RT Journal Article SR Electronic T1 Multimetric structural covariance in first-episode major depressive disorder: a graph theoretical analysis JF Journal of Psychiatry and Neuroscience JO JPN FD Canadian Medical Association SP E176 OP E185 DO 10.1503/jpn.210204 VO 47 IS 3 A1 Chujun Chen A1 Zhening Liu A1 Chang Xi A1 Wenjian Tan A1 Zebin Fan A1 Yixin Cheng A1 Jun Yang A1 Lena Palaniyappan A1 Jie Yang YR 2022 UL http://jpn.ca/content/47/3/E176.abstract AB Background: Abnormalities of cortical morphology have been consistently reported in major depressive disorder (MDD), with widespread focal alterations in cortical thickness, surface area and gyrification. However, it is unclear whether these distributed focal changes disrupt the system-level architecture (topology) of brain morphology in MDD. If present, such a topological disruption might explain the mechanisms that underlie altered cortical morphology in MDD.Methods: Seventy-six patients with first-episode MDD (33 male, 43 female) and 66 healthy controls (32 male, 34 female) underwent structural MRI scans. We calculated cortical indices, including cortical thickness, surface area and local gyrification index, using FreeSurfer. We constructed morphological covariance networks using the 3 cortical indices separately, and we analyzed the topological properties of these group-level morphological covariance networks using graph theoretical approaches.Results: Topological differences between patients with first-episode MDD and healthy controls were restricted to the thickness-based network. We found a significant decrease in global efficiency but an increase in local efficiency of the left superior frontal gyrus and the right paracentral lobule in patients with first-episode MDD. When we simulated targeted lesions affecting the most highly connected nodes, the thickness-based networks in patients with first-episode MDD disintegrated more rapidly than those in healthy controls.Limitations: Our sample of patients with first-episode MDD has limited generalizability to patients with chronic and recurrent MDD.Conclusion: A systems-level disruption in cortical thickness (but not surface area or gyrification) occurs in patients with first-episode MDD.