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Introduction

Imbalances in the decision to approach or avoid when both pos-
itive and negative consequences are expected (i.e., approach-
avoidance conflict; AAC) is often problematic in people with 
mental health conditions.1 For example, people with depres-
sion and anxiety may choose to sacrifice participation in re-
warding activities because they believe such activities will also 
lead to negative consequences (e.g., judgment, embarrass-
ment2). People with substance use disorders also engage in 
costly drug-taking behaviours to avoid negative affect and 
show impairment during decision-making in tasks that involve 

conflict between reward and punishment (reviewed in Ekhtiari 
and colleagues3 and Guttman and colleagues4). A better under-
standing of the underlying factors that contribute to avoidance-
based decision-making may improve our understanding of 
these mental health conditions and inform the development of 
treatments that target the distinct factors that are relevant for 
individual patients.5

Several paradigms are used to study AAC (for a review, see 
Kirlic and colleagues6), most of which create conflict between 
receiving monetary rewards and either monetary punish-
ments (monetary-based conflict7,8), pain (pain-based conflict9) 
or aversive affective stimuli (affect-based conflict10–13). 
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Background: Imbalances in approach-avoidance conflict (AAC) decision-making (e.g., sacrificing rewards to avoid negative outcomes) 
are considered central to multiple psychiatric disorders. We used computational modelling to examine 2 factors that are often not distin-
guished in descriptive analyses of AAC: decision uncertainty and sensitivity to negative outcomes versus rewards (emotional conflict). 
Methods: A previously validated AAC task was completed by 478 participants, including healthy controls (n = 59), people with substance 
use disorders (n = 159) and people with depression and/or anxiety disorders who did not have substance use disorders (n = 260). Using 
an active inference model, we estimated individual-level values for a model parameter that reflected decision uncertainty and another 
that reflected emotional conflict. We also repeated analyses in a subsample (59 healthy controls, 161 people with depression and/or anx-
iety disorders, 56 people with substance use disorders) that was propensity-matched for age and general intelligence. Results: The 
model showed high accuracy (72%). As further validation, parameters correlated with reaction times and self-reported task motivations in 
expected directions. The emotional conflict parameter further correlated with self-reported anxiety during the task (r = 0.32, p < 0.001), 
and the decision uncertainty parameter correlated with self-reported difficulty making decisions (r = 0.45, p < 0.001). Compared to 
healthy controls, people with depression and/or anxiety disorders and people with substance use disorders showed higher decision un-
certainty in the propensity-matched sample (t = 2.16, p = 0.03, and t = 2.88, p = 0.005, respectively), with analogous results in the full 
sample; people with substance use disorders also showed lower emotional conflict in the full sample (t = 3.17, p = 0.002). Limitations: 
This study was limited by heterogeneity of the clinical sample and an inability to examine learning. Conclusion: These results suggest 
that reduced confidence in how to act, rather than increased emotional conflict, may explain maladaptive approach-avoidance behav-
iours in people with psychiatric disorders.
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 Although AAC is often analyzed using more traditional be-
havioural measures, computational modelling has emerged as 
a promising new approach for analysis.14–19 Modelling allows 
for precise quantification of distinct information-processing 
mechanisms that contribute to decision-making. For example, 
in a monetary-based conflict study,20 variations in a model 
 parameter that reflected relative sensitivity to reward versus 
punishment accounted for sex differences in avoidance 
(greater avoidance behaviour in females), whereas greater 
sensitivity to punishment overall better accounted for the in-
creased avoidance behaviour observed in those with an inhib-
ited temperament. In a pain-based conflict study,9 computa-
tional modelling also showed that sensitivity to reward-based 
benefits became increasingly attenuated as pain-based costs 
increased in aversiveness.

Computational modelling has not yet been applied to affect-
based conflict. Doing so may add clinical value, because antici-
pation of negative affect may be particularly important for 
 understanding the factors that contribute to psychiatric disor-
ders. To be clear, the distinction made here between affect-
based conflict and pain- or monetary-based conflict is not 
meant to suggest that losing money or feeling the unpleasant 
sensation of pain do not involve affective responses.21 The dis-
tinction motivating the use of affect-based tasks is one of maxi-
mizing ecological validity: affective disorders more often 
 involve avoidance of the more complex “emotional pain” in-
duced by socio-emotional cues (e.g., social rejection, losing a 
job, death). The visual/auditory stimuli used in affect-based 
AAC tasks are designed to more closely match such cues (e.g., 
by depicting social interactions mirroring some of those cues) 
and the emotionally painful responses they evoke.

In this study, we applied a computational modelling ap-
proach22,23 to study affect-based conflict. We demonstrated 
how this approach could separate 2 underlying components 
of conflict that have not been thoroughly distinguished in tra-
ditional descriptive analyses: decision uncertainty and rela-
tive sensitivity to negative affective stimuli versus reward 
(emotional conflict). Both uncertainty and emotional conflict 
have potential relevance for psychiatric disorders. For exam-
ple, poor decision-making in people with anxiety has been 
associated with high intolerance of uncertainty and risk aver-
sion,24,25 whereas suboptimal decision-making in depression 
appears to be driven more by attenuated responses to re-
ward.26,27 Substance use disorders have also been associated 
with intolerance of uncertainty28 and a reduced ability to in-
corporate uncertainty into reward learning during decision-
making tasks.29 However, the distinct contributions of uncer-
tainty versus emotional conflict (threat/reward sensitivity) to 
avoidance behaviour have not been fully delineated.

Using a relatively large sample comprising healthy con-
trols without psychiatric symptomatology and a transdiag-
nostic sample of patients with depression, anxiety and/or a 
substance use disorder, we estimated model parameters that 
reflected decision uncertainty and emotional conflict using 
an affect-based AAC task.11,12,30 We hypothesized that rela-
tive to healthy controls, both psychiatric groups would 
 exhibit greater uncertainty and greater emotional conflict in 
the AAC task.

Methods

Participants

We identified participants for this analysis from the first 500 
participants in the Tulsa 1000 (T1000),31 a naturalistic longi-
tudinal study that recruited participants based on the dimen-
sional National Institute of Mental Health Research Domain 
Criteria framework.32 The T1000 study included a community-
based sample of approximately 1000 people recruited through 
radio, electronic media, treatment centre referrals and word of 
mouth (this sample size was planned a priori; see Victor and 
colleagues31 for a detailed justification based on the aims of the 
larger study). Participants were 18 to 55  years of age and 
screened on the basis of dimensional psychopathology scores: 
Patient Health Questionnaire (PHQ-933) score ≥ 10; Overall 
Anxiety Severity and Impairment Scale (OASIS34) score ≥ 8; 
and/or Drug Abuse Screening Test (DAST-1035) score > 2. The 
healthy controls showed no elevated symptoms or psychiatric 
diagnoses. Participants were excluded if they tested positive 
for drugs of abuse; met the criteria for a psychotic disorder, bi-
polar disorder or obsessive–compulsive disorder; reported 
a history of a moderate to severe traumatic brain injury, a 
neurologic disorder or a severe or unstable medical condi-
tion; reported an active suicidal intent or plan; or reported a 
change in medication dose within 6 weeks of participation 
in the study. Full inclusion and exclusion criteria are de-
scribed in Victor and colleagues.31 The study was approved 
by the Western Institutional Review Board. All participants 
provided written informed consent before they completed 
the study protocol, in accordance with the Declaration of 
Helsinki, and they were compensated for participation 
(ClinicalTrials.gov identifier NCT02450240). A number of 
previous papers have been published from the larger T1000 
data set,36–46 but none of these papers has included analyses 
or data from the AAC task.

Given the heterogeneous clinical sample in the T1000 and 
its explicitly transdiagnostic focus, we divided participants 
into 3 groups: healthy controls; people with substance use 
disorders; and people with depression and/or anxiety who 
did not have substance use disorders. Participants were 
grouped based on DSM-IV or DSM-5 diagnosis using the 
Mini International Neuropsychiatric Inventory,47 and analy-
ses focused on groups of participants with major depressive 
and/or anxiety disorders (social anxiety, generalized anxiety, 
panic and/or posttraumatic stress disorder; n = 260); sub-
stance use disorders (recreational drugs excluding alcohol 
and nicotine, with or without comorbid depression and/or 
anxiety disorders; n = 159); and healthy controls with no 
mental health diagnoses (n = 59).  

As further described in Victor and colleagues,31 the T1000 
study was built around the National Institute of Mental 
Health Research Domain Criteria framework, which de-
scribes dimensions of pathology.32 Thus, the T1000 study spe-
cifically focused in advance on recruiting participants with 
these symptom profiles, with the aim of identifying trans-
diagnostic behavioural and neural phenotypes that were re-
lated to threat/reward processing, interoceptive processing 
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and cognitive functioning. Although symptoms can be ob-
served dimensionally, as in the case of symptom scales, we 
also sought to categorize participants according to diagnoses. 
These categories were developed before the current analyses 
and discussed in a previous paper.36 The T1000 also included 
people with eating disorders, but we excluded them from the 
present study because of small sample sizes. We also categor-
ized mood and anxiety disorders together for our analyses 
 because of the high rates of overlap in these diagnoses and be-
cause the sample size for anxiety alone would have been very 
small (n = 19) if separated. We included a lower number of 
healthy controls to maximize our ability to detect dimensional 
effects in patient populations in other planned analyses (in 
consideration of the total sample size that could be collected).

Data collection procedure

Participants underwent an intensive assessment for 
demographic, clinical and psychiatric features, with a main 
focus on negative and positive affect, arousal and cognitive 

functioning. From this assessment, we acquired several direct 
and derived variables, only some of which were used in the 
present analyses. The complete list of assessments and 
references supporting their validity and reliability are 
provided in Victor and colleagues.31

Approach-avoidance conflict task

The AAC task (Fig. 1)11,30 is described more extensively in 
Appendix 1, available at jpn.ca/200032-a1. Before performing 
the task, participants received detailed instructions (provided 
in Appendix 2, available at jpn.ca/200032-a2) and completed 
4 practice trials to ensure sufficient understanding. In each 
trial, a runway was shown with a picture of an avatar in a 
starting position above the runway. Pictures were also shown 
on each side of the runway, indicating the types of stimuli 
(i.e., affective image–sound combinations and reward points) 
that could be presented at the end of the trial depending on 
participants’ choices. Specifically, a sun or a cloud repre-
sented potential positive or negative affective stimuli, 

Fig. 1: Left: Sample trial in the approach-avoidance conflict task, in which the negative stimulus and 2 points were presented based on the 
probabilities associated with the chosen runway position. Right: The 5 trial types. The sun indicates a positive stimulus, the cloud indicates a 
negative stimulus and the higher the red bar is filled the more points may be received.  

Example trial Trial types
Time

Decision phase
Maximum of 4 seconds

90 80 70 60 50 60 70 80 90

Affective stimulus phase
6 seconds

Reward phase
2 seconds

Intertrial fixation
1–11 seconds

(mean = 6 seconds)

Approach-avoidance conflict task

1) Avoid-threat

2) Approach-reward

3) Conflict: 2-point

4) Conflict: 4-point

5) Conflict: 6-point

% Chance of the closest potential outcome occurring if avatar
ends at each specific position

You made 2 points!!

Total = 8
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 respectively, and the height of red fill in a rectangle signified 
the number of points that would be received in addition to the 
presentation of those stimuli. In each trial, participants could 
press the left or right arrow keys to move the avatar from its 
starting position to any other position (9 possible  locations) on 
the runway, and they were asked to choose a single ending po-
sition in each trial. They were told that each ending position 
corresponded to a specific probability of observing different 
stimuli at the end of the trial. These stimuli included a positive 
or negative affective image–sound com bination (indicated by 
the sun or the cloud, respectively), and a certain level of reward 
points (indicated by the height of the red fill in the  rectangle, as 
noted above). The ending position of the avatar determined the 
probability that each of these outcomes would occur. 

Before they started the task, participants were told the spe-
cific probabilities of observing each stimulus for each runway 
position, and that these probabilities were stable across the 
task. Thus, there was no learning in this task, and no measure 
of better or worse performance; participants simply indicated 
their preferred location on the runway (based on the prob-
abilities of each outcome) in each trial. The probabilities 
given to the participants were based on the distance from 
each stimulus (e.g., being closer to the sun image indicated a 
higher probability of observing the positive stimulus). From 
left to right on the runway, the probabilities were as follows: 
0.9/0.1, 0.8/0.2, 0.7/0.3, 0.6/0.4, 0.5/0.5, 0.4/0.6, 0.3/0.7, 
0.2/0.8, 0.1/0.9. The starting position of the avatar (middle, 
left end or right end) was counterbalanced across trials (for 
each trial type; see below) to control for its potential influence 
on participants’ choices.

The affective image–sound combinations were gathered 
from the International Affective Picture System,48 the Interna-
tional Affective Digitized Sounds49 and other freely available 
audio files (see further descriptions in previous reports using 
this task: Aupperle and colleagues11 and Chrysikou and col-
leagues30). The “reward” included 0, 2, 4 or 6 points, pre-
sented along with a trumpet sound. There were 5 trial types 
(Fig. 1), which were indicated to participants by the images 
shown on each side of the runway on each trial. Each trial 
type was named in reference to the behavioural motivation 
presumably elicited by the negative or positive affective 
stimu li and/or the reward points: “avoid-threat” (AV), in 
which 0 points were offered for both possible stimulus out-
comes, so the only explicit motivation was to avoid the nega-
tive affective stimulus; “approach-reward”(APP), in which 2 
or 0 points were offered, each with positive affective stimuli, 
so the only explicit motivation was to approach the rewarded 
outcome; and 3 trial types with different levels of “conflict,” 
in which the negative affective stimulus was presented in 
 addition to receiving either 2 (CONF2), 4 (CONF4) or 
6 (CONF6) points (0 points were offered for the other possi-
ble outcome, in which a positive affective stimulus would be 
presented). The task consisted of a total of 60 trials: 12 of each 
of the 5 trial types. 

After task completion, a screen appeared displaying the 
total points received and an award ribbon. As in previous 
administrations of the task,11,12 points did not correspond to 
a monetary reward. Notably, previous research has shown 

that paradigms involving non-monetary or monetary re-
wards elicit similar neural activation patterns in reward-
sensitive brain regions,50,51 which could suggest similar 
 motivational influences. Behavioural variables consisted of 
the chosen avatar position and the reaction time (i.e., time to 
initial button press) in each trial. Participants were also 
asked to fill out a questionnaire that asked about their 
experi ences during the task.

Computational modelling

To model behaviour on the AAC task described above, we 
 adopted a Markov decision process model under the active 
inference framework; for more details about the structure and 
mathematics of this class of models, see Friston and col-
leagues,23,52 Parr and Friston53 and Appendix 1. We chose this 
model because it is well suited for modelling decision-making 
under uncertainty and was designed to model inference and 
planning processes, both with and without learning. This was 
appropriate here because the AAC task did not involve learn-
ing (i.e., participants were explicitly told the probabilities of 
stimuli/points given each runway position before the task 
 began), which made other common learning-based modelling 
approaches (e.g., reinforcement learning) less appropriate. 
This was similar to other previously used behavioural tasks 
(e.g., the urn or beads task54–56) that rely on probabilistic infer-
ence as opposed to learning, and therefore call for some form 
of Bayes optimality assumptions (under the complete class 
theorem; see Huq and colleagues55). Furthermore, because the 
outcomes of decisions in the AAC task were probabilistic and 
participants were explicitly informed about these probabilities 
when making their choices, a model that explicitly incorpor-
ated action–outcome probabilities appeared to be most appro-
priate for capturing the cognitive processes that underlie par-
ticipants’ behaviour.

Briefly, this approach required creating a model with spe-
cific sets of observable stimuli (o) and beliefs about states of the 
task (s), as well as beliefs about the sequences of actions that 
can be chosen (policies; π). For this study, observations in-
cluded runway position, trial-type cues and positive/negative 
stimuli + number of points; task states included beliefs about 
the trial type and position on the runway; and policies in-
cluded transitions to each possible location on the runway. The 
relationships between these variables at a time (t) were de-
scribed by a set of matrices. The A matrix encoded the way 
that task states were related to observations, P (ot|st). This in-
cluded (1) the probability of observing each set of trial-type 
cues given a particular trial type (specified as an identity ma-
trix); (2) the probability of observing the avatar in a given loca-
tion given a particular runway position (specified as an iden-
tity matrix); and (3) the probability of observing different 
outcome stimuli given each position on the runway (specified 
based on the stated task probabilities). The B matrix encoded 
the probability that one task state would transition into an-
other depending on selected policies, P (st + 1| st, π ); in this 
study, this specified that trial type was stable across a trial 
(identity matrix) and that the participant would determinis-
tically transition from the start state to different runway 
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 position states given the selection of different policies. The 
value of an observation was encoded as a log probability 
within a matrix referred to as the C matrix (implementation in 
the present model described further below). Policies were 
 selected based on beliefs about the probability that each possi-
ble policy would produce preferred observations (i.e., for-
mally, those with the highest prior probability), modulated by 
an expected precision term (γ) that encoded decision uncer-
tainty. See Table 1 and Appendix 1 for further details about 
how observations, states, policies and associated matrices were 
defined to model the AAC task.

Each trial consisted of 2 epochs. In the first epoch, the par-
ticipant was in a “start” state and was presented with the av-
atar and trial-type cues (observations indicating AV, APP, or 
CONF2, 4 or 6). Based on the selected policy, on the second 
epoch the participant then transitioned to the chosen runway 
position (indicated by movement of the avatar) and observed 
the outcome stimuli (i.e., image–sound type + number of 
points) based on the probabilities associated with the chosen 
runway position. Figure 2 depicts the Markov decision pro-
cess structure, A-matrices for the task and sample simula-
tions under different parameter values. Figure 3 provides a 
visual depiction of the model structure of the AAC task.

The C matrix was specified such that the expected value 
assigned to each possible stimulus was determined by 3 par-
ameters corresponding to the subjective value of observing 

the positive affective stimulus, the negative affective stimulus 
and each point that could be won. The positive affective 
stimu lus was fixed at an “anchor” value of lnP(o) = 0, and the 
value of each point was lnP(o) = 1 (e.g., lnP[o] = 2 when win-
ning 2 points). We then estimated the relative value (subjec-
tive aversiveness) of the negative affective stimulus. This par-
ameter indicated the “emotional conflict” (EC) — that is, the 
expected aversiveness of the affective stimuli relative to the 
reward value assigned to each point. We also estimated a 
prior policy precision parameter (β), which was the inverse of 
the expected precision term γ and acted as an index of an in-
dividual’s a priori belief-based uncertainty related to making 
optimal decisions. Higher decision uncertainty in the model 
(a higher β value) led to less consistent (more variable) 
choices over trials, because of less precise beliefs about the 
best policy (i.e., less confidence in which action would lead to 
the most preferred outcomes).

Based on these values, the model inferred a probability dis-
tribution over possible actions (i.e., transitions to different 
possible runway positions) and sampled actions from this 
distribution on each trial, where higher action probabilities 
formally corresponded to lower values of a quantity called 
expected free energy (G; described more thoroughly in Ap-
pendix 1). Briefly, in this context a lower expected free energy 
corresponded to a smaller (Kullback–Leibler) divergence be-
tween the distribution reflecting the preferred observations 

Table 1: Markov decision process model of the approach-avoidance conflict task

Model variable General definition Model-specific specification

ot Observable outcomes at time t Outcome modalities:
1.   Observed position on the runway (10 possible observations, 

including a “starting” position and the 9 final positions one could 
choose)

2.   Cues indicating trial type (5 possible observations, corresponding 
to the 5 trial types)

3.   Stimuli observed at the end of each trial. This included 7 possible 
observations corresponding to a “starting” observation, the 
positive stimulus with 0 or 2 points, and the negative affective 
stimulus with 0, 2, 4 or 6 points

st Hidden states at time t Hidden state factors:
1.  Beliefs about position on the runway (10 possible belief states with 

an identity mapping to the observations in outcome modality 1)
2.   Beliefs about the trial type (corresponding to the 5 trial types)

π A distribution over action policies encoding the expectation that a 
particular policy is most likely to generate preferred outcomes

Allowable policies included the decision to transition from the starting 
state to each of the 9 possible positions on the runway

β The prior on expected policy precision (β) is the “rate” parameter 
of a γ distribution, which is a standard distribution to use as a 
prior for expected precision. This latter term modulates the 
influence of expected free energy on policy selection

When β is high (reflecting low confidence about the best decision), 
policy selection becomes less deteriministic. Higher β values 
therefore encode participants’ decision uncertainty during the task 
(similar to the temperature parameter in a conventional softmax 
response function)

A matrix
P(ot | st)

A matrix encoding beliefs about the relationship between hidden 
states and observable outcomes (i.e., the likelihood that specific 
outcomes will be observed given specific hidden states)

Encodes beliefs about the relationship between position on the 
runway and the probability of observing each outcome, conditional on 
beliefs about the task condition

B matrix
P(st + 1 | st)

A matrix encoding beliefs about how hidden states will evolve 
over time (transition probabilities)

Encodes beliefs about the way participants could choose to move the 
avatar, as well as the belief that the task condition will not change 
within a trial

C matrix
InP(ot)

A matrix encoding the degree to which some observed outcomes 
are preferred over others (technically modelled as prior 
expectations over outcomes)

Encodes stronger positive preferences for receiving higher numbers 
of points, and negative preferences for the aversive stimuli (both 
relative to an anchor value of 0 for the “safe” positive stimulus). The 
emotional conflict (EC) parameter in our model encoded the value of 
participants’ preferences against observing the aversive stimuli

D matrix
P(s1)

A matrix encoding beliefs about (a probability distribution over) 
initial hidden states

The simulated agent always began in an initial starting state, and 
believed each task condition was stable across each trial
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(i.e., the combined negative + positive values of images, 
sounds and points) and the distribution reflecting the obser-
vations expected under each choice of runway position 
(given knowledge of the associated probabilities). Lower ex-
pected free energy of an action thus indicated a higher prob-

ability of observing the overall most preferred combination 
of stimuli/points if that action were chosen.

Our computational phenotyping approach used Bayesian 
inference at 2 levels.58 First, each participant’s responses 
were modelled under ideal Bayesian assumptions, using the 

Fig. 2: Computational model. Top left: The Markov decision process used to model the approach-avoidance conflict task. The generative 
model is depicted graphically, such that arrows indicate dependencies between variables. Observations (o) depend on hidden states (s; 
this relationship is specified by the A matrix), and those states depend on both previous states (as specified by the B matrix or the initial 
states specified by the D matrix) and the sequences of actions/policies (π) selected by the agent. The probability of selecting a particular 
policy in turn depends on the expected free energy (G) of each policy with respect to the preferences (C) of the decision-maker being mod-
elled. The degree to which expected free energy influences policy selection is also modulated by an expected precision term (γ), which is in 
turn dependent on a prior policy precision parameter (β), where higher values of β promote greater decision uncertainty (i.e., less influence 
of the differences in expected free energy across policies). For more details on the associated mathematics, see Friston and colleagues52,57 
and Appendix 1, available at jpn.ca/200032-a1. In our model, the observations were cues indicating the trial type, cues indicating the posi-
tion of the avatar, and the outcome stimuli. The hidden states included beliefs about trial type and avatar position, and the policies included 
the choice to move the avatar to any other position on the runway. Right: The A matrices in the right panel show the mapping between 
states and observations for outcome stimuli. Here, the rows correspond to the stimuli (first row is the “start” observation), and the columns 
correspond to the avatar position states (column 1 corresponds to the “start” state, and columns 2 to 10 correspond to choosing each of the 
9 runway positions). Lighter colours in these A matrices indicate higher probabilities. Trial types: AV = avoid; APP = approach; CONF2, 
CONF4 and CONF6 = conflict + 2, 4 or 6 points, respectively. Bottom left: The model parameters corresponded to the degree to which the 
negative stimulus was dyspreferred relative to the degree to which the points were preferred in the C matrix (“emotional conflict”; EC), as 
well as the prior policy precision parameter β, which reflected decision uncertainty. Top middle: Example simulations of action selection 
 under different parameter values during the CONF2 trial type. Blue dots indicate chosen actions, and darker colours indicate higher action 
values in the model. 

Example simulations
Trial type = conflict + 2 points (CONF2)

Selected runway position (blue) and action value
distributions (darker = higher value)

EC
C

G

B

A

D

A matrices
Columns = runway positions

Rows = outcomes

Lighter = higher probabilities

Negative stimulus
Positive stimulus

Trial type = AV

Trial type = APP

Trial type = CONF2

Trial type = CONF4

Trial type = CONF6

Positive stimulus
Positive stimulus + 2

Negative stimulus + 2

Negative stimulus + 4

Negative stimulus + 6

Positive stimulus

Positive stimulus

Positive stimulus

β = 1, EC = 1
β

γ

π

β = 1, EC = 3

β = 6, EC = 1

β =
decision uncertainty 

(higher indicates greater uncertainty in decision-making)

Emotional conflict (EC) =
expected aversiveness of negative stimuli

relative to potential reward (higher
indicates greater expected aversiveness)

St
I

St
I

Ot
I Ot

I
Avoid Approach Avoid Approach

β = 6, EC = 3

Graphical model
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Markov decision process formulation of choice behaviour 
described previously. Based on the trial-by-trial task stimuli 
observed by each participant and their trial-by-trial deci-
sions, we then used variational Bayes to estimate each par-
ticipant’s prior beliefs that maximized the likelihood of their 
responses, as described in Schwartenbeck and Friston.18 In 
other words, the observation model for estimating subject-
specific preferences and precision was based on the assump-
tion that subjects were using (active) Bayesian inference. In 
this setting, active inference can be seen as a generalization 
of Bayesian decision theory that replaces the expected value 
or utility with expected log evidence or marginal likelihood 
for a generative model of the task.18,59 This means that sub-
jective responses are sampled from posterior beliefs about 
the best course of action, where these posterior beliefs de-
pend on their prior preferences about the consequences of a 
decision and the information gain afforded by their actions. 

This posterior distribution over behavioural responses can 
then be used to assess the likelihood of responses under dif-
ferent prior beliefs. We optimized these preferences (and 
precision of posterior beliefs about policies) using this likeli-
hood and standard variational Laplace.60 Having estimated 
each participant’s preferences (and precision), we then used 
classical inference to test for the effects of group, using a 
standard summary statistics-based approach.

As described in more detail in Appendix 1, we also con-
sidered 2 other models: a simpler 1-parameter model includ-
ing no decision uncertainty term (estimating EC only), and a 
more complex 3-parameter model that fit separate terms for 
the subjective value of the negative affective stimuli and the 
subjective value of the points (i.e., in place of the EC param-
eter). Initial simulations indicated that parameter estimates 
for the 3-parameter model were dependent on prior values 
(and therefore not recoverable), because only the relative 

Fig. 3: Simplified visual depiction of relevant dependencies in the computational (generative) model of the approach-avoidance conflict task. 
Beliefs about trial type and beliefs about runway positions were generated by (and inferred based on) trial-type cues and runway-position 
cues, respectively. Observed outcome stimuli were probabilistically generated by an interaction between trial type and runway position. Beliefs 
about this interaction were used to infer the action (state transition) most likely to produce the most preferred outcome stimuli. Trial types: 
AV = avoid; APP = approach; CONF2, CONF4 and CONF6 = conflict + 2, 4 or 6 points, respectively. 

State factor: beliefs about trial types
(AV, APP, CONF2, CONF4, CONF6)

Generative model of
approach-avoidance conflict task

State factor: beliefs about runway position
(Positions: 1 to 9)

Observation modality
Trial-type cues 

Observation modality
Runway-position cues

Observation modality
Outcome stimuli 

Actions 
Allowable transitions to each runway position
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value of the negative stimuli versus points ultimately influ-
enced behaviour. Therefore, we did not use this model. In 
contrast, estimates from the simpler 1-parameter model did 
appear recoverable. However, Bayesian model comparison 
(based on Rigoux and colleagues61 and Stephan and col-
leagues62) showed that this model performed worse than the 
2-parameter model (protected exceedance probability = 1).

We implemented all model simulations using standard 
routines (spm_MDP_VB_X.m) that are available as Matlab 
code in the latest version of SPM academic software (www.
fil.ion.ucl.ac.uk/spm/). Matlab code specifying the genera-
tive model of the AAC task is included in Appendix 3, avail-
able at jpn.ca/200032-a3 (AAC_model.m). 

Statistical analysis

We conducted statistical analyses using the R statistical 
package (2018; www.R-project.org/). To assess face valid-
ity, we calculated a model accuracy score that reflected the 
average percentage of trials during which the action with 
the highest probability in the model matched the action 
chosen by participants (i.e., under the parameter values 
 estimated for each participant) and we examined correla-
tions between model parameters and reaction times (i.e., 
time to initial button press, both across the whole task and 
within each condition) with the expectation that valid 
computational measures of greater emotional conflict (EC) 
and decision uncertainty (β) would both be associated 
with slower reaction times. We then conducted further 
correlation analyses to examine whether each parameter 
could predict subsequent self-reports on the post-task 
 Likert scale questions. The validity of EC would be sup-
ported by positive associations with self-reported avoid-
ance motivation and anxiety, and the validity of β would 
be supported by self-reported difficulty making decisions 
and self-reported avoidance motivation.

We used R statistical software to conduct analyses of 
covari ance to identify possible group differences in each par-
ameter while accounting for individual differences in age, 
sex, the Wide Range Achievement Test reading score 
(WRAT; a common measure of premorbid IQ63) and the inter-
action between group and each of these factors. We used 
WRAT scores to ensure that differences in task behaviour 
could not be accounted for by differences in general intelli-
gence. Results were Bonferroni-corrected for multiple com-
parisons with 2 parameters (α = 0.05, p < 0.025). To assess 
group differences in approach-avoidance behaviour, we also 
conducted similar analyses of covariance with standard de-
scriptive task variables as the dependent variables, including 
mean chosen runway positions during the AV, APP and 
CONF trial types (higher values indicated stronger approach 
behaviour toward the points; in the AV condition, higher val-
ues indicated positions closer to the positive stimulus).

The groups showed significant differences in age, sex and 
WRAT scores, which prevented strong conclusions when try-
ing to control for the effects of these variables.64 This con-
firmed the group differences anticipated based on the repre-
sentative demographics of these clinical populations.65–72 As 

has been done in previous work on the T1000 data set,73 to 
more rigorously assess group differences we used the 
 fullmatch function in the optmatch R package (www. 
rdocumentation.org/packages/optmatch/versions/0.9-10/
topics/fullmatch) to propensity-match groups based on age 
and WRAT scores (propensity-matching was not effective 
when including sex, given the differences between groups). 
Propensity-matching led to sample sizes of 59 healthy con-
trols, 161 participants with depression and/or anxiety and 
56 participants with substance use disorders ) for the matched 
samples. We then performed the analyses described above 
with the propensity-matched groups, with sex and group × 
sex interaction as independent variables in the model.

The T1000 study — of which the AAC task analyzed here 
is a part — was designed explicitly in an exploratory/ 
confirmatory framework; the first 500 participants were des-
ignated as exploratory, and the second 500 participants were 
 reserved for confirmatory analyses based on the results of the 
exploratory analyses. As such, the analyses reported here 
should be considered exploratory. Confirmatory analyses 
will be carried out in planned future work.

Results

Descriptive statistics for demographic and clinical measures 
are shown in Table 2. The descriptive statistics for each of 
the parameters were as follows (mean ± standard deviation): 
β  = 4.77 ± 4.69; EC = 2.70 ± 2.72. For further information 
about the relationship between model parameters and de-
mographic variables, see Appendix 1. The EC and β param-
eters were correlated at r = 0.26 and p < 0.001. Because the 
parameters were not normally distributed, they were log-
transformed for all subsequent analyses using the R package 
optLog (https://github.com/kforthman/optLog) to find the 
optimal log-transform that minimized skew. This package 
was originally developed by researchers at the Laureate In-
stitute for Brain Research. Parameter distributions before 
and after transformation are shown in Appendix 1.

Face validity: task-related self-report and behaviour

Averaging across participants, the model was accurate at 
predicting behaviour in 72% (standard error = 1%) of trials 
(note: chance accuracy is 1/9 = 11%). Participants with 
longer reaction times across all trials also exhibited greater 
EC (r = 0.24, p < 0.001) and higher β values (r = 0.59, p < 
0.001). Analyses of reaction times within specific trial 
types showed similar results (see Appendix 1). Relation-
ships between model parameters and self-reports on the 
post-AAC questionnaire items are shown in Table 3. Nota-
bly, EC correlated most strongly with self-reported moti-
vations to move toward reward (r = −0.74, p < 0.001) and 
away from negative outcomes (r = 0.67, p < 0.001). Higher 
EC also corresponded to higher self-reported anxiety dur-
ing the task (r = 0.32, p < 0.001); β correlated most strongly 
with self-reported difficulty making decisions on the task 
(r = 0.45, p < 0.001) and (reduced) motivations to move to-
ward reward (r = −0.48, p < 0.001).
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Clinical validity: diagnostic effects

Group difference results for the propensity-matched sample 
are shown in Figure 4. For analogous results in the full 
sample, see Appendix 1. Results in the full sample showed a 
highly similar pattern, as we note more specifically below.

We found a main effect of group on β (F2,270 = 4.15, p = 0.017), 
reflecting lower values in healthy controls than in those with 
depression and/or anxiety (t128 = 2.16, p = 0.03, d = 0.30) or sub-
stance use disorders (t102 = 2.88, p = 0.005, d = 0.53); effects of 
sex and the group × sex interaction were nonsignificant. We 
observed a similar pattern in the full sample (Appendix 1).

We found a main effect of sex on EC (F1,270 = 11.17, p < 
0.001; higher in females), but the effects of group and the 
group × sex interaction were nonsignificant. We did find a 

trend effect of group in the full sample (F2,466 = 3.30, p = 0.04), 
reflecting greater EC in healthy controls than in those with 
substance use disorders (t92 = 3.17, p = 0.002, d = 0.51; see 
 Appendix 1 for full results).

In Appendix 1, we have also presented these analyses sepa-
rately for males and females; the pattern of findings for the EC 
parameter remained significant only in females, and the pat-
tern of findings for the β parameter remained significant only 
in males.

Standard descriptive analyses

Descriptive statistics for task-related self-report and tradi-
tional performance variables (reaction time, approach behav-
iour) are provided in Appendix 1. Average reaction times 

Table 3: Post-task self-report questionnaire items and Pearson correlations with the computational model parameters* 

Question† Mean ± SD

Pearson correlations

Emotional conflict (EC) Decision uncertainty (β)

1. I found the POSITIVE pictures enjoyable 5.05 ± 1.68 0.07 0.02

2. The NEGATIVE pictures made me feel anxious or uncomfortable 4.43 ± 1.99 0.32‡ 0.06

3. I often found it difficult to decide which outcome I wanted 2.51 ± 1.73 0.10§ 0.45‡

4. I always tried to move ALL THE WAY TOWARD the outcome with the LARGEST 
REWARD POINTS

4.76 ± 2.30 −0.74‡ −0.48‡

5. I always tried to move ALL THE WAY AWAY FROM the outcome with the 
NEGATIVE PICTURE/SOUNDS

2.98 ± 2.17 0.67‡ 0.37‡

6. When a NEGATIVE picture and sound were displayed, I kept my eyes open and 
looked at the picture

5.5 ± 1.83 −0.37‡ −0.17‡

7. When a NEGATIVE picture and sound were displayed, I tried to think about 
something unrelated to the picture to distract myself

2.96 ± 1.94 0.29‡ 0.11§

8. When a NEGATIVE picture and sound were displayed, I tried other strategies to 
manage emotions triggered by the pictures

3.26 ± 1.99 0.32‡ 0.05

SD = standard deviation.
*Full sample; n = 478.
†Answers provided on a Likert scale (1 = not at all; 7 = very much).
‡p < 0.001.
§p < 0.05.

Table 2: Summary statistics and group differences for demographic and clinical measures

Sample Healthy controls Depression/anxiety Substance use disorders p value

Full sample n = 59 n = 260 n = 159

Age, yr 32.14 ± 11.13 35.89 ± 11.30 33.93 ± 9.09 0.024

Male, n (%) 28 (48) 70 (27) 74 (47) < 0.001

PHQ score 0.90 ± 1.36 12.63 ± 5.14 6.50 ± 5.66 < 0.001

OASIS score 1.27 ± 1.88 9.80 ± 3.42 5.78 ± 4.66 < 0.001

DAST-10 score 0.12 ± 0.38 0.67 ± 1.41 7.48 ± 2.20 < 0.001

WRAT score 62.37 ± 5.06 63.53 ± 4.76 58.49 ± 5.65 < 0.001

Propensity-matched sample n = 59 n = 161 n = 56

Age, yr 32.14 ± 11.13 35.11 ± 10.84 32.67 ± 10.26 0.12

Male, n (%) 28 (48) 41 (25) 35 (63) < 0.001

PHQ score 0.90 ± 1.36 12.64 ± 5.38 7.95 ± 6.50 < 0.001

OASIS score 1.27 ± 1.88 9.78 ± 3.42 6.80 ± 5.15 < 0.001

DAST-10 score 0.12 ± 0.38 0.62 ± 1.26 7.45 ± 2.65 < 0.001

WRAT score 63.53 ± 4.76 62.58 ± 4.53 61.89 ± 4.43 0.15

DAST-10 = Drug Abuse Screening Test; OASIS = Overall Anxiety Severity and Impairment Scale; PHQ = Patient Health Questionnaire; WRAT = 
Wide Range Achievement Test.
Unless otherwise indicated, findings are mean ± standard deviation. 
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across trial types were not significantly different between 
groups; we found no effect of sex or group × sex interaction. 
However, in Appendix 1 we present some significant group 
differences in specific trial types, reflecting slower reaction 
times in the clinical groups relative to the healthy controls. 
We observed similar results in the full sample (Appendix 1).

Within conflict trials (CONF2, CONF4, CONF6), we ob-
served a main effect of sex on chosen runway position (F1, 270 = 
7.53, p = 0.006; less avoidance in males). Within AV trials, we 
observed a main effect of sex (F1, 270 = 5.29, p = 0.02; less avoid-
ance of the negative image in males) and group (F2, 270 = 13.36, 
p < 0.001) on chosen runway position. Further inspection in-
dicated that healthy controls showed greater avoidance of the 
negative image in this condition than those with depression 
and/or anxiety (t177 = 2.42, p = 0.016, d = 0.29) or those with 
substance use disorders (t72 = 4.90, p < 0.001, d = 0.93). Those 
with substance use disorders also showed less avoidance than 
those with depression and/or anxiety (t75 = 3.59, p < 0.001, d = 
0.65). Within APP trials, we observed a main effect of group 
on chosen runway position (F2,270 = 5.04, p = 0.007), reflecting 
greater approach behaviour (i.e., toward the points) in 
healthy controls than in those with depression and/or anxiety 

(t203 = 3.41, p < 0.001, d = 0.38) and those with substance use 
disorders (t81 = 3.67, p < 0.001, d = 0.69). We found somewhat 
similar results in the full sample (Appendix 1).

Although decision uncertainty was not analyzed in previ-
ous studies of this AAC task, our results for this parameter 
suggested the presence of differences in within-subject deci-
sion variability. See Appendix 1 for additional analyses that 
confirm these differences (most strongly in the AV, APP and 
CONF6 trial types) and also show the expected positive cor-
relations between within-subject variability and β values 
across all trial types.

Discussion

Using a novel active inference modelling approach in a large 
community sample, this study uncovered separable influ-
ences of 2 factors on approach-avoidance behaviour: expected 
outcome aversiveness relative to expected reward (EC) and 
decision uncertainty (β). The model showed high accuracy in 
predicting behaviour (72%; i.e., relative to chance accuracy = 
11%) and was further validated by the fact that parameter 
 estimates showed strong relationships with reaction times, 

Fig. 4: Raincloud plots (distributions, box plots and individual data points) and bar plots (means and standard errors) showing differences be-
tween healthy controls and clinical groups in emotional conflict (EC; expected aversiveness of negative stimuli relative to reward) and decision 
uncertainty (β; expected policy precision) in the active inference model of the approach-avoidance conflict task. Left: Propensity-matched sam-
ple. Right: Full sample. Data displayed are before log-transformation.
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participants’ self-reported feelings/motivations during the 
task and self-reported approach-avoidance motivations, all in 
the expected directions. Further, EC was uniquely associated 
with self-reported anxiety on the task, while β was uniquely 
associated with self-reported difficulty making decisions on 
the task. Crucially, EC and β were not highly correlated, with 
distinct relationships to psychopathology.

The computational approach used here may have pro-
vided advantages over previous descriptive analyses of task 
behaviour, because it could disentangle the effects of conflict 
and uncertainty.11,30 Although previous analyses have fo-
cused mainly on relative approach-avoidance drives (i.e., 
captured by chosen runway position) and reaction times, our 
approach uncovered a unique pattern of differences in deci-
sion uncertainty that may have been missed in previous stud-
ies. Specifically, our results showed that patients with de-
pression, anxiety and substance use disorders exhibited 
greater uncertainty in decision-making relative to healthy 
controls, and that those with substance use disorders tended 
toward lower emotional conflict (although this latter finding 
was marginal). Standard descriptive analyses of reaction 
times and chosen runway position did not pick up on this 
difference, and, contrary to expectation, did not show evi-
dence of greater avoidance in the clinical groups. Instead, the 
clinical groups showed no behavioural differences on conflict 
trials and showed less of the expected approach and avoid-
ance drives in the 2 non-conflict conditions. Post-hoc analyses 
of within-subject choice variability that were motivated by 
our decision uncertainty results (which has not been exam-
ined in previous studies) also showed greater choice variabil-
ity in the clinical groups in these non-conflict conditions (as 
well as in the CONF6 condition; see Appendix 1), suggesting 
that a mix of separable approach and avoidance drive abnor-
malities may contribute to maladaptive behaviour during 
AAC. Thus, our model-based findings uncovered a pattern of 
decision uncertainty that might be more clinically relevant to 
avoidance behaviour in real-world settings.

The finding that both clinical groups showed greater β val-
ues relative to healthy controls suggests reduced confidence in 
their internal model of how to act, and a resulting inconsis-
tency in choice behaviour. This is because, formally, the β par-
ameter in active inference models reflects prior expectations 
about one’s ability to select the best action. This is consistent 
with the correlation we observed between slower reaction 
times and higher β values. Thus, at least in some situations, 
maladaptive approach-avoidance behaviour in substance use 
disorders, depression and anxiety could relate more to deci-
sion uncertainty than to increased emotional conflict (e.g.,  
avoidance motivation, threat sensitivity) per se. It is also worth 
noting that our supplementary analyses suggested this effect 
was stronger in males, which could relate to previous work 
suggesting that higher anxiety sensitivity more strongly drives 
avoidance behaviour in males than females,12 a finding that 
could have important treatment implications (e.g., that differ-
ent interventions may be necessary in males and females).

It is useful to consider whether current or novel interventions 
aimed at modifying decision uncertainty may have potential 
for improving mental health. Many current interventions for 

depression and/or anxiety focus on either threat (i.e., exposure-
based therapy) or reward reactivity (i.e., behavioural activation 
approaches), but it is possible that these or other treatment 
strategies (e.g., cognitive restructuring or problem-solving) may 
in fact target decision uncertainty.  Investigations into the rela-
tionships between decision uncertainty and response to these 
treatments is important for further delineating clinical implica-
tions. However, the source of the greater uncertainty in the clin-
ical groups is unclear. Based on previous work,42 one possibility 
could be that psycho pathology involves difficulty in separating 
“signal from noise” when observing the outcomes of actions 
(i.e., did the outcome of my previous action come about by 
chance, or would the same outcome happen again?). However, 
this interpretation (among other possible interpretations) will 
need to be tested in future work.

Contrary to our initial hypothesis, the model did not offer evi-
dence that the clinical groups had higher EC. In contrast, we 
found suggestive evidence for lower emotional conflict in sub-
stance use disorders than in healthy controls. Because this find-
ing occurred only in the full sample, we do not offer strong in-
terpretations here. However, we briefly note that it may be 
consistent with previous studies suggesting a general blunting 
of brain and behavioural responses to affective stimuli in people 
with cocaine and methamphetamine use disorders,74,75 and with 
studies that have linked lower self-reported sensitivity to pun-
ishment with both methamphetamine and marijuana use,76,77 
which could relate to continued drug use because of an insensi-
tivity to its negative consequences (for recent computational 
modelling evidence supporting this possibility, see Smith and 
colleagues78). This finding could also relate to previous work 
demonstrating that cognitive bias modification methods that 
train increased avoidance in response to alcohol cues is benefi-
cial to recovery in an inpatient sample of people with alcohol-
ism.79 Interestingly, our supplementary analyses suggested that 
this result was stronger in females, which bore some similarity 
to previous results suggesting that reduced reward motivation 
plays a larger role in avoidance behaviour in females.12

Our results may also have implications for the active infer-
ence literature. For example, previous proposals have suggested 
a link between state anxiety and the β parameter (or related 
computational parameters associated with emotion and uncer-
tainty),80–86 where higher uncertainty is suggested to under pin 
higher anxiety. However, we found that higher EC, but not 
higher β, was associated with higher self-reported anx iety dur-
ing the task (on the post-task Likert scale questionnaire). Our 
 results therefore linked state anxiety to the preference distribu-
tion in the model, suggesting that some people with strong anx-
iety responses may have found the stimuli quite aversive, and 
yet were highly confident and consistent in their avoidant strat-
egy. Future empirical work in active inference research should 
therefore disentangle the circumstances in which negative affect 
is associated with uncertainty versus avoidance drives in these 
models. A second implication for active inference stems from 
previous work linking fluctuations (updates) in β values to 
 phasic dopamine responses.87–90 Because substance use has been 
linked to dopaminergic system dysfunction (e.g., Huys and 
 colleagues91 and Koob and Volkow92), this model/task could be 
used during neuroimaging to simulate predicted individual 
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 differences in dopaminergic dynamics (associated with dif-
ferences in β90) and perhaps shed further light on the potential 
role of dopamine and its  relation to decision uncertainty in 
 contributing to symptoms and/or treatment response (e.g., the 
potential role of dopa minergic medications in altering decision 
uncertainty).

Limitations

This was the first study to integrate an active inference model 
with an affect-based AAC paradigm in a large, transdiagnostic, 
community-based clinical sample. Although the validity of the 
model parameters was supported by the model’s high accuracy 
in predicting behaviour and by the parameters’ expected rela-
tionships to standard task meas ures, there are important limita-
tions to consider. As is inevi table when performing model-
based analyses, we were required to make certain choices about 
fixed parameter values. We also chose to use a Bayesian model-
ling approach because of the probabilistic nature of the AAC 
task, but other modelling approaches could have been con-
sidered. Still, our model comparison results and the correlations 
observed between model param eters and other self-report/ 
behavioural meas ures suggest that these choices were reason-
able. Second, the AAC task used in this study was not designed 
in advance with modelling explicitly in mind. Future work 
should investigate potential task modifications that could fur-
ther disentangle distinct computational influences on approach-
avoidance behaviour. Because this study was exploratory, our 
results will also need to be replicated by other researchers, as 
well as in our planned confirmatory analyses on participants 
sampled from the second 500 participants of the T1000 data set.

Conclusion 

Our results demonstrate a novel method of modelling affect-
based AAC behaviour that was able to differentiate distinct 
components of conflict. Relative to healthy controls, trans-
diagnostic behavioural differences during AAC were better 
accounted for by greater decision uncertainty, as opposed to 
greater sensitivity to negative affective stimuli. Future re-
search should replicate these findings and further investigate 
their potential clinical relevance.
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