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Introduction

People integrate multiple stimuli over space and time to form 
unified percepts of objects and events,1 and alterations in 
integration have been proposed as being important for a 
range of clinical disorders that experience alterations in per­
ception.2,3 Stimulus binding windows (BWs) reflect the tem­
poral and spatial intervals over which stimuli from multi­
modal or unimodal sensory systems are to be associated with 
one another and bound into a single perceptual entity. Val­
ues for BWs depend on a variety of parameters: the modal­
ities of the stimuli,4–6 the order of multimodal stimuli,4–6 
age,7–10 peripheral sensory loss such as vestibular hypofunc­
tion,11 and psychiatric diagnoses such as psychotic illnesses, 
autism and attention-deficit/hyperactivity disorder.3,12–20

Illusory procedures have been used to investigate body 
perceptions in people with schizophrenia with passivity 
symptoms, which are characterized by disturbances in core 
body representations including body image and body 
schema.12–14 People with schizophrenia also have wider BWs, 

and dopamine is strongly implicated in schizophrenia. Like 
the experience of touch feel illusion or body ownership illusion 
in rubber hand illusion (RHI) tests in people with schizophre­
nia and their offspring,17,21 administration of dexamphet­
amine to healthy participants increases illusion strength in 
RHI and widens temporal BWs.22 However, the exact role of 
dopamine in illusory perception and BWs is poorly under­
stood. One way of studying the role of dopamine23,24 and the 
relation between dopamine and the illusion in healthy people 
is to use drugs that increase extracellular dopamine levels 
and dopamine transmission,22 as several drug models of 
schizophrenia have suggested.25,26 The amphetamine model 
of schizophrenia is one of the proposed approaches27–30 that is 
widely used owing to the known pharmacology, low cost, 
high availability and well-understood safety profile in hu­
mans and animals.31,32 Amphetamine increases the synaptic 
levels of monoamines (dopamine, noradrenaline and sero­
tonin) by increasing their release through a reversal of the 
monoamine transporters, primarily the catecholamine trans­
porters.33,34 For example, amphetamine increases the synaptic 
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Background: The pathophysiology of psychosis is complex, but a better understanding of stimulus binding windows (BWs) could help to 
improve our knowledge base. Previous studies have shown that dopamine release is associated with psychosis and widened BWs. We 
can probe BW mechanisms using drugs of specific interest to psychosis. Therefore, we were interested in understanding how manipula-
tion of the dopamine or catecholamine systems affect psychosis and BWs. We aimed to investigate the effect of dexamphetamine, as a 
dopamine-releasing stimulant, on the BWs in a unimodal illusion: the tactile funneling illusion (TFI). Methods: We conducted a random-
ized, double-blind, counterbalanced placebo-controlled crossover study to investigate funnelling and errors of localization. We adminis-
tered dexamphetamine (0.45 mg/kg) to 46 participants. We manipulated 5 spatial (5–1 cm) and 3 temporal (0, 500 and 750 ms) condi-
tions in the TFI. Results: We found that dexamphetamine increased funnelling illusion (p = 0.009) and increased the error of localization 
in a delay-dependent manner (p = 0.03). We also found that dexamphetamine significantly increased the error of localization at 500 ms 
temporal separation and 4 cm spatial separation (pinteraction = 0.009; p500ms|4cm v. baseline = 0.01). Limitations: Although amphetamine-induced 
models of psychosis are a useful approach to understanding the physiology of psychosis related to dopamine hyperactivity, dexamphet-
amine is equally effective at releasing noradrenaline and dopamine, and, therefore, we were unable to tease apart the effects of the 
2  systems on BWs in our study. Conclusion: We found that dexamphetamine increases illusory perception on the unimodal TFI in 
healthy participants, which suggests that dopamine or other catecholamines have a role in increasing tactile spatial and temporal BWs.
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level of dopamine by increasing its release through a reversal 
of the dopamine transporter.35,36 Dexamphetamine (d-
amphetamine) is more potent than l-amphetamine (3- to 10-
fold) or a racemic mixture of l- and d-amphetamine.37 It can 
increase dopamine release, making its dopaminergic effects 
equipotent with its effects on noradrenaline release.38–40

Therefore, to characterize the implication of dopamine on 
tactile funnelling illusion (TFI), we evaluated the effects of 
dexamphetamine (0.45 mg/kg) on temporal and spatial BWs 
in a larger sample population of healthy participants than 
previously used for RHI tests. The TFI is a simple and inex­
pensive tool to test tactile illusions by manipulating spatial 
and temporal conditions.41,42 Therefore, it is an ideal means to 
test effects of dexamphetamine on both temporal and spatial 
BWs in the unimodal somatosensory domain, and was cho­
sen for those purposes. We hypothesized that dexamphet­
amine would increase the experience of unimodal illusory 
perception and BWs as it previously affected RHI.

Methods

The University of Western Australia (UWA) Human Research 
Ethics Committee granted ethical approval for this study 
(RA/4/1/7557). The study is registered at the Australian New 
Zealand Clinical Trials Registry (ACTRN12615000619549). All 
46 participants were recruited via lecture announcements, 
word of mouth, advertisements on campus notice boards, so­
cial media and university group emails. We sent a prospectus 
package that contained the participant information form, par­
ticipant consent form, consumer medication information on 
dexamphetamine and contact information to those who 
showed interest. We informed participants that they should ab­
stain from any psychoactive substance 24 hours before the test.

We included participants if they were between the ages of 
17 and 60 years, and female participants who were not preg­
nant and who were using contraceptives to avoid pregnancy 
if they were sexually active and fertile. We excluded partici­
pants if they had heart or severe blood vessel disease; high 
blood pressure (systolic > 140 mm Hg, diastolic > 90 mm Hg); 
glaucoma; hyperthyroidism; tics (including Tourette syn­
drome or a family history of Tourette syndrome); sensitivity 
to dexamphetamine; any degenerative disease of the nervous 
system; epilepsy or other neurologic disorders, including 
head injury; psychiatric or psychological problems; a serious 
medical problem for which they were receiving or had re­
ceived treatment; substance abuse disorder; a family history 
of schizophrenia in their first-degree relatives (parents, chil­
dren or siblings); use of any drug, including alcohol or any il­
licit drug, within 24 hours of each testing session; used caffeine 
on the day of testing; had taken prescription medication other 
than oral contraceptives or acne medication; or used over-the-
counter medication in the 48 hours before each testing session.

Participants

We recruited 46 healthy participants (20 female) with a mean 
(± standard deviation [SD]) age of 22.9 (± 4.7)  years and a 
mean weight of 71.7 (± 14) kg.

Drug and design

We used a randomized, double-blind, counterbalanced 
placebo-controlled crossover study in which the participant re­
ceived either dexamphetamine or placebo, in a counterbal­
anced permuted block randomization (i.e., randomized in sets 
of 4 consecutive participants) fashion such that there were 
equal numbers with placebo first and active drug first. We ad­
ministered dexamphetamine (0.45 mg/kg, taken orally; Aspen 
Pharmacare, Australia), giving a mean dosage of 32.3 (± 6.2) mg 
based on the mean weight of the participants of 71.7 kg. Exact 
same sizes and numbers of capsules containing either placebo 
(glucose) or dexamphetamine (0.45 mg/kg) were prepared 
using 1, 2.5, 5 and 10 mg tablets of dexamphetamine sulfate. 
We selected this dose based on previous studies in healthy par­
ticipants that showed significant effects on a range of illusory 
and psychophysiological measures.22,23,43

The testing session ran from 9 am to 3 pm over a total of 
2 days (with a minimum separation of 1 wk) for each partici­
pant. The drug or placebo was administered at 9 am, and 
then physiologic measurements and demographic data were 
taken. Transportation and lunch were provided with no ad­
ditional financial incentive. Informed consent was obtained 
and, in addition to the exclusion criteria, formal medical and 
psychiatric assessments by psychiatrists were conducted be­
fore the experiment on the first day. We then recorded the 
demographic information (sex, age and weight).

General procedures

Procedure for tactile funnelling illusion
We administered the TFI test immediately after lunch (i.e., 
lunch was around 200 min after administration of the drug, and 
TFI was conducted at about 230 min). Participants completed a 
separate task (the marble hand illusion) between the psycho­
logical tests and TFI. We will analyze and report on the data 
from this other illusory task separately. The participant was 
seated and then blindfolded. Their dominant arm was placed 
on the table with the palm facing the ceiling. For the reference 
point, a straight line was drawn across the arm 5 cm below the 
elbow. We started the tests of the tactile (touch) using the com­
pass (caliper) at a distance of 5 cm, then at 1 cm reductions to a 
final spacing of 1  cm (i.e., 5, 4, 3, 2 and 1  cm). There were 
5 touches at each distance, and the touch was meant to be light 
(around 2 mm deep) in areas with less hair. We placed 1 point 
of the caliber on the reference line and then indented different 
points on the reference line for 5 touches at each distance (a total 
of 75  touches per participant per session). There were 3  tem­
poral conditions: 0, 500 and 750 ms (Appendix 1, available at 
jpn.ca/lookup/doi​/10.1503/jpn.220149/tab​-related​-content). 
For the 2  asynchronous conditions (500 and 750  ms), the 
TempoPerfect Metronome software program was used by the 
examiner as an alarm for the delay between the 2 touches. The 
order of delays was 750–500–0 ms. We measured funnelling 
(the number of touches perceived) and error of localization (EL) 
as outcomes. Funnelling is the awareness aspect of the illusion 
(if the participant perceived 1 touch instead of 2), whereas EL is 
the error of spatial localization from the reference line (0 cm).



Kassim et al.

E92	 J Psychiatry Neurosci 2023;48(2)

Psychological scales
We administered the following 3 rating scales once per day 
(90 min after treatment) during our study: Brief Psychiatric 
Rating Scale (BPRS),44 Scale for the Assessment of Positive 
Symptoms (SAPS)45 and Magical Ideation Scale (MIS).46

Physiologic measures
We recorded blood pressure (BP), heart rate and temporal 
body temperature (temperature) 5  times each day, in 
triplicate, to follow the time course of drug and placebo 
effects on autonomic functioning. We recorded BP and 
heart rate using an Omron HEM-7121 (RML32) automatic 
BP monitor (Kyoto, Japan), and body temperature (°C) was 
recorded using a MedeScan RC008 touchless thermometer 
(Condell Park, Australia). The consecutive physiologic test­
ing times were 0, 60, 110, 210 and 370  minutes after drug 
administration.

Statistical analysis

We used R version 3.6.3 (R Core Team 2020), and dply, ez, 
mblm, lme4, plyr and Rmisc packages to perform the statis­
tical analysis. We used repeated-measures analysis of vari­
ance (ANOVA) to analyze the data, with delay, distance and 
drug condition as within-participants factors and drug order 
as a between-participants factor.

We inspected plots of the residuals and Q–Q plots to 
ensure the residuals approximated a normal distribution. 
We then conducted paired t tests for pairwise comparisons 
between drug and placebo. We used Wilcoxon rank–sum 
tests with continuity correction if the residuals deviated 
substantially from normality. Accordingly, we analyzed 
the TFI of the overall participants using repeated-
measures ANOVA with Greenhouse–Geisser corrections if 
the assumption of sphericity was violated (all degrees of 
freedom reflect the Greenhouse–Geisser–corrected degrees 
of freedom where sphericity was violated) and calculated 
generalized η2 effect sizes. Each psychological scale was 
analyzed using Wilcoxon rank–sum tests with continuity 
correction. All pairwise comparisons are with Bonferroni 
correction. Exceptions to these methods are listed in the 
Results.

As a common statistical model, we have taken into con­
sideration the combined effect (i.e., interaction) of 2 or more 
than 2 variables (e.g., delay and distance) on an outcome (i.e., 
funnelling or EL). Widaman47 and Buckless and Ravenscroft48 
suggested that it is preferable to develop statistical methods 
for testing the relation between dependent and independent 
variables or for testing ordinal or disordinal interactions. 
An ordinal interaction has nonsymmetrical patterns of cell 
means or has “the cross-over of predicted values at the 
boundary or outside the range of observed values” (e.g., 
Figure 1A in our case), whereas a disordinal interaction has 
a symmetric pattern of cell means or has “a cross-over of 
predicted values within the observed range of values” (e.g., 
Figure  1C in our case).47,49 In other words, ordinal interac­
tion presents “when the effect of one factor is in the same 
direction for each level of the other factor while it may vary 

in effect size.” A disordinal interaction is also called “cross­
over interaction” or “double dissociation” and presents “if a 
factor has opposite effects across at least 2 levels of the other 
factor.”50 Therefore, it has been suggested that researchers 
should identify or state the detail of whether they predict 
ordinal or disordinal interactional effects. We have pre­
dicted ordinal interactions. Importantly, an increased num­
ber of factors or levels of factors may result in unexpected 
analytical outputs.51 Interaction effects identified using 
ANOVA are more reliable.52 However, as conventional 
ANOVA commonly detects main effects and is less power­
ful for testing ordinal interactions,48,53 planned comparisons 
are applied to identify whether there are interaction effects 
or not.51,53

Power analysis
We used the G*Power 3.1 power calculator and based our 
predicted mean difference (drug–placebo) and SD of the dif­
ference on findings in our laboratory on the effect of dexam­
phetamine on the “embodiment” component of the RHI, 
with an effect size of 0.43 (α = 0.5), with a power of 0.80 (80%) 
with a 2-tailed test.

Results

Tactile funnelling illusion

We analyzed TFI with 2 outcomes: the number of times 
2 touches were perceived as 1 (funnelling) and EL away from 
the reference line. There were significant main effects of dex­
amphetamine on funneling (F1,45 = 7.3, p = 0.009, η2 = 0.008) but 
not on EL (F1,45 = 0.65, p = 0.43, η2 = 0.001) (Appendix 1). How­
ever, as shown in Figure 1, we found significant interactions 
between drug and delay on EL (F1.4,63  = 3.7, p  = 0.03, η2  = 
0.0052) but not on funnelling (F2,90  = 0.14, p  = 0.87, η2  = 
0.00001). There were also no significant interactions between 
drug and distance (F4,180  = 0.92, p  = 0.45, η2  = 0.0013), and 
drug, distance and delay (F8,360 = 0.3, p = 0.96, η2 = 0.0007) on 
funnelling. For EL, we found no significant interactions be­
tween drug and distance (F4,180 = 0.92, p = 0.45, η2 = 0.0013) or 
drug, distance and delay (F8,360 = 1, p = 0.36, η2 = 0.0037).

We also found significant main effects of delay (F1.12,50.4 = 30, 
p < 0.0001, η2 = 0.29) and distance (F2.1,95.4 = 77.41, p < 0.0001, 
η2  = 0.33) on funnelling, and a significant effect of delay 
(F1.3,60  = 25.3, p  < 0.00001, η2  = 0.087) and distance on EL 
(F2.7,124 = 5.45, p = 0.0001, η2 = 0.027), which show that increas­
ing either the delay or distance condition decreases funnel­
ling illusion (Figure  1). Consistent with a spatiotemporal 
interaction on illusory perception that showed that increasing 
both delay and distance condition decreases illusion, we 
found significant interactions between delay and distance on 
EL (F3,270 = 5.16, p = 0.00001, η2 = 0.03). However, there were 
no significant interactions between delay and distance on 
funnelling (F8,360 = 1.4, p = 0.19, η2 = 0.0045).

We also found significant drug effects on EL at specific 
delay (500 ms) and distance (4 cm) conditions, showing that 
dexamphetamine increases temporal and spatial BWs, 
respectively (Figure 2).
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Psychological measures

Table 1 presents the effect of dexamphetamine and placebo 
on each psychological scale. The Wilcoxon rank–sum test 
with continuity correction showed that dexamphetamine sig­
nificantly increases BPRS (V = 767, p = 0.0000001), MIS (V = 
441, p = 0.0008) and SAPS (V = 552, p = 0.00009).

Physiologic measures

Physiologic data from 1 participant were missing, leaving 
data for 45 participants for our analysis. Analysis of variance 
showed that there were significant main effects of dexam­
phetamine on diastolic BP (F1,44 = 122.6, p < 0.0001, η2 = 0.18), 
systolic BP (F1,44 = 78.02, p < 0.0001, η2 = 0.15), temperature 
(F1,44 = 4.7, p = 0.03, η2 = 0.02) and heart rate (F1,44 = 48.14, p < 
0.0001, η2 = 0.13). There were significant interactions between 
drug and time on diastolic BP (F3.2,140.8 = 22.6, p < 0.0001, η2 = 

0.09), systolic BP (F2,88 = 4.72, p = 0.00018, η2 = 0.05), tempera­
ture (F3.1,132.7  = 3.3, p  = 0.0036, η2  = 0.023) and heart rate 
(F3.3,144.3 = 29.4, p < 0.0001, η2 = 0.14) (Figure 3).

Discussion

We investigated the role of dopamine or catecholamines on 
tactile BWs by administering dexamphetamine (0.45 mg/kg) 
to healthy participants undergoing the TFI. Our findings 
were as follows: dexamphetamine increased the funnelling 
(the awareness aspect of the illusion) strength, but the results 
failed to show evidence of widened delay or spatial BWs for 
funnelling because there were no temporal or spatial 
condition–dependent changes in the funnelling illusion rela­
tive to placebo; dexamphetamine increased the EL at the 
500  ms asynchronous delay condition, which indicated 
widened temporal BWs; and dexamphetamine increased EL 
illusion specifically at 4 cm, which indicated widened spatial 

Fig. 1: Effects of dexamphetamine (0.45 mg/kg, administered orally) on (A and B) funnelling and (C and D) error of localization (EL) versus (A 
and C) delay conditions or (B and D) distance conditions. Data are presented as numbers of 1 touch (single touches felt) versus (A) delay or 
(B) distance for funnelling; EL versus (C) delay or (D) distance. Although there was a significant interaction of only drug and delay on EL 
across (C) delay, pairwise comparisons indicated that there were significant effects of dexamphetamine on (A and B) funnelling across (A) 
each delay condition and (B) some distance conditions. ***p < 0.001; **p < 0.01; *p < 0.05.
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BWs. Overall, our findings show that dexamphetamine 
widens spatial and temporal BWs. The effect of dexamphet­
amine on BWs in the TFI in our study is in agreement with 
the increase in the visuo-tactile RHI test in healthy partici­
pants after receiving dexamphetamine that was reported in a 
2011 study,22 and in projected hand illusion (PHI) or RHI 
tests that showed people with schizophrenia experienced in­
creased illusion under asynchronous delay conditions.13,21,54–56

A 2011 double-blind, placebo-controlled crossover study 
showed that dexamphetamine increased embodiment during 
the RHI for both synchronous and asynchronous stimulation 
in healthy participants.22 Like this RHI study,22 we found an 
increase in temporal BWs after administration of dexamphet­
amine. We also found that dexamphetamine increased spatial 
BWs in the TFI. Our findings and those of previous studies in 
schizophrenia21,54 or that used dopaminergic agents in healthy 
participants22 that reported widening of temporal BWs on 
multimodal illusions may be linked to increased dopamine.

Various illusion tests have shown that people with schizo­
phrenia experience more illusion in PHI,12–14 in RHI,21,54 and in 
auditory, visual or audiovisual55 than healthy controls. For in­
stance, Graham and colleagues56 reported that asynchronous 
stroking of the hand at 500 ms in people with schizophrenia 
produced more illusion in PHI. This supports the idea that 

dexamphetamine-induced increases in dopamine transmis­
sion are representative of results expected to be observed in 
people with schizophrenia.

However, the exact role of dopamine in illusory perception 
and BWs is poorly understood but may involve modulating 
activity of the temporoparietal junction. The merging of 
stimuli into a perception of a unified object or event has been 
proposed to result from activity in the temporoparietal junc­
tion.57–59 The mesocorticolimbic pathway may modulate ac­
tivity in the temporoparietal junction via dopamine release in 
the frontal cortex, which has connections with the tem­
poroparietal junction.60 Importantly, a 2013 review of posi­
tron emission tomography and single-photon-emission com­
puted tomography studies clearly showed that dopamine 
influences psychosis through mesocorticolimbic and nigro­
striatal dopaminergic pathways.61 Some studies that re­
viewed spatial learning showed that dopaminergic projec­
tions from these circuits influence spatial information (such 
as sensory or proprioceptive) in the hippocampus.62,63 It has 
also been suggested that the somatosensory receptive field in 
the cortex might be responsible for binding of tactile informa­
tion,64 which is also influenced by temporal and spatial varia­
tions.65 These cortex areas might also be a target area for the 
dopaminergic influence of the tactile BWs.

Fig. 2: The effect of dexamphetamine (0.45 mg/kg, administered orally) on (A) funnelling and (B) error of localization (EL) across 500 ms. 
Data are presented as (A) number of single touches or (B) EL versus distance across 500 ms. Illusion outcomes of dexamphetamine and pla-
cebo are significantly different from each other on the funnelling and EL across delay and distance conditions at 500 ms and 4 cm (p < 0.05 
for both), although the interaction between delay and drug is significant only for EL.
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Animal studies have shown that cortical66,67 and subcortical 
areas 68–70 are responsible for processing the cortical binding 
of tactile stimuli presented at similar or different modalities 
on different skin sites. For example, during synchronous 
stimulation of fingers, the recorded cerebral potential was 

less than the simple addition of the potential produced after 
stimulation of individual fingers.64,69

We further found that dexamphetamine increased the fun­
nelling effect, although it failed to expand BWs for the fun­
nelling effect. Previous studies have suggested that “afferent-
induced inhibition” causes funnelling illusion,41,71,72 which 
may show that dexamphetamine strengthens the afferent-
induced inhibition process in the tactile neuron.68,69 The effect 
of dexamphetamine on the BWs of EL (without affecting the 
BWs of funnelling) may indicate that the spatial localization 
of the single touches felt are dependent more on the internal 
body schema or map than is the funnelling (awareness of the 
number of touches) in the absence of visual cues. This further 
shows that the conscious awareness of sensory processing 
(e.g., touch perception) is not well mapped into the uncon­
scious body schema (superficial schema or body form repre­
sentation), which depends on somatosensory and visual 

Fig. 3: The effect of dexamphetamine (0.45 mg/kg, administered orally) on (A) diastolic blood pressure (BP), (B) systolic BP, (C) heart rate 
and (D) body temperature as a function of time. Relative to the placebo, dexamphetamine significantly raised both (A) diastolic BP and (B) 
systolic BP at the 4 testing times after drug administration (2–5). Dexamphetamine significantly raised (C) heart rate and (D) temperature at 3 
(3–5) and 1 (5) testing times after administration, respectively. The peak effect of dexamphetamine on diastolic BP was at measurement time 
3, whereas it was at times 3 and 4 for systolic BP. *p < 0.05; **p < 0.01; ***p < 0.001. The 5 testing times were 0, 60, 110, 210 and 370 min-
utes after drug administration.
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Table 1: Psychological effects of dexamphetamine and placebo

Rating scale

Score, mean ± SD

Dexamphetamine Placebo

BPRS 26.4 ± 4.2* 23.5 ± 1.1

MIS 4.7 ± 7.4* 3.5 ± 5.9

SAPS 4.5 ± 6.3* 2.9 ± 4.9

BPRS = Brief Psychiatric Rating Scale; MIS = Magical Ideation Scale; SAPS = Scale 
for the Assessment of Positive Symptoms; SD = standard deviation. 
*Significant at p < 0.001. 
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inputs, and is involved with tracking and predicting body 
parts that allows localization of tactile perception.73–75

Further research should be done to explore the relation be­
tween dopamine or catecholamines and BWs. Our finding may 
explain that the increased amount of catecholamines by dexam­
phetamine is sufficient to increase the experience of the TFI and 
increase BWs. These results also show that the TFI is sensitive to 
both temporal and spatial conditions that can be further influ­
enced by drugs. The spatial limits showed a nonlinear relation 
in the strength of EL, which was similar to a previous study that 
applied 6 spatial positions (17.5–67.5 cm) during RHI tests and 
reported that a significant nonlinear relation in the strength of 
the illusion.76 It has been shown that RHI is sensitive to spatial 
domain (match/mismatch)77 and temporal condition.78 Albrecht 
and colleagues22 reported that dexamphetamine increased the 
embodiment score (mainly the ownership one) during both 
synchronous and asynchronous conditions. In a self-face recog­
nition test, enfacement illusion was also strong under synchron­
ous delay conditions.78–80 Similar to our study, Kahrimanovic 
and colleagues65 reported that synchronous stimulation of fin­
gers during a tactile experiment caused assimilation effect, 
whereby there was a high probability of integrating 2 or more 
simulations as 1. For the TFI, the upper limit of the temporal 
BWs was reached at the 500 ms delay condition; we suggest that 
future research target shorter delay conditions to identify the 
lower bounds of the window. Finally, the present effect of dex­
amphetamine on spatial and temporal BWs may add to the 
existing dopamine hypothesis of schizophrenia, although the 
important drawbacks of using d-amphetamine precludes the 
degree of association. The disadvantages of the d-amphetamine 
model of schizophrenia are the complex nature of schizophre­
nia that could not be mimicked or explained by psychosis in­
duced by d-amphetamine and the nonselective release of mono­
amines after d-amphetamine administration.25,26,30,31,81,82

The important strengths of our study were its design and 
use of the temporal and spatial conditions to evaluate BWs. 
We recruited 46 participants, more than double the number of 
participants in previous dexamphetamine studies on BWs.22,83 
Importantly, our previous TFI study involving 20 healthy par­
ticipants showed that, although dexamphetamine influenced 
funnelling illusion based on changes in psychometric score, it 
failed to modify BWs.83 

We manipulated and compared the illusory and psycho­
logical effects of dexamphetamine at a moderate dose (about 
33 mg), which was 2–3  times higher than that used in most 
previous dexamphetamine challenge studies. We involved 
participants whose ages and education levels were very 
close, which provided a homogeneous population and 
avoided or decreased age-related cognitive differences.84–88 

There are, however, some important limitations to be noted. 
We did not measure plasma levels of dexamphetamine to cor­
relate the plasma concentration of dexamphetamine with BWs. 
However, we conducted the TFI measurement within about 
30 minutes of the expected peak concentration of dexamphet­
amine (i.e., the study was conducted at 230 min). Previous 
studies have shown that peak plasma concentrations of 0.4–
0.5 mg/kg after dexamphetamine administration occur around 
180–240 minutes89–91 and decrease to 75% of the maximum level 

after 500 minutes.89 Asghar and colleagues89 and Silber and col­
leagues92 found that the psychological, physiologic or cognitive 
performance changes did not predict the time course of plasma 
levels of dexamphetamine. In addition, the half-life of dexam­
phetamine is about 12 hours, which allows the drug to be active 
during all psychological or cognitive measurements as shown 
by the physiologic measurements conducted before and after 
the TFI. Another limitation is related to the neurochemical 
model and interpretation. Dexamphetamine induces the release 
of other neurotransmitters such as noradrenaline93 and, to a 
much lesser extent, serotonin,94 both of which may affect BWs. 
Therefore, the inferences drawn from our findings may be con­
founded because noradrenaline pathways or the interaction be­
tween dopaminergic and noradrenergic pathways could be an 
alternative explanation for the effects of dexamphetamine.26,30,82 
Further studies could use selective dopaminergic agents to iso­
late the effects of dopamine or noradrenaline on BWs. We did 
not verify abstinence from other psychoactive substances by 
urine screening, although a previous validation study in our 
laboratory showed that self-reports regarding recent substance 
use (e.g., cannabis, within 24 h) were consistent and valid (κ = 
0.91).95

Conclusion

We have shown that increasing catecholamine release through 
the administration of dexamphetamine (0.45 mg/kg) increases 
temporal and spatial BWs in the unimodal funnelling illusion. 
Further studies using selective dopaminergic and noradrener­
gic agents will be needed to elucidate whether the observed 
dexamphetamine effects are driven by dopamine release spe­
cifically, as dexamphetamine releases catecholamine.
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