 0.045, t = 
1.974, p = 0.047, R2 = 0.005, respectively).

Two-way analysis of variance (ANOVA) was performed 
to assess if these positive associations reflected a gene × gene 
interaction. There was no evidence of interaction between 
COMT and DAT1 (F4,1931 = 1.072, p = 0.37 and F2,1934 = 1.086, p = 
0.36) for hyperactivity/inattention scores in boys at both 
11 and 15 years of age, respectively (Table 4). As no covari-
ates were identified for the analyses of full ADHD diag nosis 
at age 18 years, χ2 tests were performed. These analyses 
demonstrated that the presence of both  COMT158Val and 
DAT1 10R alleles was associated with ADHD in boys (χ2 = 
4.561, p = 0.033, odds ratio [OR] 2.473, 95% confidence inter-
val [CI] 1.048–5.838; Table 5). No significant associations 
were observed for girls.

In order to ensure that the results observed herein were not 
influenced by population substructure, even though skin co-
lour was included as a covariate in both linear regression 
analyses and 2-way ANOVAs, we repeated all analyses re-

stricting the sample to white participants (66.8%). Despite the 
decrease in power, we observed results in the same direction 
(Appendix 1, Tables S1 to S5, available at jpn.ca).

Discussion

Our study suggests that the increasing number of COMT158Val 
and DAT1 10R alleles predicts increasing symptoms of 
 hyperactivity/inattention in boys from the general popula-
tion assessed at 11 and 15 years of age. The presence of both 
alleles was also associated with full ADHD diagnosis at age 
18 years in boys from this cohort. We did not observe these 
associations in girls, confirming previous evidence of sexual 
dimorphic effect of these genes.

The idea that ADHD is an extreme of behavioural traits 
comes to some extent from the observation that hyperactivity/
impulsivity and inattention symptoms are present in the 
general population. Twin studies demonstrated that ADHD 
as a trait as well as a category is substantially influenced by 
genetic factors.1–3 Similar heritability estimates were found 

Table 3: Linear regression analyses of the number of COMT158Val and DAT1 10R alleles on the hyperactivity/inattention scores from the 
Strengths and Difficulties Questionnaire according to sex

Sex Age, yr Group n SDQ score, mean ± SD β coefficient t p value R2

Male 11 No COMT158Val or DAT1 10R 36 4.39 ± 3.19 0.049 2.189 0.029 0.012

COMT158Val or DAT1 10R 438 4.52 ± 3.10

COMT158Val and DAT1 10R 1467 4.91 ± 3.08

15 No COMT158Val or DAT1 10R 37 3.05 ± 3.04 0.064 2.832 0.005 0.008

COMT158Val or DAT1 10R 438 3.99 ± 3.06

COMT158Val and DAT1 10R 1469 4.35 ± 3.16

Female 11 No COMT158Val or DAT1 10R 22 3.77 ± 2.50 -0.023 -1.060 0.29 0.003

COMT158Val or DAT1 10R 482 3.97 ± 3.02

COMT158Val and DAT1 10R 1532 3.79 ± 3.03

15 No COMT158Val or DAT1 10R 22 2.82 ± 2.08 0.012 0.522 0.60 0.003

COMT158Val or DAT1 10R 481 3.38 ± 2.82

COMT158Val and DAT1 10R 1534 3.41 ± 2.95

SD = standard deviation; SDQ = Strengths and Difficulties Questionnaire.

Table 2: Linear regression analyses for DAT1 3′UTR VNTR polymorphism on hyperactivity/inattention scores from the 
Strengths and Difficulties Questionnaire according to sex

Sex Age, yr Genotype* n SDQ score, mean ± SD β coefficient t p value R2

Male 11 _R/_R 149 4.59 ± 3.02 0.016 0.726 0.47 0.010

_R/10R 829 4.82 ± 3.13

10R/10R 963 4.83 ± 3.08

15 _R/_R 150 3.80 ± 3.13 0.035 1.548 0.12 0.005

_R/10R 831 4.25 ± 3.17

10R/10R 963 4.31 ± 3.12

Female 11 _R/_R 132 4.25 ± 3.09 –0.032 –1.445 0.15 0.003

_R/10R 891 3.85 ± 3.00

10R/10R 1013 3.76 ± 3.03

15 _R/_R 132 3.70 ± 2.91 –0.038 –1.719 0.09 0.004

_R/10R 891 3.47 ± 2.94

10R/10R 1014 3.30 ± 2.87

SD = standard deviation; SDQ = Strengths and Difficulties Questionnaire; UTR = untranslated region; VNTR = variable number of tandem repeats.
*_R = 3R, 5R, 6R, 7R, 8R, 9R, 11R, or 12R alleles.
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when ADHD was analyzed in both ways, suggesting a con-
tinuous distribution of genetic liability. The fact that the 
heritability estimates did not rise with increasing symptom 
severity or categorical ADHD diagnosis is consistent with 
its dimensional characteristic.1,3 Results from twin studies 
are further supported by neurobiological data, as slower 
cortical thinning during adolescence was associated with 
hyperactivity and impulsivity symptoms in both typically 
developing children and children with ADHD.43 In addi-
tion, deficits in basic information processing were found to 
be linearly associated with ADHD severity that ranged 
from asymptomatic to clinical ADHD.44

A twin study provided evidence of an additive genetic pat-
tern of ADHD inheritance because the observed concordance 
rates between dizygotic twins were around half of those ob-
served in monozygotic twins.3 This is consistent with the idea 
that genetic variants of small effect, either common or rare, 
together contribute to build a genetic risk for a given psychi-
atric disorder.45 Recently, it was demonstrated that common 
variants of the dopamine/norepinephrine, serotonin and 
neurite outgrowth pathways are associated with quantitative 
measurements of hyperactivity/impulsivity symptoms in 
children with ADHD.46 In studies involving the general 
popu lation, polygenic risk scores derived from common mo-
lecular variants for categorical ADHD were found to predict 
attentional and hyperactive/impulsive traits in the general 
population.47 On the other hand, polygenic risk scores de-
rived from ADHD traits in the general population sample 
predicted ADHD categorical diagnosis and symptom sever-
ity.48 Our results are in agreement with those findings. COMT 
and DAT1 in combination were associated with ADHD 
symptoms in the general population.

Sex differences reported in this study are consistent with 
previous reports of sexual dimorphism described for both 
genes. COMT sexual dimorphism is largely attributed to es-
trogen, which impacts COMT expression through 2 estrogen 
response elements present in the promoter region. COMT 
mRNA concentrations are lower in cells expressing estrogen 
receptors, suggesting that the expression is different in boys 
than in girls, mainly due to downregulation by estrogen.49–51 
Despite this experimental evidence, a meta-analysis failed to 
detect sex as a moderator of the association between COMT 
and ADHD in clinical samples.15 The absence of positive find-
ings could be due to heterogeneity across studies and lack of 
power. Even with greater sample sizes, we were able to de-
tect COMT sex-specific effects only when analyzed in combi-
nation with DAT1, which indicates that the effect size is very 
small. In this sense, the study of quantitative traits in larger 
population samples may help increase power.

In our analyses, the COMT158Val allele was associated with 
both higher ADHD symptom scores and ADHD diagnosis 
in boys, contrary to the evidence from early family-based 
and case–control studies that suggested sex-specific effects 
for COMT. In these studies, the COMT158Met allele was asso-
ciated with ADHD in boys from some clinical samples.17,18 
However, a large population study on executive functioning, 
which is known to be impaired in individuals with ADHD, 
demonstrated that boys carrying the COMT158Met allele 

performed better in a series of tasks than boys who were 
 homozygous COMT158Val carriers. There were no discernible 
effects in girls.52 Moreover, in agreement with our results, 
the COMT158Val allele was associated with ADHD comorbid 
with conduct disorders in several studies of both clinical and 
population samples.53–59 The discrepancies concerning the 
definition of the COMT risk allele may be attributed to other 
variants of the gene. Evidence suggests that COMT enzy-
matic activity is in fact determined by haplotype blocks, 
whose structure may vary across populations and could ex-
plain conflicting results.60

Some early evidence also suggested sexual dimorphism for 
DAT1. It has been reported that estrogen has an antagonistic 
effect on DAT activity,61 which may protect against ADHD by 
delaying dopamine reuptake. This is somewhat confirmed by 
a report that demonstrated an interaction between prenatal 
smoke exposure and DAT1 genotype in humans. The 10R al-
lele homozygous boys exposed to maternal smoke had higher 
hyperactivity/impulsivity symptoms than boys carrying other 
genotypes. This interaction was not observed in girls.62 A 
study on delinquency reported a male-specific association 
with DAT1. Individuals who were 10R allele homozygous and 
10R/9R heterozygous presented trajectories of serious delin-
quency about twice as high as those observed for 9R homozy-
gous individuals.63 DAT1 was also associated with continuous 
measures of ADHD in boys from the general population.64,65 
Recently, DAT1 was reported to be associated with ADHD 
symptoms in a nonclinical adult population.66 It was also asso-
ciated with the executive function of inhibition, which is im-
paired in adults with ADHD from the general population.67

Evidence from animal models demonstrates that the dopa-
minergic function is essentially different in males and females. 
In rats, estrogen and progesterone modulate dopamine activ-
ity in the striatum and nucleus accumbens. This activity varies 

Table 4: Two-way analyses of variance of COMT and DAT1 genes and 
the hyperactivity/inattention scores from the Strengths and 
Difficulties Questionnaire according to sex

Sex Age, yr Category df F p value

Male 11 COMT 2 0.852 0.43

DAT1 2 0.385 0.68

COMT × DAT1 4 1.072 0.37

Error 1931 — —

15 COMT 2 3.166 0.042

DAT1 2 2.270 0.10

COMT × DAT1 4 1.086 0.36

Error 1934 — —

Female 11 COMT 2 0.076 0.93

DAT1 2 0.763 0.47

COMT × DAT1 4 0.181 0.95

Error 2026 — —

15 COMT 2 1.479 0.23

DAT1 2 1.010 0.36

COMT × DAT1 4 0.413 0.80

Error 2027 — —

df = degrees of freedom; SDQ = Strengths and Difficulties Questionnaire.
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in an estrous cycle–dependent way and is attenuated by 
 oophorectomy. Unlike in females, dopamine activity in males 
is not affected by estrogen or absence of testicular hormones.68 
Accordingly, estrogen was associated with an attenuated 
methamphetamine-evoked dopamine output in mice, while 
this effect was not observed with testosterone.69

In humans, as in animals, the dopamine system seems to 
be strongly affected by estrogen.26 This effect may be partially 
attributed to COMT and its regulation by estrogen.50,51 Dopa-
mine release in the striatum, putamen and caudate following 
an amphetamine challenge is significantly higher in men than 
in women.70 Sex differences, however, are not restricted to 
the dopamine system, but rather involve the whole brain. A 
longitudinal neuroimaging study showed that cortical and 
subcortical grey matter development occurs earlier in girls.71 
One study of ADHD reported an overall reduction on the 
surface area of the prefrontal cortex only in girls, whereas 
only boys showed overall reductions in the surface area of 
the total premotor cortex.72 Another study demonstrated that 
cortical thinning is associated with symptom persistence 
from childhood into adulthood, and it has been observed that 
ADHD persistence was greater in girls.73 The marked differ-
ence of ADHD prevalence in childhood seen in clinical sam-
ples in itself suggests sex differences, as the ratio of boys to 
girls with ADHD varies from 3:1 to 9:1.74 However, the scen-
ario may be different for adult samples from the general 
popu lation. In the present sample of 18-year-olds with diag-
nosed ADHD, there is a preponderance of girls,35 a finding 
that is in agreement with a previous report.75

Limitations

The results presented herein must be interpreted in the con-
text of some limitations. First, SDQ scores of conduct prob-
lems were not considered as covariates since hyperactivity/
inattention scores and conduct scores were highly correlated 
(rs = 0.553, p ≤ 0.001 and rs = 0.503, p ≤ 0.001 at the 11- and 15-
year assessments, respectively). Second, The SDQ scores do 
not follow a normal distribution, but the deviation is not ex-
treme. We tried several transformations, including log, recip-
rocal and square root. None of them produced a significant 
increase in the approximation to the normal distribution. 
However, we observed no heterogeneity of variances, which 
is an assumption that has high impact on p values. Moreover, 
we compared the Akaike information criterion (AIC) statis-

tics between regression models using the untransformed and 
the square root transformed scores. We observed lower AIC 
values with the transformed scores, but the results did not 
differ from those of untransformed scores. Therefore, we de-
cided to maintain the original SDQ values to make the inter-
pretation of the effects more amenable. Third, no genomic 
control was performed; therefore, our findings could have 
been biased by hidden genetic heterogeneity present in our 
specific sample of the southern Brazilian population. But, 
since skin colour showed a high correlation with genomic an-
cestry in the same population,39 we considered that it was a 
good proxy for genetic substructure. Fourth, from the analy-
ses performed herein, it is not possible to determine the exact 
effect size of each variant since no significant main effects 
were detected despite 99% power to detect small effects. The 
observed effect of these variants combined was very small, 
possibly owing to the combination of only 2 genes. However, 
small effect sizes are to be expected in multifactorial traits 
such as ADHD.

Conclusion

Our results confirm a role for COMT and DAT1 on symp-
toms of hyperactivity/inattention, adding evidence to the 
idea that ADHD represents the end of a continuum of behav-
ioural traits that vary in the population. Furthermore, the 
present results support a sexual dimorphic effect of these 
genes on ADHD traits. Future research on ADHD genetic 
susceptibility should take into account the possible hetero-
geneity that arises from sex differences.
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