DOI: 10.1503/jpn.190016

Copyright © 2019 The Author(s) or their employer(s). To receive this resource in an accessible format, please contact us at cmajgroup@cmaj.ca.Online appendices are unedited and posted as supplied by the authors.

1 Supplemental Materials

- 2 SM 1 Methods
- 3 SM 1.1 Participants

AN participants were recruited from specialized eating disorder programs of a 4 5 university child and adolescent psychiatry and psychosomatic medicine department and 6 diagnosed according to DSM-5 criteria using semi-structured clinical interviews. Comorbid 7 psychiatric diagnoses were made by an expert clinician and included examination of the 8 participant and careful chart review (including medical and psychiatric history, 9 physical examination, laboratory values and several psychiatric screening instruments). 10 The AN participants were amenorrheic with two exceptions: One patient took oral 11 contraceptives; thus the natural menstrual cycle could not be evaluated and the other 12 continued to maintain a menstrual cycle.

Exclusion criteria and possible confounding variables, e.g. the use of
 psychotropic medications and medical comorbidities, were obtained using the SIAB-EX
 and our own semi-structured interview.

HC participants were excluded if they had any history of psychiatric illness, a lifetime 16 BMI below the 10th age percentile (if younger than 18 years) or BMI below 18.5kg/m² (if 17 18 older than 18 years), or were currently obese (BMI not over 94th age percentile if younger 19 than 18 years; BMI not over 28kg/m² if older than 18 years). Participants of all study groups were excluded if they had a lifetime history of any of the following clinical diagnoses: 20 21 organic brain syndrome, schizophrenia, substance dependence, psychosis NOS, bipolar disorder, bulimia nervosa or binge-eating disorder (or "regular" binge eating - defined as 22 23 bingeing at least once weekly for three or more consecutive months). Further 24 exclusion criteria for all participants were IQ lower than 85; psychotropic medication 25 other than SSRI within four weeks prior to the study; current substance abuse; 26 current inflammatory, neurologic or metabolic illness; chronic medical or neurological 27 illness that could affect appetite, eating behavior, or body weight (e.g., diabetes); 28 clinical relevant anemia; pregnancy; breast feeding.

DOI: 10.1503/jpn.190016

Online appendices are unedited and posted as supplied by the authors.

- 1 Pairwise case-control age-matching was carried out using the Munkres algorithm¹ resulting
- 2 in a maximum difference of 1.6 years between the individuals within one pair. 24 AN
- 3 participants and 20 HC were already included within the sample of Boehm et al.²
- 4 Study data were managed using secure, web-based electronic data capture tools REDCap
- 5 (Research Electronic Data Capture)¹.
- 6 SM 1.2 Bisulfite Pyrosequencing Protocol

7 Genomic DNA was bisulfite treated using the EZ DNA Methylation Gold Kit (Zymo Research, Range, CA, USA). One amplicon (fragment 5HTT P3 as described in Wankerl et al. ⁴) was 8 generated from bisulfite-treated DNA. PCR protocol was run as follow: HotStarTag 9 polymerase (Qiagen, Hilden, Germany) 95°C 15', 49x (95°C 35", 52°C 35", 72°C 35"); 72°C 10 5'. Sample preparation was carried out using Vacuum Prep Tool according to standard 11 procedures. 12-15µl PCR product was immobilized to 2µl Streptavidin Sepharose™ HP 12 beads (GE Healthcare) followed by annealing to 0.8-1.0µl sequencing primer (5µM) for 2' at 13 80°C. Amplicon and sequencing primers are depicted in Table SM 1.2a. 14

TYPE OF PRIMER	NAME OF PRIMER	PRIMER SEQUENCE (5'-3')
FORWARD	5HTT-F	ggg gaa gta tta agt tta t
REVERSE	5HTT-R	Biotin-ccc cta caa caa taa aca
SEQUENCING	5HTT-S1new	att tag aga tta gat tat gtg

Table SM 1.2a: Primers used for bisulfite pyrosequencing of parts the SLC6A4
 promoter-associated CpG island; All primers refer to bisulfite treated DNA.

A sequence within the *SLC6A4* promoter-associated CpG island as previously described by Philibert et al. ⁵ (GenBank accession number: NG_011747) is shown in Table SM 1.2b. We focused on 15 CpG sites within the amplicon 3 of a 799-bp promoter region (originally CpG 43-57, referred to in the current study as CpG 1-15) ⁶. CpG sites analyzed by means of bisulfite pyrosequencing are numbered and base pair positions are depicted according to the NCBI genome browser on the left hand side.

DOI: 10.1503/jpn.190016

Online appendices are unedited and posted as supplied by the authors.

- $5161 \quad \texttt{Tctttggcggcggctatctagagatcagaccatgtgagggcccg^1cg^2ggtacaaatacg^3c}$
- $5221 \quad \textbf{Cg}^4\textbf{cg}^5\textbf{ccg}^6\textbf{gcg}^7\textbf{cccctccg}^8\textbf{cacagccagcg}^9\textbf{ccg}^{10}\textbf{ccg}^{11}\textbf{ggtgcctcg}^{12}\textbf{agggcg}^{13}\textbf{cg}^{14}\textbf{aggccagc}$
- 5281 Ccg¹⁵cctgcccagcccgggaccagcctccccgcgcagcctggcaggtgggtccgcttttcc
- 1 Table SM 1.2b: Sequence of the SLC6A4 promoter-associated CpG island

2

Figure SM 1.2a: Boxplots showing DNA methylation levels for each of the 14
investigated CpG sites across groups; The box includes methylation values for each CpG
site between 25th - 75th quantile (median ± 1 interquartile range), the whiskers represent the
range of estimates within 1.5-fold of the interquartile range.

Correlation between methylation sites were varied (mean pairwise correlations between
CpGs=0.31 ; Figure SM 1.2b). Inspection of transcription factor binding site information,
based on ENCODE data, indicated that most binding sites covered the whole region from
CpG1-14 (Figure SM 1.2c) justifying the approach of averaging across CpG sites which has
been used here and in previous reports on the SLC6A4 promoter region^{6,7}.

DOI: 10.1503/jpn.190016

Online appendices are unedited and posted as supplied by the authors.

2 Figure SM 1.2b. Covariance plot between all 14 CpG sites.

3

1

4

Figure SM 1.2c.: Transcription factor binding sites (horizontal bars in lower panel)
covered the whole genomic region investigated (within vertical red bars), based on ENCODE
data. Figure produced via the UCSC Genome Browser (access date: May 24th 2019).

9

5

DOI: 10.1503/jpn.190016

Online appendices are unedited and posted as supplied by the authors.

1 1.3 fMRI data acquisition

The parameters of the rapid acquisition gradient echo (MP-RAGE) sequence were the
following: number of slices=176; repetition time=1900ms; echo time=2.26ms; flip angle=9°;
slice thickness=1mm; voxel size=1x1x1mm³; field-of-view=256x224mm²;
bandwidth=2004Hz/pixel.

The parameters of the gradient-echo T2*-weighted echo planar imaging (EPI) were the
following: tilted 30° towards AC–PC line (to reduce signal dropout in orbitofrontal regions);
number of volumes=190; number of slices=40; repetition time=2200ms; echo time=30ms; flip
angle (FA) of 75°; 3,4mm in-plane resolution; slice thickness of 2,4mm (1mm gap resulting in
a voxel size of 3,4x3,4x2,4mm³); FoV=220x220mm²; bandwidth of 200Hz/pixel.

11 1.4 fMRI data preprocessing

The applied standard image data preprocessing procedure included slice time correction of the functional data, realignment and registration to the mean. The realigned files were coregistered to the subject's structural brain image. A DARTEL template was created using structural images from all subjects. The EPI volumes were then normalized to MNI space using the DARTEL template and corresponding flow field ⁸. The resulting data were smoothed with an isotropic 8mm FWHM Gaussian kernel. The quality of the fMRI data was evaluated by manual inspection and by using artifact detection tools (ART).

19 1.5 Independent component analysis

Spatial group independent component analysis was conducted to extract 24 temporallycoherent networks.

DOI: 10.1503/jpn.190016

IC 7		IC 9	IC 10	IC 11	IC 12
IC 13	IC 14	IC 15	IC 16	IC 17	IC 18

Online appendices are unedited and posted as supplied by the authors.

Figure SM 1.5: Spatial maps of the 24 extracted independent components; Selected
 slices of all 24 independent components; IC=independent component.

DOI: 10.1503/jpn.190016

Online appendices are unedited and posted as supplied by the authors.

- 1 1.6 Identification of components of interest
- 2 Components of interest were identified by spatial correlation with the relevant templates by
- 3 Yeo et al.⁹. Two components (IC9 and IC13) were identified as SN, while the visual network
- 4 (IC7) was employed as negative control.

5

Figure SM 1.6: Spatial maps of the independent components; Selected slices of spatial maps of the two identified independent components that showed significant spatial correlation with the SN template ⁹ and the visual network as negative control network; IC=independent component, vRSN=visual resting state network; spatial maps are plotted as t-statistics thresholded at p=0.05 (FWE).

11 SM 2 Results

12 2.1 Group x methylation_{CpG13} interaction

DOI: 10.1503/jpn.190016

Online appendices are unedited and posted as supplied by the authors.

- 1 Investigating the group x methylation_{CpG13} interaction with age as a covariate revealed a
- significant finding at the right dIPFC (t=4.73; p=0.014 (FWE)). 2
- 3

4

- Figure SM 2.1: Group x SLC6A4 methylation_{CpG13} interaction; Significant group x 6 SLC6A4 methylation_{CpG13} interaction at the right dIPFC, for visualization purpose displayed at 7 8 a threshold of p=0.001 (uncorrected); color bar represents t-values.
- 9 2.2 Group x methylation_{mean} interaction at a lower threshold

When lowering the threshold to p=0.05 (uncorrected) the finding appears in both 10 11 hemispheres.

DOI: 10.1503/jpn.190016

Online appendices are unedited and posted as supplied by the authors.

Figure SM 2.2: Group x SLC6A4 methylation_{mean} interaction at p=0.05 (uncorrected);
 Group x SLC6A4 methylation_{mean} interaction at the left and right dlPFC, for visualization
 purpose displayed at a threshold of *p*=0.05 (uncorrected); color bar represents t-values.

7 2.3 Group x SLC6A4 methylation_{mean} and the fronto-parietal network

In order to specify whether our finding of a significant group x SLC6A4 methylation_{mean} interaction at the dIPFC exclusively constitutes a methylation-dependency of the frontallimbic circuit (reflected by the SN), we also conducted post-hoc tests of the group x SLC6A4 methylation_{mean} interaction in the fronto-parietal network. The fronto-parietal network is also anchored by the dIPFC, but in contrast to the SN is characterized by synchronized activity with parietal brain regions instead of subcortical limbic regions. Results showed no group x SLC6A4 methylation_{mean} interaction.

DOI: 10.1503/jpn.190016

Online appendices are unedited and posted as supplied by the authors.

1 2.4 Mediation analysis

3

Figure SM 2.3: Mediation analysis between SCL6A4 methylation_{mean} and EDI-2 total
with rsFC of the SN as mediator; Unstandardized coefficients and standard error are
displayed; *significant with p<0.05; rsFC=resting state functional connectivity; SN=salience
network; EDI-2 total=eating disorder inventory; SCL6A4 methylation_{mean}=mean *SLC6A4*methylation score

9 2.6 Analysis of genetic influences

To investigate whether our findings were driven by underlying methylation quantitative trait loci, we queried two different databases. mQTL.org is a catalogue of the genetic influences on DNA methylation in human blood, based on samples of 1018 mother-child pairs at five different life stages¹⁰. Brain-based mQTLs are described in a data catalogue hosted on epigenetics.essex.ac.uk.mQTL, based on a collection (n=166) of human fetal brain samples spanning 56-166 days post-conception ¹¹.

DOI: 10.1503/jpn.190016

Online appendices are unedited and posted as supplied by the authors.

1 SM 3 List of selected task-based fMRI studies reporting insula dysfunction in AN

Author	Year	Journal	Title	fMRI-task targeting
Bär et al. ¹²	2013	Acta Psychiatr Scand	Insular dysfunction and descending pain inhibition in anorexia nervosa	Pain processing
Bischoff- Grethe et al. ¹³	2018	Transl Psychiatry.	Neural hypersensitivity to pleasant touch in women remitted from anorexia nervosa	Interoceptive experience
DeGuzman et al. ¹⁴	2017	Am J Psychiatry	Association of Elevated Reward Prediction Error Response With Weight Gain in Adolescent Anorexia Nervosa	Reward learning processing
Frank et al.15	2013	Front Hum Neurosci	Food related processes in the insular cortex	Food processing
Frank et al.	2016	J Psychiatry Neurosci.	Prediction error and somatosensory insula activation in women recovered from anorexia nervosa	Reward learning processing
Holsen et al. ¹⁶	2012	J Psychiatry Neurosci.	Food motivation circuitry hypoactivation related to hedonic and nonhedonic aspects of hunger and satiety in women with active anorexia nervosa and weight-restored women with anorexia nervosa	Food processing
Kerr et al. ¹⁷	2016	Neuropsychop harmacology	Altered Insula Activity during Visceral Interoception in Weight-Restored Patients with Anorexia Nervosa	Visceral interoceptive processing
Kerr et al. ¹⁸	2017	Psychosom Med	Influence of Visceral Interoceptive Experience on the Brain's Response to Food Images in Anorexia Nervosa.	Visceral interoceptive processing
Leppanen et	2017	Biol Psychol	Blunted neural response to implicit negative facial affect in	Social- emotional

DOI: 10.1503/jpn.190016

al. ¹⁹			anorexia nervosa	processing
Oberndorfer et al. ²⁰	2013	Am. J. Psychiatry	Altered insula response to sweet taste processing after recovery from anorexia and bulimia nervosa.	Food processing
Oberndorfer et al. ²¹	2013	Psychiatry Res	Greater anterior insula activation during anticipation of food images in women recovered from anorexia nervosa versus controls	Food processing
Strigo et al. ²²	2013	Int J Eat Disord	Altered insula activation during pain anticipation in individuals recovered from anorexia nervosa: evidence of interoceptive dysregulation.	Pain processing
Vocks et al.23	2011	J. Psychiatr. Res.	Effects of gustatory stimulation on brain activity during hunger and satiety in females with restricting-type anorexia nervosa: an fMRI study.	Food processing
Wagner et al. ²⁴	2007	Neuropsychop harmacology	Altered insula response to taste stimuli in individuals recovered from restricting-type anorexia nervosa.	Food processing
Wierenga et al. ²⁵	2017	Front Nutr	Aberrant Cerebral Blood Flow in Response to Hunger and Satiety in Women Remitted from Anorexia Nervosa.	Food processing

Online appendices are unedited and posted as supplied by the authors.

- 1 Table 3: Selected task-based fMRI studies reporting insula dysfunctions in AN
- 2
- 3

DOI: 10.1503/jpn.190016

Online appendices are unedited and posted as supplied by the authors.

1 References

- Munkres J. Algorithms for the assignment and transportation problems. *J Soc Ind Appl Math* 1957;5:32–8.
- Boehm I, Geisler D, King J, et al. Increased resting state functional connectivity
 in the fronto-parietal and default mode network in anorexia nervosa. *Front Behav Neurosci* 2014;8:346.
- Harris PA, Taylor R, Thielke R, et al. Research electronic data capture
 (REDCap)—a metadata-driven methodology and workflow process for providing
 translational research informatics support. *J Biomed Inform* 2009;42:377–81.
- Wankerl M, Miller R, Kirschbaum C, et al. Effects of genetic and early
 environmental risk factors for depression on serotonin transporter expression and
 methylation profiles. *Transl Psychiatry* 2014;4:e402.
- Philibert R, Madan A, Andersen A, et al. Serotonin transporter mRNA levels are associated with the methylation of an upstream CpG island. *Am J Med Genet B Neuropsychiatr Genet* 2007;144B:101–5.
- Muehlhan M, Kirschbaum C, Wittchen H-U, et al. Epigenetic variation in the
 serotonin transporter gene predicts resting state functional connectivity strength
 within the salience-network. *Hum Brain Mapp* 2015;36:4361–71.
- Nikolova YS, Koenen KC, Galea S, et al. Beyond genotype: serotonin transporter
 epigenetic modification predicts human brain function. *Nat Neurosci* 2014;17:1153–5.
- Ashburner J. A fast diffeomorphic image registration algorithm. *Neuroimage* 2007;38:95–113.
- Yeo BT, Krienen FM, Sepulcre J, et al. The organization of the human cerebral
 cortex estimated by intrinsic functional connectivity. *J Neurophysiol* 2011;106:1125–65.
- In Gaunt TR, Shihab HA, Hemani G, et al. Systematic identification of genetic
 influences on methylation across the human life course. *Genome Biol* 2016;17:61.
- Hannon E, Spiers H, Viana J, et al. Methylation quantitative trait loci in the
 developing brain and their enrichment in schizophrenia-associated genomic
 Nat Neurosci 2016;19:48–54.

DOI: 10.1503/jpn.190016

Online appendices are unedited and posted as supplied by the authors.

- 1 12. Bär K-J, Berger S, Schwier C, et al. Insular dysfunction and descending pain 2 inhibition in anorexia nervosa. *Acta Psychiatr Scand* 2013;127:269–78.
- Bischoff-Grethe A, Wierenga CE, Berner LA, et al. Neural hypersensitivity to
 pleasant touch in women remitted from anorexia nervosa. *Transl Psychiatry* 2018;8:161.
- DeGuzman M, Shott ME, Yang TT, et al. Association of Elevated Reward
 Prediction Error Response With Weight Gain in Adolescent Anorexia Nervosa.
 Am J Psychiatry 2017;174:557–65.
- Frank S, Kullmann S, Veit R. Food related processes in the insular cortex.
 Front Hum Neurosci [Internet] 2013 [cited 2018 Feb 16];7. Available from: https://www.frontiersin.org/articles/10.3389/fnhum.2013.00499/full
- Holsen LM, Lawson EA, Blum J, et al. Food motivation circuitry hypoactivation
 related to hedonic and nonhedonic aspects of hunger and satiety in women with
 active anorexia nervosa and weight-restored women with anorexia nervosa. J
 Psychiatry Neurosci JPN 2012;37:322–32.
- Kerr KL, Moseman SE, Avery JA, et al. Altered Insula Activity during Visceral
 Interoception in Weight-Restored Patients with Anorexia Nervosa.
 Neuropsychopharmacology 2016;41:521–8.
- Kerr KL, Moseman SE, Avery JA, et al. Influence of Visceral Interoceptive
 Experience on the Brain's Response to Food Images in Anorexia Nervosa.
 Psychosom Med 2017;79:777–84.
- Leppanen J, Cardi V, Paloyelis Y, et al. Blunted neural response to implicit
 negative facial affect in anorexia nervosa. *Biol Psychol* 2017;128:105–11.
- Oberndorfer TA, Frank GKW, Simmons AN, et al. Altered Insula Response to
 Sweet Taste Processing After Recovery From Anorexia and Bulimia Nervosa.
 Am J Psychiatry 2013;170:1143–51.
- 27 21. Oberndorfer T, Simmons A, McCurdy D, et al. Greater anterior insula
 activation during anticipation of food images in women recovered from anorexia
 nervosa versus controls. *Psychiatry Res Neuroimaging* 2013;214:132–41.
- Strigo IA, Matthews SC, Simmons AN, et al. Altered insula activation during
 pain anticipation in individuals recovered from anorexia nervosa: evidence of
 interoceptive dysregulation. *Int J Eat Disord* 2013;46:23–33.

DOI: 10.1503/jpn.190016

Online appendices are unedited and posted as supplied by the authors.

- Vocks S, Herpertz S, Rosenberger C, et al. Effects of gustatory stimulation on
 brain activity during hunger and satiety in females with restricting-type anorexia
 nervosa: An fMRI study. *J Psychiatr Res* 2011;45:395–403.
- Wagner A, Aizenstein H, Mazurkewicz L, et al. Altered insula response to
 taste stimuli in individuals recovered from restricting-type anorexia nervosa.
 Neuropsychopharmacology 2007;33:513–23.
- 25. Wierenga CE, Bischoff-Grethe A, Rasmusson G, et al. Aberrant Cerebral
 Blood Flow in Response to Hunger and Satiety in Women Remitted from
 Anorexia Nervosa. *Front Nutr* [Internet] 2017 [cited 2018 Jan 23];4. Available
- 10 from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5515860/