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Introduction

Schizophrenia and autism-spectrum disorders are neuro-
developmental psychiatric disorders that have a prevalence 
of approximately 1% and 2.5% worldwide, respectively,1,2 
and have profound human and economic consequences.

Schizophrenia and autism-spectrum disorders were noso-
logically separated in the Diagnostic and Statistical Manual 
Mental Disorders, third edition (1980).3 However, evidence has 
been accumulating to suggest that they may partially overlap 
in their clinical, neurobiological, behavioural and cognitive 
features, and that they may have some common etiological 
roots.4 Regarding their clinical expression, some authors have 
proposed that the negative symptoms of schizophrenia can 
be construed more broadly as deficits in social communica-
tion and motivation, which are also found in people with 
 autism-spectrum disorders.5 Similarly, the grossly disorgan-

ized or abnormal motor behaviour described in schizophre-
nia includes a number of signs and symptoms consistent 
with those of autism-spectrum disorders, such as repeated 
stereotyped movements, echolalia, unpredictable agitation 
and decreased interaction with or interest in one’s environ-
ment.5,6 The disorders also share some cognitive deficits7–9; in 
particular, deficits in social cognition have received much at-
tention.10–15 As well, there are brain structural similarities be-
tween these disorders. For instance, lower grey matter vol-
ume in the limbic–striato–thalamic circuitry is common to 
schizophrenia and autism-spectrum disorders,16 and reduced 
volume and thickness of the insula have been found in pa-
tients with first-episode psychosis and in high-functioning 
patients with autism-spectrum disorders.17 Similar alterations 
to the white matter integrity of the left fronto-occipital fasci-
culus have recently been found in patients with schizophre-
nia and in patients with autism-spectrum disorders.18
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Scaffolding proteins represent an evolutionary solution to controlling the specificity of information transfer in intracellular networks. They 
are highly concentrated in complexes located in specific subcellular locations. One of these complexes is the postsynaptic density of the 
excitatory synapses. There, scaffolding proteins regulate various processes related to synaptic plasticity, such as glutamate receptor 
trafficking and signalling, and dendritic structure and function. Most scaffolding proteins can be grouped into 4 main families: discs large 
(DLG), discs-large-associated protein (DLGAP), Shank and Homer. Owing to the importance of scaffolding proteins in postsynaptic den-
sity architecture, it is not surprising that variants in the genes that code for these proteins have been associated with neuropsychiatric 
diag noses, including schizophrenia and autism-spectrum disorders. Such evidence, together with the clinical, neurobiological and gen-
etic overlap described between schizophrenia and autism-spectrum disorders, suggest that alteration of scaffolding protein dynamics 
could be part of the pathophysiology of both. However, despite the potential importance of scaffolding proteins in these psychiatric condi-
tions, no systematic review has integrated the genetic and molecular data from studies conducted in the last decade. This review has the 
following goals: to systematically analyze the literature in which common and/or rare genetic variants (single nucleotide polymorphisms, 
single nucleotide variants and copy number variants) in the scaffolding family genes are associated with the risk for either schizophrenia 
or autism-spectrum disorders; to explore the implications of the reported genetic variants for gene expression and/or protein function; 
and to discuss the relationship of these genetic variants to the shared genetic, clinical and cognitive traits of schizophrenia and autism-
spectrum disorders.
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In recent years, the field of molecular genetics has been un-
covering evidence of an overlapping and complex polygen-
etic architecture for these disorders. Evidence suggests that 
studying pathways common to both may shed light on their 
pathophysiology and clinical heterogeneity.

Robust longitudinal and epidemiological studies have 
shown that 25% of people with childhood-onset schizophre-
nia have a history of a premorbid autism-spectrum disor-
der19; that the adult outcomes of children with atypical au-
tism include psychotic disorders20; that autistic traits in 
infancy increase the risk for psychotic experiences later in 
life21; and that there is some co-occurrence of autism- 
spectrum disorders and psychotic disorders.22,23 This overlap 
is further supported by family studies, which have reported 
that the presence of one of these diagnoses in a first-degree 
relative increases the risk of the other.24–27 Similarly, schizo-
phrenia is more common in parents of patients with autism 
than in parents of healthy controls.24

Twin studies have also recognized the important contribu-
tion of genetic factors to both schizophrenia and autism- 
spectrum disorders, with heritability estimates of h2 = 64%–
80%28,29 and h2 = 64%–91%,30 respectively.

Over the last decade, molecular studies have contributed 
to our initial understanding of the complex genetic architec-
ture of schizophrenia and autism-spectrum disorders, and 
later to identifying genes that are involved in both disorders. 
In this sense, it is currently accepted that an individual’s gen-
etic risk of schizophrenia or an autism-spectrum disorder can 
be attributed to either many common variants with a fre-
quency of > 1% (single nucleotide polymorphisms [SNPs]), 
each conferring a modest level of risk (odds ratio = 1.1–1.5); 
or rare mutations with a frequency of < 1% (single nucleotide 
variants [SNVs] and copy number variants [CNVs]) that are 
usually associated with a larger penetrance on the phenotype 
(odds ratio > 2).31,32

The most recent studies to examine genome-wide SNPs 
contributing to these disorders have estimated that genetic 
variation from SNPs accounts for 23% and 17% of the vari-
ance in risk of schizophrenia and autism-spectrum disorders, 
respectively.33 Based on the significant but small correlation 
between SNP heritability estimates in both disorders, the co-
heritability between them has been quantified at around 
4%.33 In this regard, genome-wide association studies have 
identified several SNPs associated with schizophrenia and/
or autism-spectrum disorders.34–37

Meanwhile, genome-wide and microarray-based compara-
tive genomic hybridizations have found that the CNV bur-
den is also increased in patients with schizophrenia or 
autism- spectrum disorders compared with healthy con-
trols.38–41 For example, microduplications of 1q21.1 or 16p11.2 
and deletions at 2p16.3, 15q11.2 or 22q11.21 have been re-
ported in patients with schizophrenia and autism-spectrum 
disorders.42 De novo gene-disrupting SNVs have also been 
found to occur at higher rates in patients with autism- 
spectrum disorders than in controls.43–46 In schizophrenia, the 
initially reported increased rates of putatively functional mu-
tations47,48 have not been replicated in 2 larger studies,49,50 but 
those later studies found that the enrichment of loss-of- 

function de novo mutations was relatively concentrated in 
genes that overlapped with those affected by de novo muta-
tions in autism-spectrum disorders. In addition, an excess of 
de novo mutation was confirmed in an independent sample 
of patients with schizophrenia.51

With regard to the identification of specific genes involved in 
both schizophrenia and autism-spectrum disorders, findings 
from CNV and SNV studies have shown a notable consistency 
in some functionally enriched sets of genes. Genetic studies as-
sessing common or rare variants show a certain convergence 
on reporting genes involved in glutamatergic synapse plasti-
city.49,52–55 A structure located in glutamatergic synapses that 
has been associated with both disorders is the postsynaptic 
density (PSD).50,56–61 For example, Bayés and colleagues found 
that mutations in 199 human PSD genes were involved in more 
than 200 diseases, half being nervous- system disorders.61 That 
study suggested that impairments in PSD proteins might 
 underlie psychiatric disorders and their associated cognitive, 
behavioural and clinical phenotypes, but no systematic review 
based on this hypothesis has integrated the molecular data gen-
erated across studies in the last decade. Another example has 
been provided by Purcell and colleagues, who, after analyzing 
the exome sequences of 2536 patients with schizophrenia and 
2543 controls, reported that SNVs were significantly more fre-
quent in cases than controls, and that these SNVs were espe-
cially enriched in the  activity-regulated cytoskeleton-associated 
(ARC) complex of PSD.50

PSD proteins and pathophysiological hypotheses

The PSD is a specialized matrix located at the excitatory post-
synaptic terminals with a dish-shaped aspect, a surface area 
of 0.07 μm2 and a thickness of 30 to 40 nm on electron micros-
copy (Fig. 1A).62 The PSD can also be described as a highly 
organized and dynamic macromolecular complex consisting 
of several hundred proteins that process, integrate and con-
verge the excitatory glutamatergic synaptic signals on the nu-
cleus. As a point of convergence for the glutamatergic signal-
ling pathways with other neurotransmitter systems, the 
composition and regulation of the PSD is essential for ensur-
ing normal synaptic neurotransmission and plasticity.63,64

The PSD is enriched with different membrane components, 
such as glutamate receptors, tyrosine kinases, G protein– 
 coupled receptors, ion channels or cell adhesion molecules, 
which are assembled by cytoplasmatic scaffolding proteins.65 

Among the proteins that make up the PSD, studies have re-
ported associations between genes coding for scaffolding 
proteins and both schizophrenia and autism-spectrum disor-
ders, suggesting that variants in these genes might increase 
the risk of these disorders. For instance, recent studies have 
found that SNPs and CNVs in autism-spectrum disorders 
and schizophrenia are particularly concentrated in scaffold-
ing genes and other PSD-related genes.66,67 Other studies 
have indicated changes in the expression of scaffolding genes 
in schizophrenia and autism-spectrum disorders compared 
with healthy controls.68,69 A recent study reported that gene-
disrupting ultra-rare variants were more abundant in schizo-
phrenia cases than in controls, and that these mutations were 
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particularly enriched in scaffolding genes and other PSD 
genes.70

Scaffolding proteins can be defined as molecular circuit 
boards that can organize a wide variety of circuit relation-
ships between signalling proteins. More specifically, the main 
function of scaffolding proteins is to bring together 2 or more 
proteins to facilitate their interaction and functions, linked to 
critical roles in cellular signalling. This is possible because 
scaffolding proteins are composed of several protein–protein 
interaction modules, most notably the PSD-95/discs large/
zona occludens-1 (PDZ) and Src homology 3 (SH3) domains.71 
Since scaffolding protein complexes are dynamic, they have 
the ability to change specific protein interactions to rapidly 
adapt to changing environmental requirements or  diverse sig-
nalling cues.72 This versatility is related to their modularity, 
which allows for recombination of protein interaction do-
mains to generate variability in signalling pathways. Such 
properties are seen as a simple evolutionary solution to con-
trolling the specificity of information flow in intracellular net-
works, generating precise signalling behaviours.73

Owing to their dynamic configuration, postsynaptic scaf-
folding molecules not only establish the internal organiza-
tion of the PSD, allowing neurons to respond efficiently to 
stimuli, but they also regulate processes related to synaptic 
plasticity, such as glutamate receptor trafficking and signal-
ling, and dendritic structure and function,74,75 which crit-
ically determine the characteristics of excitatory synaptic 
transmission (Fig. 1B).

Disruption of scaffolding genes might alter the homeostasis 
of the PSD and contribute to the synaptic dysfunctions associ-
ated with schizophrenia and autism-spectrum disorders.76 
However, despite the potential importance of scaffolding pro-
teins in these psychiatric conditions, no systematic review has 
addressed the integration of genetic and molecular data gen-
erated across studies.

The nature and function of the different families of scaf-
folding proteins included in this review, and the characteris-
tics of the genes encoding them, are shown in Figure 1 and 
briefly summarized below.

The discs large protein subfamily
The discs large (DLG) subfamily is a group of proteins in the 
membrane-associated guanylate kinase (MAGUK) family, 
and consists of DLG1, DLG2, DLG3 and DLG4. These pro-
teins have 3 PDZ domains in their N-terminus, which allow 
them to interact with a variety of binding partners in the 
PSD, such as glutamatergic receptors, as well as other cyto-
plasmic scaffolding proteins. The DLG proteins control the 
transmission of extracellular signals to downstream signal-
ling molecules of the PSD and regulate the localization of 
glutamatergic receptors N-methyl-d-aspartate (NMDA) and 
α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid 
(AMPA) at neuronal synapses and dendrites.77 Moreover, 
they regulate the trafficking and clustering of ionic channels 
and the excitability of the presynaptic terminals, affecting the 
amount of neurotransmitter released.78 Since their temporal 

Fig. 1: Image of the postsynaptic density (PSD) and scheme of the scaffolding proteins at the PSD that have been analyzed in the present re-
view. (A) An electronic microscope image of a synapse; vesicles can be observed in the presynaptic neuron (asterisk). The electron-dense struc-
ture observed in the postsynaptic element is the PSD (arrowhead). Scale bar, 250 nm. Image retrieved under the Creative Commons Attribution 
License from Heupel et al. Neural Devel 2008, https://doi.org/10.1186/1749-8104-3-25. (B) A scheme of the PSD (grey shading). Multimerization 
of Shank1 to 3 proteins generate a network that links numerous proteins to the postsynaptic receptors. Homer proteins, including Homer1b/c, 
Homer2 and Homer3, also act as adaptors and interact with several PSD proteins, such as type I-mGluRs. The DLGAP1 to 4 proteins interact 
with DLG proteins, including the DLG1/SAP-97, DLG2/PSD-93, DLG3/SAP-102 and DLG4/PSD-95, to coregulate different ion channels, such as 
the NMDAR and AMPAR. AMPAR = α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; DLG = discs large; DLGAP = discs-large-
associated protein; mGluR = metabotropic glutamate receptor; NMDAR = N-methyl-d-aspartate receptor; SAP = synapse-associated protein.
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and spatial expression differ, it is believed that DLG mem-
bers complement each other in performing these functions 
from embryonic to adult stages.79

The DLG1 gene (also known as SAP-97) maps on chromo-
some 3q29 and encodes the synapse-associated protein 97 
(SAP-97 or DLG1), which is thought to play a role in synap-
togenesis80 and glutamatergic receptor trafficking during 
development.77

The DLG2 gene (also known as PSD-93) is located on 
chromosome 11q14.1. Different studies have suggested that 
the protein it encodes (PSD-93, DLG2) plays a role in the 
regulation of synaptic plasticity. The DLG2 protein inter-
acts with the tyrosine kinase Fyn, which is involved in the 
phosphorylation-based regulation of NMDA receptors that 
is required for the induction of NMDA-receptor-dependent 
long-term potentiation.81

The DLG3 gene (also known as SAP-102) is located on 
Xq13.1, and the protein it encodes (DLG3) is the first protein 
related to intellectual disability that has been directly linked to 
glutamate receptor signalling and trafficking.82 Later studies 
have replicated the association of this gene with intellectual 
disability,83,84 suggesting that DLG3 somehow modulates cog-
nition. This is consistent with the observed embryonic expres-
sion of this protein and its role in the regulation of synaptic 
formation and plasticity during brain development.85

The DLG4 gene is located on chromosome 17p13.1, and the 
protein it encodes (PSD-95, DLG4) is involved in the matura-
tion of synapse formation and the NMDA receptor signalling 
pathway. It participates in the clustering and trafficking of 
NMDA and AMPA receptors in the PSD.63,79 Moreover, 
DLG4 interacts with the dopamine receptor D1 (DRD1) and 
the NMDA receptor, and regulates positive feedback be-
tween them.86 The degradation of DLG4 is regulated by other 
proteins that have also been associated with autism-spectrum 
disorders.87

The discs-large-associated protein family
The discs-large-associated protein (DLGAP) family is made 
up of 4 proteins encoded by different homonymous genes: 
DLGAP1 (18p11), DLGAP2 (8p23), DLGAP3 (1p34), and 
 DLGAP4 (20q11). All proteins have 5 repeats of 14 amino 
 acids in the middle region, followed by a proline-rich 
 sequence and a C-terminal PDZ-binding motif that mediate 
interactions with other PSD proteins.88

Although the differential roles of each family member are 
unknown, all DLGAP proteins play an important role in or-
ganizing the postsynaptic signalling complex in glutamater-
gic synapses,89 and are especially involved in the stabilization 
of synaptic junctions and regulation of neurotransmission.90 

In addition, DLGAP proteins clearly have a central role in the 
regulation of synaptic ion channels, including both NMDA 
and AMPA receptors.91

DLGAP2 (also known as SAPAP2 or GKAP) is the most 
studied of the proteins in this family. It interacts directly with 
DLG4 and Shank proteins to form a complex that plays crit-
ical roles in synaptic morphogenesis and function.90,92

It has been proposed that SAPAP proteins provide a link 
between the PSD-95 family of proteins and the actincytoskele-

ton through interactions with the Shank/ProSAP proteins, 
which in turn bind the actin-binding protein cortactin.93–97 Ad-
ditionally, Shank/ProSAP binds to Homer, which interacts 
with metabotropic glutamate receptors.98 Therefore, in the 
current scaffolding model, PSD-95/SAPAP/Shank interac-
tions play an important role in organizing the large postsyn-
aptic signalling complex at glutamatergic synapses.96,97,99,100 

The Shank protein family
Another PSD scaffolding protein group is the SH3 and multi-
ple ankyrin repeat domains (Shank) family, which consists of 
3 proteins encoded by different genes that are differently ex-
pressed in the brain97,101: SHANK1 (19q13.33), SHANK2 
(11q13.3) and SHANK3 (22q13.3). So far, it is unclear whether 
individual Shank family proteins fulfill unique physiologic 
functions, but the structural similarity between Shank forms 
has led to the observation that many interaction partners of 
Shank proteins in the synapse are recognized equally by all 
3 family members.93

In this regard, Shank proteins crosslink Homer, DLGAP2 
and DLG4 proteins in the PSD and participate in glutamater-
gic downstream signalling by assembling glutamate recep-
tors with other scaffolding proteins, cytoskeleton factors and 
intracellular effectors.102 Multimerization of Shank1–3 pro-
teins can generate a network in the PSD that links numerous 
proteins to the postsynaptic receptors. In addition, Shank 
proteins promote the formation, maturation and enlargement 
of dendritic spines.103

The Homer protein family
Homer proteins include 3 different members that are en-
coded by 3 different homonymous genes: HOMER1 (5q14), 
HOMER2 (15q25) and HOMER3 (19p13). Homer proteins can 
also be classified into constitutively expressed isoforms (i.e., 
Homer1b/c, Homer2 and Homer3), which are bimodal pro-
teins with an N-terminal domain that mediates the interac-
tion with other PSD proteins, and a C-terminal coiled-coil do-
main that enables self-assembly, as well as short splice 
variants (Homer1a and Ania-3) that lack the C-terminal 
 domain and cannot self-assemble.104 The various protein 
forms are differentially expressed over time and place.105

Homer proteins act as multimodal adaptors by interacting 
with several PSD proteins, such as type I metabotropic gluta-
mate receptors (mGLuR1–5), Shank proteins or synaptic sig-
nalling molecules such as inositol 1,4,5-triphosphate recep-
tors (IP3Rs), and binding them to the cytoskeleton.102 Homer 
proteins are also involved in glutamatergic synapses by regu-
lating glutamatergic receptor trafficking, the function of 
plasma membrane ion channels and intracellular messenger 
systems.106 For these reasons, Homer proteins are important 
for cell signalling, cell excitability, synaptic neurotransmis-
sion and neuronal plasticity.107,108

Objectives

The objectives of this review were as follows: to conduct a 
systematic review of the literature in which variations 
within the above-mentioned scaffolding genes are associated 
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with either schizophrenia or autism-spectrum disorders, 
and to describe the degree of overlap between both diagno-
ses; to explore whether the reported genetic variants 
 putatively associated with schizophrenia or autism- 
spectrum disorders are involved in changes of gene expres-
sion or protein functionality according to basic research 
data; and to consider the implications of the reported 
 associations for the development of these disorders and 
their associated phenotypes.

Methods

We conducted a systematic search of the PubMed, Psyc-
INFO and Web of Science databases. The search terms were 
“Schizophrenia or autism” and “postsynaptic density pro-
teins or PSD or scaffold* proteins” without date restrictions. 
Inclusion criteria were original articles that reported i) the 
association of genetic variants (SNPs, SNVs and CNVs) of 
the genes in the DLG protein subfamily or the DLGAP, 
Shank or Homer protein families with schizophrenia or 
 autism-spectrum disorders; and ii) genetic variations in 
these genes and their functional consequences, based on 
 animal-model or in vitro studies.

This search initially retrieved 366 articles. After evaluating 
whether they fulfilled the inclusion criteria, we excluded 
261 articles. Another 25 studies and reviews that were rele-
vant for the topic were found from cross-referencing and 

 included in this review. The final pool of articles comprised 
130 papers (Fig. 2).

Results

Table 1 describes SNPs in scaffolding genes that have been 
associated with schizophrenia or autism-spectrum disorders. 
Table 2 describes SNVs, and Table 3 describes CNVs. Table 4 
describes expression and functional information on scaffold-
ing genes obtained from basic studies. Table 5 describes the 
SNPs, SNVs and CNVs of risk that are shared by both schizo-
phrenia and autism-spectrum disorders.

DLG protein subfamily

Protein DLG1
Both SNPs in DLG1 have been associated with schizophre-
nia (Table 1). An SNV has been associated with autism- 
spectrum disorders (Table 2). Furthermore, deletions of the 
chromosomal region 3q29 have been related to schizophre-
nia and autism-spectrum disorders (Table 3) and have been 
associated with impaired cognition and social dysfunction 
(Table 3).

Two studies reported reduced expression of DLG1 in the pre-
frontal cortex of postmortem brain samples of patients with 
schizophrenia (Table 4). To the best of our knowledge, there are 
no expression studies in autism-spectrum disorders samples.

Fig. 2: Flow diagram of the literature search. PSD = postsynaptic density.

Key words:
(schizophrenia or autism) and 
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(261 articles)
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An animal-model study reported that glutamate-receptor 
NMDA antagonists upregulate DLG1 mRNA expression in 
the cerebral cortex of mice (Table 4).

Protein DLG2
Different studies have identified rare mutations in the DLG2 
gene in schizophrenia and autism-spectrum disorders. While 
SNVs have been detected only in schizophrenia (Table 2), 
CNVs have been identified in both disorders (Table 3). Inter-
estingly, a deletion identified in intron 6 of the gene in pa-
tients with autism-spectrum disorders157 partially overlaps 
with another deletion spanning from intron 2 to intron 6 in 
patients with schizophrenia.57

Although still not tested in patients with autism-spectrum 
disorders, alterations in mRNA and protein expression have 
been reported in the prefrontal cortex of postmortem brain 
samples of patients with schizophrenia (Table 4).

Animal-model studies seem to support the function of 
DLG2 as a regulator of synaptic plasticity; they have shown 

that DLG2 mutant mice display cognitive abnormalities and 
long-term potentiation deficits (Table 4).

Protein DLG3
To our knowledge, only 1 genetic study has associated 6 in-
tronic SNPs in DLG3 with autism-spectrum disorders (Table 1), 
although their consequences for protein function or expres-
sion are unknown.

Despite conflicting results in postmortem brain expression 
studies, it seems that alterations in DLG3 could underlie the 
neuro biology of schizophrenia. In this regard, both increased 
and decreased DLG3 mRNA and protein expression have been 
reported in the thalamus of schizophrenia patients (Table 4).

Animal-model studies support a role for this gene in cogni-
tion; mice lacking DLG3 exhibit impaired learning (Table 4).

Protein DLG4
For the DLG4 gene, SNPs (Table 1) and CNVs (Table 3) have 
been identified only in patients with schizophrenia and with 

Table 1: Single nucleotide polymorphisms in scaffolding genes associated with schizophrenia, autism-spectrum disorders and other clinical 
phenotypes of interest

Gene

Single nucleotide polymorphisms

SourcesSchizophrenia
Austism-spectrum 

disorders
Schizophrenia and autism-

spectrum disorders
Other associated 

phenotypes

DLG1 rs382579, rs2122824, 
rs7616588, rs7638423, 
rs6805929, rs2044862, 
rs4916461, rs338187, 

rs10489880109

rs9843659109,110

— — — Sato et al.109

Uezato et al.110

DLG3 — ss104807047, 
rs28391150, rs1886890, 
rs3215810, rs41303736, 

ss104807048111

— rs28391150 (associated with 
intellectual disability)83

ss104807047 (associated 
with intellectual disability)84

Zanni et al.83

Philips et al.84

Kantojärvi et al.111

DLG4 rs2230178, rs6145976, 
rs2017365, rs739669, 

rs13333112

rs222837113  
rs390200, rs222853, 

rs17203281112,113

— — — Cheng et al.112

Balan et al.113

DLGAP1 rs145691437, rs3786431, 
rs201567254, rs3745051, 

rs11662259114

— — — Li et al.114

DLGAP2 rs2906568, rs2293909116 — rs2906569, 
rs2301963115,116

rs2301963 (associated with 
decreased orbitofrontal 

cortex white matter 
volume)117

Chien et al.115

Li et al.116

Wu et al.117

SHANK3 — rs9616915118,119

Independent studies did 
not find association with 

autism spectrum 
disorder120,121

— — Shao et al.118

Mashayekhi119

Sykes et al.120

Qin et al.121

HOMER1 rs4704560, rs2290639122

rs9293785123
— — rs4704560 C allele 

(associated with 
hallucinations in patients 

with Parkinson’s disease)124

rs2290639 (associated with 
substance abuse)125

Spellmann et al.122

Zhao et al.123

De Luca et al.124

Strauss et al.125

HOMER2 rs2306428, rs86949, SNP20126 — — — Gilks et al.126

SNP = single nucleotide polymorphism.



Genetic variability in scaffolding proteins

 J Psychiatry Neurosci 2018;43(4) 229

autism-spectrum disorders, respectively. In contrast, SNVs 
have been associated with both disorders (Table 2).

Among these variants, the SNP rs13331 (T/C), located at 
the 3’UTR of the gene, is especially interesting because the 
T allele was first associated with schizophrenia, and a pos-
terior reporter gene assay indicated that subjects carrying 
this allele had decreased DLG4 protein activity. Based on 
these results, the authors suggested that reduced DLG4 ac-
tivity or expression may increase the risk of developing 
schizophrenia.112

Alterations in mRNA and protein expression have been re-
ported in postmortem brain samples of patients with schizo-
phrenia (Table 4), although the direction of the results is in-
consistent. Up to now, no expression studies have been 
performed in patients with autism-spectrum disorders.

Animal-model studies also appear to support an impor-
tant role for DLG4 in regulating excitatory synapses and 
synaptic plasticity, while mutant mice also displayed clin-
ical phenotypes related to schizophrenia and autism- 
spectrum disorders, such as impaired learning, abnormal 

Table 2: Single nucleotide variants in scaffolding genes associated with schizophrenia, autism-spectrum disorders and other clinical phenotypes of 
interest (part 1 of 3)

Gene

Single nucleotide variants

SourcesSchizophrenia
Autism-spectrum 

disorders

Schizophrenia and 
autism-spectrum 

disorders
Other associated 

phenotypes

DLG1 g.196863463C>T49

g.196812562A>T, 
g.196812614A>T, 
g.196842947T>C, 
g.196867096C>A50 

g.196863502G>C*127

g.196817764T>C59 — — Fromer et al.49 
Purcell et al.50 
Iossifov et al.59 
Xing et al.127

DLG2 g.83194295C>T49 
g.83180351C>T, g.83180371T>G, 
g.83243821T>G, g.83497759G>A50

— — — Fromer et al.49

Purcell et al.50

DLG4 g.7096826C>T50 g.7106562G>Aa127 — — Purcell et al.50

Xing et al.127

DLGAP1 c.1922A>G114 — — — Li et al.114

DLGAP2 g.1497520G>A50 
c.−69+9C>T, c.−69+13C>T,  
c.−69+47C>T, c.−69+55C>T,  

c.−32A>G, c.341A>G,*  
c.438C>T, c.990+60T>C, 

c.1192G>A, c.1920+37A>G, 
c.1920+94T>A, c.1927G>A, 

c.2493G>C, c.2634C>T, 
c.2797G>A,* c.2884G>A,* 

c.2663G>A116

c.44C>T,* c.277C>A,*  
c.545G>A,* c.574G>T,  

c.1516T>C,* 
c.2392G>C,*  
c.970A>T115

g.1616734C>T*127

g.1626547G>C59

c.841C>G,*† 
c.2135C>T,†‡  

c.2750C>T*†‡115,116

— Purcell et al.50

Iossifov et al.59 
Chien et al.115 

Li et al.116 
Xing et al.127

DLGAP3 c.1141G>A, c.1759G>C, 
c.2309G>T, c.2578−11C>T128

35365700G>A59 — — Iossifov et al.59 
Li et al.128

SHANK1 g.51205733T>A50 g.51220161C>T, 
g.51206952G>A,* 
g.51205840C>T,* 
g.51170826G>A, 
g.51170775G>A, 

g.51165632C>T129

g.51220076C>T, 
g.51219998C>T, 
g.51215287C>T,* 
g.51206988G<T, 
g.51205886C>T,* 
g.51191281C>T,* 
g.51172180G>A, 
g.51171270C>T,* 
g.51170856C>T, 
g.51170854C>T,* 
g.51170779C>T, 
g.51170674C>A,* 
g.51170418G>A, 
g.51170407G>T, 
g.51170362A>T,* 
g.51170359T>C,* 
g.51170046A>T,* 
g.51169830C>T,* 
g.51165932C>T, 
g.51165929C>T,* 
g.51165767G>A,* 

g.51165574C>A*130

— — Purcell et al.50 
Leblond et al.129 

Sato et al.130
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communication, altered motor coordination or other abnor-
mal behaviour (Table 4).

Summary
These findings suggest that mutations in DLG genes might 
increase the risk of developing schizophrenia and autism-
spectrum disorders, as well as related cognitive deficits, by 
contributing to the disruption of glutamatergic synapses. 
Although the neurobiological mechanisms underlying 
these disruptions are still unknown, some pathways can 
be inferred. For instance, mutations affecting DLG2 might 
modify the tyrosine phosphorylation-based regulation of 
NMDA receptors, altering NMDA-receptor-related signal-
ling. Similarly, mutations in DLG4 might dysregulate 
NMDA receptor activity, because this protein also anchors 
different protein tyrosine kinases.229 Other mechanisms 
might explain the association between DLG4 and both 
schizophrenia and autism-spectrum disorders. It has been 
reported that DLG4 inhibits the interaction between dopa-
mine receptor D1 and the NMDA receptor, preventing a 
reciprocal damaging overactivation of both receptors.86 
This suggests that reduced expression or dysfunction of 
this protein might dysregulate glutamatergic and dopa-

minergic homeostasis. Finally, since DLG4 enhances the 
expression of NMDA receptor subunits NR2A and NR2B230 
and the traffic of the NMDA receptor to synapses,231 
 diminished expression or alterations in protein function 
might also compromise NMDA-receptor-mediated signal-
ling transduction.

The DLGAP protein family

Some SNPs (Table 1) and SNVs (Table 2) in the DLGAP1 gene 
and SNVs (Table 2) in the DLGAP3 gene have been associ-
ated with schizophrenia. No studies have assessed the as-
sociation between DLGAP4 and schizophrenia or autism- 
spectrum disorders. 

There is more evidence for an association between the  
DLGAP2 gene and both disorders. The SNPs (Table 1), 
SNVs (Table 2) and CNVs (Table 3) in this gene have been 
associated with both schizophrenia and autism-spectrum 
disorders. Interestingly, some variants were coincident in 
both disorders (Table 1, Table 2 and Table 3).

On one hand, the SNP rs2906569 (A>G) in intron 1 and the 
missense SNP rs2301963 (C>A; P384Q) in exon 3 have been 
associated with both autism-spectrum disorders115 and 

Table 2: Single nucleotide variants in scaffolding genes associated with schizophrenia, autism-spectrum disorders and other clinical phenotypes of 
interest (part 2 of 3)

Gene

Single nucleotide variants

SourcesSchizophrenia
Autism-spectrum 

disorders

Schizophrenia and 
autism-spectrum 

disorders
Other associated 

phenotypes

SHANK2 g.70666649G>A, g.70666499C>A, 
g.70544817G>T, g.70349029T>C, 
g.70333526G>T, g.70333043G>T, 
g.70333967G>A, g.70331576C>T, 

g.70331462G>T, g.70319333C>A131

g.70644595G>A*132

c.76C>T, c.622C>T, 
c.3380C>T, c.4048G>A,  

c.467A>G, c.492C>T, 
c.527−18C>A, 
c.640+11C>T,  
c.80033C>T, 

c.942+19G>A, 
c.924+133G>C,  
c.1061−81C>T, 
c.1141+49G>A, 
c.1148−109C>T, 

c.1201A>C, c.1264G>A, 
c.1302+35G>A,  
c.1303−54C>T, 

g.70336411G>A,* 
c.1392G>T, c.1923G>A,  
c.2052G>A, c.2823C>T,  

c.3135C>T,  
c.3843−12C>T, 

g.70666749G>A,* 
g.70644566G>A,* 
g.70331881G>A,* 
g.70319339C>T133

g.70666635G>A,* 
g.70544853C>A,* 
g.70348949C>A,* 
g.70348913C>T,* 
g.70332914C>T,* 
g.70332890C>T,* 
g.70332272C>T,* 
g.70331795C>T,* 

g.70319359A>G*134 
g.70821018C>G 
g.70858273A>C59

— c.76C>T,  
c.467A>G,  

c.942+19G>A, 
c.924+133G>C, 
c.1141+49G>A,  
c.1148−109C>T 

(associated with intellectual 
disability)133

Iossifov et al.59 
Peykov et al.131 
Homann et al.132 
Berkel et al.133

Leblond et al.134
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Table 2: Single nucleotide variants in scaffolding genes associated with schizophrenia, autism-spectrum disorders and other clinical phenotypes of 
interest (part 3 of 3)

Gene

Single nucelotide variants

SourcesSchizophrenia
Autism-spectrum 

disorders

Schizophrenia and 
autism-spectrum 

disorders
Other associated 

phenotypes

SHANK3 g.49484091C>T 
g.49506476C>T46,135

g.51117040G/A, g.51117200G/T,
g.51117489C/T, g.51117580C/T,
g.51117585G/A, g.51137217A/G,
g.51143287C/T, g.51144513C/G,
g.51153371G/A, g.51159735C/T,
g.51159798A/G, g.51159802C/T,
g.51159828G/A, g.51160154G/A,

g.51169180A/G51

g.51117341C>G, 
g.51159953G>A, 

g.51169240A>G136 
g.51159293G>T*129,136 

c.670G>A136,138 
g.51121780C>T,* 
g.51159458G>T,* 

g.51113103C>T136,140 
g.51117094C>G,* 
g.51160615G>T137

g.51142357C>T, 
g.51153464G>A,* 
g.51158686G>T,* 
g.51158945T>C,* 
g.51159965C>A,* 
g.51159988C>T,* 
g.51160086A>T,* 
g.51160057G>A129 

c.1527G>A138 
g.51113615T>C*139

g.51121844A>G,* 
g.51123071C>T,* 
g.51159169G>T,* 
g.51160477C>G, 
g.51169213G>A,* 
g.51160589T>C141

g.51159778G>A,* 
g.51160049C>T,*§ 141,142 

c.1563G>A,  
c.1967G>A,  

c.4908C>T142 
g.1159884G>A,* 
g.51160018A>T, 
g.51169259C>T* 

(p.1572A>V), 
51169364C>T,* 
51169442G>A,* 
51169459C>T, 
51169463C>T,* 
51169480G>A, 

g.51169207C>T* 
g.51169499G>A143 

c.612C>A,  
c.763C>T, c.898C>T, 

c.920C>G,  
c.1315C>T,  
c.1337G>T,
c. 3761C>T,  
c.3764C>T,  
c.3836C>T,  
c.4025C>T,  
c.4405G>C,  
c.4406G>T,  
c.4490G>A,  

c.4720G>A144 
c.5008A>T145

g.49506159G>T129,135,136 g.49506476C>T, 
c.5008A>T, c.1527G>A 

(associated with intellectual 
disability)46,138,145

Awadalla et al.46 
Girard et al.51 

Leblond et al.129 

Gauthier et al.135

Durand et al.136 
Boccuto et al.137 
Soorya et al.138 

Gauthier et al.139 
Durand et al.140 

Moessner et al.141 
Waga et al.142 
Schaaf et al.143 
Kelleher et al.144 
Cochoy et al.145

HOMER1 IVS4 þ146 c.195G>T, c.290C>T, 
c.425C>T, c.968G>A, 

c.1090C>T144

Kelleher et al.144 
Norton et al.146

*These variants have functional impact on the protein using the PolyPhen-2 or the Pmunt computer program. 
†Chien and colleagues also found this variant in controls.115 
‡Li and colleagues also found this variant in controls.116 
§Waga and colleagues also found this variant in controls.142
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schizophrenia.116 Although the functional significance of 
rs2906569 is difficult to infer, it could affect either the final 
protein function or the regulation of gene expression by alter-
ing different processes, such as splicing, translation regula-
tion or mRNA polyadenylation.232 The missense variant 
rs2301963, in which CC homozygotes were overrepresented 
in patients with schizophrenia and patients with autism- 
spectrum disorders, could affect final protein activity accord-
ing to bioinformatics analyses.115

On the other hand, 3 nonsynonymous exonic de novo vari-
ants (c.841C>G, c.2135C>T and c.2750C>T) have been identi-
fied in both schizophrenia116 and autism spectrum disorders.115 
The c.841C>G and c.2750C>T mutations were predicted to 
damage protein function using PolyPhen-2 or Pmut.

Moreover, deletion of the chromosomic region 8p23.3 has 
been detected in patients with schizophrenia and patients 
with autism-spectrum disorders. This deletion and other 
CNVs spanning this gene have been found in patients with 

Table 3: Copy number variants in scaffolding genes associated with schizophrenia, autism-spectrum disorders and other clinical phenotypes of 
interest (part 1 of 2)

Gene

Copy number variants

SourcesSchizophrenia Autism-spectrum disorders
Schizophrenia and autism-

spectrum disorders
Other associated 

phenotypes

DLG1 — del:195971510_197675831147 del:3q2945,50,57,148–156 Deletion of 3q29 has 
been associated with 

intellectual 
disability,148,149,154–156 

developmental delay,152 

impaired social skills and 
repetitive behaviour150,152

Sanders et al.45  
Purcell et al.50 
Kirov et al.57 

 Pinto et al.147 
Levinson et al.148 

Mulle et al.149 
Magri et al.150 

Szatkiewicz et al.151 
Quintero-Rivera et 

al.152  
Levy et al.153  

Willatt et al.154  
Ballif et al.155 
Sagar et al.156

DLG2 del:83472750_83842973 
del:84006106_8422606457 
del:83680969_83943977158

del:84032216_84276593157 
dup:83108466_83378706159

— — Kirov et al.57

Cuscó et al.157  
Walsh et al.158  
Egger et al.159

DLG4 — dup:17p13.1_p13.2153,160 — — Levy et al.153 
Sanders et al.160

DLGAP2 dup:1436299_164283740 dup:704383_152191060,147

del:1130900_6780950162

del:8p23.3161,163–165 Duplication of 
1436299_1642837 has 
been associated with 
intellectual disability40

Deletion of 8p23.3 has 
been associated with 
intellectual disability161

Guilmatre et al.40  
Pinto et al.60  
Pinto et al.147 

Chien et al.161  
Szatmari et al.162 
Costain et al.163 
Marshall et al.164 
Ozgen et al.165

SHANK1 — del:55872189_55935995, 
del:55808307_55871709130 

del:19q13.33166

— Deletion of 
55872189_55935995 has 

been associated with 
impaired social 

communication skills, 
repetitive behaviours and 

higher functioning130

Deletion of 
55808307_55871709 has 

been associated with 
developmental 

abnormalities and 
disrupted social skills130

Sato et al.130

Prasad et al.166

SHANK2 — del:70154458_7022063260 
del:70077507_70506315, 
del:70119917_70187872,  

del: 70154458_70220632147

del:70220882_70154208133 
dup:70520567_71017315167  
del:70332092(2)CTG > C59

— Deletion of 
70154458_70220632, 

70077507_70506315 and 
70119917_70187872 has 

been associated with 
language delay60,147

Deletion of 
70220882_70154208, 

70077507_70506315 and 
70119917_70187872 has 

been associated with 
intellectual disability133,147

Iossifov et al.59

Pinto et al.60

Berkel et al.133

Pinto et al.147 

Gai et al.167
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schizophrenia and patients with autism-spectrum disorders 
who have intellectual disability.40,161

To the best of our knowledge, there are no studies of the 
expression of DLGAP2 in either autism-spectrum disorders 
or schizophrenia. Animal-model studies have suggested that 
alterations in this gene might lead to disadaptative social be-
haviour (Table 4).

Taken together, these findings suggest that disruptions of 
this gene might alter the function or expression of DLGAP2 
and ultimately dysregulate its interplay with other PSD pro-
teins, which could underlie the development of both schizo-
phrenia and autism-spectrum disorders, as well as the mani-
festation of related clinical phenotypes, such as abnormal 
social behaviour. Interestingly, animal studies have found 
that DLGAP2 is vital for normal synaptic structure and func-
tion of the orbitofrontal cortex, a brain region that is impli-
cated in the self-regulation of social-emotional behaviour.233 
There is also evidence that the orbitofrontal cortex is dis-
rupted in patients with autism, and animal studies have indi-

cated that a lesion of the orbitofrontal cortex may cause ag-
gressive behaviour.234

The Shank protein family

Protein Shank1
Up to now, most of the SNVs in SHANK1 have been associ-
ated with autism-spectrum disorders and not schizophrenia 
(Table 2). Deletions in SHANK1 have also been associated 
with autism-spectrum disorders (Table 3), with some de-
tected in patients with pronounced social dysfunction.

No expression studies have been carried out for either 
schizophrenia or autism-spectrum disorders, but animal-
model studies seem to indicate that alterations in SHANK1 
could lead to impaired social skills (Table 4).

Protein Shank2
While SNVs in this gene have been identified in patients with 
schizophrenia and patients with autism-spectrum disorders 

Table 3: Copy number variants in scaffolding genes associated with schizophrenia, autism-spectrum disorders and other clinical phenotypes of 
interest (part 2 of 2)

Gene

Copy number variants

SourcesSchizophrenia Autism-spectrum disorders
Schizophrenia and autism-

spectrum disorders
Other associated 

phenotypes

SHANK3 — del:c.1320_1338, 
dup:c.1497+910bp/ins, 
del:c.1497+910bp/del142 

del:c.3259168  
del:48927548_51224208, 
del:48444959_51224208, 
del:49114430_51224208, 
del:44321641_51224208, 
del:46143471_51224208, 
del:44427703_51224208, 
del:46905533_51224208, 
del:49028732_51224208, 
del:49028732_51224208,
del:43745129_51224208, 
del:50267252_51224208, 
del:45902119_51224208, 
del:42918711_51224208, 
del:45583935_51224208, 
del:48551989_51206201, 
del:51083118_51224208, 
del:45428606_51224208, 
del:44800014_51224208, 
del:44023173_51224208,
del:43218614_51224208, 
del:46787434_51224208, 
del:49460840_51224208, 
del:51115526_51234443, 
del:45705241_51224208, 
del:49004395_51224208, 

del:42822943_51224208118, 
del:45159185_49582267169 
del:45159185_49582267, 
del:47996161_49512530, 
del:49468716_49485255, 
del:49470371_49567383, 

del:49470371_49480446147

del:22q13.3 
40,60,136,137,141,164,170–174

Deletion of 22q13.3 has 
been associated with 
intellectual disability, 

language 
alteration,60,137,139,170,174 

developmental delay and 
impaired social 
interaction140

Deletion of 
45159185_49582267 has 

been associated with 
intellectual disability, 

hyperactivity, attention 
deficits and 

agressiveness147

Deletion of 
47996161_49512530 has 

been associated with 
severe intellectual 

disability and cortical 
atrophy147  
Deletion of 

49470371_49567383 and 
49470371_49480446 
have been associated 
with language delay147

Guilmatre et al.40  
Pinto et al.60  

Durand et al.136 
Boccuto et al.137 
Gauthier et al.139 
Moessner et al.141 

Waga et al.142

Pinto et al.147  
Marshall et al.164  

Nemirovsky et al.168

 Yuen et al.169

Failla et al.170  
Crespi et al.171  
Sebat et al.172  
Wang et al.173 

Bonaglia et al.174

HOMER1 dup:78375511_78797532167 — — — Gai et al.167

del = deletion; dup = duplication.
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(Table 2), CNVs have been found only in people with autism-
spectrum disorders, particularly with respect to intellectual 
disability or language delay (Table 3).

Among these mutations, the SNV (A1731S) detected in pa-
tients with schizophrenia is noteworthy. The authors of a 
study involving a functional assay in HEK293 cells reported 
that this variant has a significant effect on the F/G-actin ratio 
and concluded that diminished actin polymerization could 

lead to impairments in synapse formation and maintenance 
by reducing the presynaptic contacts.131

To the best of our knowledge, no expression studies have 
been performed for this gene. However, animal-model 
 studies suggest that disruption of this gene could lead to the 
cognitive and social dysfunction associated with schizophre-
nia or autism-spectrum disorders by altering NMDA recep-
tor function (Table 4).

Table 4: Expression, animal model and pharmacological studies on the reviewed scaffolding genes (part 1 of 2)

Gene Expression studies Functional studies Sources

DLG1 Reduced expression of DLG1 mRNA in PFC of 
schizophrenia patients68

Reduced expression of DLG1 protein in PFC 
of schizophrenia patients175

Administration of the NMDA receptor antagonist 
PCP caused an upregulation of DLG1 gene 

transcription in the neocortex of rats176

Dracheva et al.68  
Toyooka et al.175  
Hiraoka et al.176

DLG2 Increased DLG2 mRNA and decreased protein 
expression in prefrontal cortex and anterior 
cingulate cortex of schizophrenia patients177

PSD-93 mutant mice exhibited deficits in LTP178

PSD-93 mutant mice showed cognitive 
abnormalities179

PSD-93 mutant mice did not show any 
abnormality of synaptic structure or function in 

cerebellum180

Kristiansen et al.177  
Carlisle et al.178  

Nithianantharajah et al.179 
McGee et al.180

DLG3 Increased DLG3 mRNA and protein 
expression in the thalamus of schizophrenia 

patients181

Decreased DLG3 protein expression in the 
thalamus of schizophrenia patients182

Mice lacking DLG3 exhibited impairments of 
spatial learning183

Clinton et al.181 
Clinton et al.182 

Cuthbert et al.183

DLG4 Increased DLG4 mRNA and decreased protein 
expression in ACC of schizophrenia patients177

Increased DLG4 mRNA and protein 
expression in thalamus of schizophrenia 

patients182,185

Increased DLG4 mRNA expression in the 
occipital cortex of schizophrenia patients186

Decreased DLG4 mRNA expression in the 
PFC of schizophrenia patients69

Decreased DLG4 mRNA and protein 
expression in the DLPFC of schizophrenia 

patients187

Decreased DLG4 protein expression in 
thalamus of schizophrenia patients182

Decreased DLG4 protein expression in 
hippocampus188,189

Decreased mRNA expression in the striatum190

No changes in either DLG4 mRNA or protein 
expression in PFC of schizophrenia  

patients175,186

No changes in either DLG4 mRNA or protein 
expression in the hippocampus of 

schizophrenia patients69,182

DLG4 mutant mice displayed schizophrenia and 
autism-spectrum disorder–like phenotypes184

DLG4 mutant mice displayed aberrant AMPA 
receptor-mediated transmission178,191

DLG4 mutant mice exhibited enhancement in 
LTP and deficit in LTD178,192–194

DLG4 mutant mice exhibited disrupted synaptic 
plasticity and impaired learning192

Ketamine reduced DLG4 mRNA in cortical 
regions of rats195

Ohnuma et al.69

Toyooka et al.175 
Kristiansen et al.177 

Carlisle et al.178 
Clinton et al.179 
Clinton et al.182

Feyder et al.184 
Clinton et al.185 

Dracheva et al.186 
Funk et al.187 
Toro et al.188 

Matosin et al.189 
Kristiansen et al.190 
Nakagawa et al.191 

Migaud et al.192 
Ehrlich et al.193 

Xu et al.194 
de Bartolomeis et al.195

DLGAP2 — DLGAP2 knockout mice displayed abnormal 
social behaviour196

Jiang-Xie et al.196

SHANK1 — SHANK1 mutant mice showed alterations in 
motor system and social behaviour197–199

SHANK1 mutant mice showed social 
communication deficits200

Silverman et al.197

Hung et al.198

Wöhr et al.199

Sungur et al.200

SHANK2 — SHANK2(−/ −) mutant mice were hyperactive 
and displayed autistim-like behaviours, including 
social interaction and repetitive jumping201,202,203 

SHANK2(−/ −) mutant mice exhibited fewer 
dendritic spines, reduced basal synaptic 

transmission and reduced frequency of miniature 
excitatory postsynaptic currents201,203  

SHANK2(−/ −) mutant mice showed a decrease 
in NMDA receptor function. Direct stimulation of 

the NMDA receptor with a partial agonist 
normalized its function and improved social 

interaction.202

Schmeisset et al.201

Won et al.202

Ha et al.203
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Protein Shank3
There is accumulating evidence that SHANK3 mutations con-
tribute to the pathology of neurodevelopment disorders. 
Two SNVs in the SHANK3 gene have been identified in pa-
tients with schizophrenia (Table 2), and different variants 
(SNPs, SNVs and CNVs) have been associated with autism-
spectrum disorders (Table 1, Table 2 and Table 3). Among 
them, the missense variant G1011V (g.49506159G>T) located 
in exon 21 has been identified in patients with schizophrenia 
and patients with autism-spectrum disorders (Table 2). Fur-
ther studies are needed to test whether this variant has any 
consequence for the protein function.

The R1117X nonsense mutation (g.49484091C>T) has been 
identified in exon 21 of the SHANK3 gene in patients with 
schizophrenia and intellectual disability. This amino acid 

change resulted in a truncated form of the Shank3 protein that 
lacked the Homer-binding site, causing its loss of function.46,135

The A198G (g.51117341C>G) identified in people with 
autism- spectrum disorders generated a frameshift mutation that 
introduced a premature STOP codon at position 1227, leading to 
a truncated form of Shank3 that also caused its loss of function. 
This mutation disrupted actin polymerization, the regulation of 
spine formation and the molecular organization of the PSD.136

Two frameshift mutations causing premature STOP codons 
(g.51117094C>G and g.51160615G>T) resulted in the loss of 
protein function by losing the C-terminal region of the protein, 
which is crucial for interactions with other PSD proteins.137

Regarding CNVs, different studies have identified dele-
tions in the SHANK3 gene in patients with schizophrenia and 
patients with autism-spectrum disorders with intellectual 

Table 4: Expression, animal model and pharmacological studies on the reviewed scaffolding genes (part 2 of 2)

Gene Expression studies Functional studies Sources

SHANK3 — SHANK3 mutant mice exhibited self-injurious 
repetitive grooming behaviours204,206,207 and social 
interaction,204,205,207,209,210 learning and memory205 

deficits. They also showed anxiety and motor 
deficits206,208,209

SHANK3 mutant mice showed deficits in 
glutamatergic transmission and synaptic 

plasticity and reduced synaptic concentrations of 
scaffolding proteins (e.g., DLGAP3, 

Homer1).204,208–210 Re-expression of the SHANK3 
gene in adults led to improvements in synaptic 
protein composition, spine density and neural 
function, as well as selective rescue in autism-

related phenotypes.208 
Insulin-like growth factor-1 reversed synaptic and 
behavioural deficits in SHANK3 mutant mice206 

and phenotypic changes in human neuronal 
models of Rett syndrome.211

SHANK3B knockout mice exhibited early 
hyperactivation and precocious maturation of 

corticostriatal circuits212

Arons et al.204 
Wang et al.205 

Bozdagi et al.206 
Peça et al.207 
 Mei et al.208 

Bozdagi et al.209 
Yang et al.210  

Marchetto et al.211 
Peixoto et al.212

HOMER1 Increased Homer1a protein expression in 
hippocampal interneurons of schizophrenia 

patients213

Increased Homer1a and decreased Homer1b 
protein expression in hippocampus of 

schizophrenia patients189

HOMER1 knockout mice displayed impaired fear 
memory formation214 and impaired LTP215

HOMER1 knockout mice showed abnormalities 
in motivational, emotional, cognitive and 

sensorimotor processing216  
HOMER1 knockout mice also showed somatic 
growth retardation, poor motor coordination, 
enhanced sensory reactivity, learning deficits 

and increased aggression in social interaction218

Overexpression of HOMER1 in knockout mice 
reverted the cognitive and behavioural 

impairments217

Exposure to novel environments upregulated 
HOMER1 mRNA in the hippocampus of rats219

Methamphetamine or cocaine administration 
upregulated HOMER1 mRNA in the neocortex of 

rats220

LSD or PCP administration upregulated 
HOMER1 mRNA in the PFC of rats221,222

10Ketamine increased HOMER1 mRNA in the 
cortical regions, striatum and nucleus 

accumbens of rats195,223

Antipsychotics (haloperidol, olanzapine or 
clozapine) induced an increment of Homer1 

protein expression in the cortex, the striatum, the 
caudate-putamen or nucleus accumbens of 

rats107,224–228

de Bartolomeis et al.107 
Matosin et al.189 

de Bartolomeis et al.195 
Leber et al.213 

Inoue et al.214 
Gerstein et al.215 

Szumlinski et al.216 
Lominac et al.217 
Jaubert et al.218 

Vazdarjanova et al.219 
Fujiyama et al.220 
Cochran et al.221 
Nichols et al.222 
Iasevoli et al.223 
Iasevoli et al.224 
Iasevoli et al.225 

Ambesi-Impiombato et al.226 
Polese et al.227 

Tomasetti et al.228

ACC = anterior cingulate cortex; AMPA = α-amino-3-hydroxy-5-methylisoxazole-4 propionic acid; LSD = lysergic acid; LTD = long-term depression; LTP = long-term potentiation; NMDA = 
N-methyl-d-aspartate; PCP = phencyclidine; PFC = prefrontal cortex; PSD = postsynaptic density.
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disability, developmental delay, language alterations or im-
paired social interaction (Table 3). Similarly, Phelan McDermid 
Syndrome (22q13.3 deletion syndrome), which includes dele-
tion of the SHANK3 gene, is characterized by neonatal hypo-
tonia, global developmental delay, absence of speech, autistic 
behaviour and intellectual disability.235

Animal-model studies also appear to support a role for this 
gene in the cognitive and behavioural clinical phenotypes re-
lated to schizophrenia and autism-spectrum disorders. 
Shank3 mutant mice display reduced social interaction, affili-
ation behaviour, repetitive behaviour and communicative 
deficits (Table 4).

Summary
In summary, results for Shank proteins suggest that their 
disruption might underlie some of the cognitive and social 
dysfunction present in schizophrenia and autism-spectrum 
disorders. This is in line with the latest data showing that the 
prevalence of SHANK3 mutations in people with autism-
spectrum disorders is 0.5% to 0.7%, and that a SHANK3 mu-
tation is present in approximately 2% of people with both an 
autism-spectrum disorder and intellectual disability.129,138,236 

More specifically, from animal-model studies it has been sug-
gested that these dysfunctions might be caused by alterations 
in the NMDA-receptor-related signalling pathway. There is 
evidence that SHANK2 (−/−) mutant mice display abnormal 
NMDA receptor function and show alterations in behaviour 
and social skills.201 Interestingly, when mutant mice were 
stimulated with NMDA receptor agonists, NMDA receptor 
function was normalized and their social interactions im-
proved.202 Regarding the pathophysiological mechanisms 
under lying the social deficits in SHANK3 mutation, it has 
been reported that knockdown of the SHANK3 gene in rat 
cortical cultures causes a loss of NMDA receptor function 
and alterations in its membrane trafficking through the dis-
ruption of the actin cytoskeleton.237 Furthermore, Arons and 
colleagues showed that the loss of function of the SHANK3 
gene resulted in reduced glutamatergic synaptic transmis-
sion, whereas overexpression of this gene increased the num-
ber and size of excitatory synapses and the expression levels 
of other PSD proteins, such as DLG4 and Homer1.204 There-
fore, the behavioural and cognitive alterations present in pa-
tients carrying mutations in SHANK genes might be related 
to dysfunctions in NMDA-receptor-related glutamatergic sig-
nalling, which in turn might be caused by abnormalities in 
the interactions between Shank and other PSD proteins or 
anomalies in the actin polymerization processes.

The Homer protein family

Although 1 study reported a putative role for the HOMER2 
gene in schizophrenia (Table 1), it is principally the HOMER1 
gene that has been associated with schizophrenia and 
 autism-spectrum disorders.

Three SNPs in HOMER1 have been associated with schizo-
phrenia (Table 1). Among them, rs4704560 has also been as-
sociated with the risk of developing psychotic symptoms in 
Parkinson disease (Table 1). In addition, 1 SNV and 1 CNV 

have been found in patients with schizophrenia (Table 2 and 
Table 3). As well, SNVs (Table 2) and CNVs (Table 3) have 
been detected in people with autism-spectrum disorders.

Expression studies have reported increases in Homer1a 
protein and decreases in Homer1b in the hippocampus of 
postmortem brain samples of schizophrenia (Table 4).

Animal-model studies suggest that HOMER1 transcripts 
might control cognitive and behaviour functions (Table 4). It 
has also been suggested that mutations in HOMER1 might 
increase the risk of developing schizophrenia by dysregulat-
ing NMDA receptors and their associated signalling path-
way. Pharmacological studies have shown that the NMDR 
inhibitor phencyclidine (PCP) and the NMDA receptor an-
tagonist ketamine increase HOMER1 mRNA in rat prefrontal 
cortex and ventral striatum and nucleus accumbens, respec-
tively. Other studies show that HOMER1 mRNA and/or re-
lated protein expression levels are modified by psychotomi-
metic drugs and the antipsychotic haloperidol (Table 3).

Summary
Overall, although HOMER1 has been associated with both 
schizophrenia and autism-spectrum disorders, genetic, ex-
pression and animal model studies do not provide conclusive 
results. This could be because different Homer1 isoforms 
have different functions. It has been suggested that the long 
isoform Homer1c is implicated in the regulation of working 
memory and sensorimotor function, whereas Homer1a could 
modulate the behavioural and emotional area.217 Addition-
ally, some studies report that the balance between long and 
short Homer forms determines the normal functioning of the 
synaptic architecture and function and influences synaptic 
plasticity dynamics238; therefore, an alteration of this balance 
could dysregulate synaptic signalling, leading to neurochem-
ical, structural and behavioural changes.217,218

Discussion

Accumulating evidence supporting biological overlap be-
tween schizophrenia and autism-spectrum disorders has 
 fuel led research into common underlying mechanisms to pro-
vide a better understanding of the etiology of these disorders, 
their diagnosis and treatment. One such mechanism involves 
the synaptic plasticity in which the PSD structure plays a key 
role. This review has summarized genetic variants in the main 
scaffolding genes of the PSD that have been associated with 
schizophrenia and/or autism-spectrum disorders to date. 
Moreover, evidence coming from genetic, brain expression 
and animal model studies suggests that genetic variants in 
scaffolding genes could contribute to the deregulation of the 
glutamate receptor signalling pathways of the PSD, which 
may be involved in the pathophysiology of schizophrenia and 
autism-spectrum disorders, and the development of related 
shared phenotypes, such as cognitive or social dysfunction.

Such a cross-disorder effect of scaffolding gene and protein 
dysregulation seems consistent with their role as a dynamic 
complex that regulates cell signalling pathways and deter-
mines the specificity of information flow in intracellular net-
works.72 Because scaffolding proteins coordinate the excitatory 



Genetic variability in scaffolding proteins

 J Psychiatry Neurosci 2018;43(4) 237

synaptic transmission and mediate functional changes at the 
synapse, thus regulating synaptic plasticity among other pro-
cesses,73 they can be seen as crucial pieces of the complex 
puzzle of synaptic homeostasis maintenance. The fact that 
common (SNPs) and rare (SNVs and CNVs) variants have 
been identified in scaffolding genes in both schizophrenia 
and autism-spectrum disorders is in agreement with the view 
that both kinds of variants complementarily and hetero-
geneously underlie the shared genetic susceptibility to these 
disorders (Table 5) by generating synaptic instability.

From the present review, it is possible to infer that pa-
tients with schizophrenia or autism-spectrum disorders pri-
marily share CNVs that include the complete length of one 
or more genes. In this regard, CNVs in the PSD genes seem 
to increase the risk of developing either schizophrenia or 
 autism-spectrum disorders. For instance, deletions of the 
chromosomal region 3q29, which includes the DLG1 gene, 
have been related to both schizophrenia and autism- 
spectrum disorders.45,49 Taking into account the usually large 
effect size of rare variants on a phenotype, we should not be 
surprised that alterations in the number of copies (deletions 
or duplications) of these genes have an impact on PSD func-
tioning and plasticity. In addition to being associated with 
specific disorders, these variants have been associated with 
certain phenotypes in these or other disorders, or even in 
healthy controls. Pocklington and colleagues showed that 
rare CNV burden may be relevant to cognitive dysfunction 
in patients with schizophrenia,239 and Stefansson and col-

leagues found that CNVs conferring risk of either schizo-
phrenia or autism-spectrum disorders, including CNVs in 
the DLG1 and DLG2 genes, also affect cognitive function in 
healthy controls.240 Other studies have similarly detected 
that mutations in PSD genes, including some of the scaffold-
ing genes reviewed here, such as DLG383 or SHANK3,241 are 
present in patients with intellectual disability.

This review has also provided evidence that, although sev-
eral SNPs and SNVs in the scaffolding genes have been asso-
ciated with schizophrenia or autism-spectrum disorders, 
only a few have been reported in both: 2 SNPs and 3 SNVs in 
the DLGAP2 gene and 1 SNV in the SHANK3 gene (Table 5). 
Variants that occur in both diagnoses might be targets of spe-
cial interest for our understanding of common pathophysio-
logical mechanisms and shared clinical features. Although it 
is difficult to infer the functional significance of these vari-
ants, bioinformatic analyses have indicated that some of the 
DLGAP2 gene variants (rs2301963, c.841C>G and c.2750C>T) 
might affect final protein function or expression. In relation 
to SHANK3, to our knowledge, there is no available informa-
tion about the functionality of the missense SNV (G1011V) 
that has also been found associated with both disorders.

Nevertheless, the general lack of specificity observed here 
can be explained in terms of the pleiotropic nature of scaf-
folding genes. Variants in different scaffolding genes, either 
at the allelic or the gene level, may dysregulate the homeosta-
sis of the PSD, which is finally expressed as features associ-
ated with different neurodevelopment disorders. In addition 

Table 5: Summary of variants in scaffolding genes associated with both schizophrenia and autism-spectrum disorders

Genes SNPs SNVs CNVs Sources

DLG1 — — del:3q2945,50,57,148–156 Sanders et al.45 
Purcell et al.50 

Kirov et al.57 

Levinson et al.148 
Mulle et al.149 
Magri et al.150 

Szatkiewicz et al.151 
Quintero-Rivera et al.152 

Levy et al.153 
Willatt et al.154 
Ballif et al.155 
Sagar et al.156

DLGAP2 rs2906569,
rs2301963115,116

c.841C>G, c.2135C>T
c.2750C>T115,116

del:8p23.3161,163–165 Chien et al.115 
Li et al.116 

Chien et al.161 
Costain et al.163 
Marshall et al.164 
Ozgen et al.165

SHANK3 — g.49506159G>T129, 135,136 del:22q13.340,60,136,137,141,164,170–174 Guilmatre et al.40 
Pinto et al.60 

Leblond et al.129

Gauthier et al.135 
Durand et al.136 
Boccuto et al.137 

Moessner et al.141 
Marshall et al.164 

Failla et al.170 
Crespi et al.171 
Sebat et al.172 
Wang et al.173 

Bonaglia et al.174

CNV = copy number variant; del = deletion; SNP = single nucleotide polymorphism; SNV = single nucleotide variant.
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to this pleiotropy, the polygenic nature of psychiatric disor-
ders and the polygenic nature of the intermediate molecular 
pathways known to underlie at least part of the autism- 
spectrum disorders/schizophrenia pathology (such as the 
proper functioning of the PSD) should also be considered. 
This directly links with additional genetic phenomena, such 
as gene–gene interactions. In recent years, the gene- 
pathways methodology has been developed to study 
whether different genes with similar functions are jointly as-
sociated with a single phenotype. So far, only a few studies 
have assessed the effect of common variance in scaffolding 
genes as a functional gene set or the epistatic effects of other 
related PSD functional gene sets on the risk of schizophrenia 
or autism-spectrum disorders. One recent study explored 
the enrichment of schizophrenia-associated ultra-rare vari-
ants and found a significant enrichment of disrupting ultra-
rare variants among genes defined as encoding interactors 
with DLG4 and ARC and NMDA receptors.70 Another study 
observed an enrichment of SNPs associated with autism-
spectrum disorders in gene sets related to synaptic structure 
and function, including genes related to scaffolding proteins, 
β-catenin nuclear pathways, glutamate receptor activity and 
adherents junctions.67 In addition, although not significant 
after correction, a nominal association between a PSD pro-
tein defined gene set (including ARC and NMDA receptor 
complexes) with schizophrenia has been reported.36 In all, 
the effect of common and rare variants in scaffolding genes 
on schizophrenia and autism-spectrum disorders reflects the 
complex and heterogeneous genetic architecture of these dis-
orders, and further analyses of gene sets could facilitate the 
untangling of this complexity.

In addition to genetic data, expression and animal-model 
studies have indicated the importance of scaffolding genes 
in schizophrenia and autism-spectrum disorders. There is 
evidence that patients with schizophrenia or autism- 
spectrum disorders display deviations from normal scaf-
folding protein brain expression levels, supporting the hy-
pothesis that the deregulation of these genes might underlie 
the neurobiology of both disorders. However, to our know-
ledge, there are no brain expression studies of the 2 genes  
(DLGAP2 and SHANK3) in which overlapping variants that 
predispose individuals to schizophrenia and/or autism-
spectrum disorders were found.52,115,116,135,242 Further research 
is required to test whether these coincident genetic variants 
contribute to modifying protein expression levels. In con-
trast, studies with animal models have shown the impor-
tance of scaffolding genes in ensuring cognitive and social 
function. We have reviewed different studies in which mice 
with scaffolding protein mutations show schizophrenia and 
autistim-like phenotypes.184,205 The use of animal models is 
extremely useful for understanding how changes in the 
gene sequence can affect phenotypes. As an example of the 
potential importance of animal models, there are SHANK3-
deficient mice in which synaptic deficits were reversed with 
insulin-like growth factor-1.206 In a recent pilot study, insulin-
like growth factor-1 has been used to treat 9 children with 
autism, and preliminary results have shown a reduction in 
social deficits.243

Limitations

Some limitations of this review should be acknowledged. 
First, since the reviewed association studies do not always in-
clude the same genetic regions or variants, coincident variants 
can be linked to shared genetic variability between schizo-
phrenia and autism-spectrum disorders, but noncoincidence 
cannot be interpreted as a lack of it. Second, patients with low 
IQ scores are generally excluded from association studies. 
Since the scaffolding genes reviewed here seem to contribute 
to cognitive phenotypes, it is plausible to hypothesize that the 
effects of SNPs and SNVs in these genes were detected less  
often than they actually occur. Third, the relationship between 
the effect size associated with common and rare variants, the 
statistical power needed to detect these effects and the sample 
sizes in the studies reported in the different articles reviewed 
should be considered. The odds ratios associated with schizo-
phrenia risk SNPs are typically about 1.10 to 1.50, whereas 
schizophrenia-associated CNVs confer a significantly in-
creased risk of illness (odds ratios for several CNVs exceed 
8).244 Therefore, rare variants can more easily create significant 
genome-wide associations than common variants.245

Conclusion

Advances in genetic technologies, together with the assembly 
of large patient cohorts, have made it possible to identify 
some genes and biological pathways involved in both schizo-
phrenia and autism-spectrum disorders. Among them, scaf-
folding genes implicated in the PSD have been repeatedly as-
sociated with schizophrenia and autism-spectrum disorders, 
pointing toward these genes’ common involvement in the 
neurobiology of these disorders and in some shared clinical 
phenotypes, such as cognitive and social impairment. This 
review summarizes evidence that many different variants 
could introduce numerous slight alterations in the PSD path-
way, leading to its inappropriate development or insuffi-
ciently robust response to environmental insults.
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