DOI: 10.1503/jpn.190156

Copyright © 2020 The Author(s) or their employer(s). To receive this resource in an accessible format, please contact us at cmajgroup@cmaj.ca.

Online appendices are unedited and posted as supplied by the authors.

Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis

Espinoza Oyarce, DA (MNeurosci); Shaw, ME (PhD); Alateeq, K (MMagResonTech); Prof Cherbuin, N (PhD)

Sur	onlen	iental	Meth	ods
~u	picii		1116611	UUS

Supplemental Table S1. Modified Newcastle-Ottawa scale	p43
Supplemental Results	
Supplemental Table S2. Detailed demographic data of included studies	p44
Supplemental Table S3. Detailed NOS scores	p49
Supplemental Table S4. Meta-analysis results per brain region	p56
Supplemental Table S5. Assessment of anxiety comorbidity per brain region	p64
Supplemental Table S6. Sensitivity analyses on selection of homogeneous groups	p71
Supplemental Table S7. Sensitivity analyses on selection of homogeneous groups in anxiety comorbidity assessment	p73
Supplemental Table S8. Assessment of study influence	p75
Supplemental Table S9. Assessment of bias	p78
Supplemental Table S10. Meta-regression results	p88
Supplemental Figure S1. TBV forest plots	p96
Supplemental Figure S2. TBV assessment of anxiety comorbidity forest plots	p97
Supplemental Figure S3. GMV forest plots	p98
Supplemental Figure S4. GMV assessment of anxiety comorbidity forest plots	p99
Supplemental Figure S5. THcV forest plots	p100
Supplemental Figure S6. THcV assessment of anxiety comorbidity foest plots	p102
Supplemental Figure S7. RHcV forest plots	p104
Supplemental Figure S8. RHcV assessment of anxiety comorbidity forest plots	p106
Supplemental Figure S9. LHcV forest plots	p108
Supplemental Figure S10. LHcV assessment of anxiety comorbidity forest plots	p110
Supplemental Figure S11. TAV forest plots	p112
Supplemental Figure S12. TAV assessment of anxiety comorbidity forest plots	p113
Supplemental Figure S13. RAV forest plots	p114
Supplemental Figure S14. RAV assessment of anxiety comorbidity forest plots	p115
Supplemental Figure S15. LAV forest plots	p116
Supplemental Figure S16. LAV assessment of anxiety comorbidity forest plots	p117
Supplemental Figure S17. TPuV forest plots	p118
Supplemental Figure S18. TPuV assessment of anxiety comorbidity forest plots	p119
Supplemental Figure S19. RPuV forest plots	p120
Supplemental Figure S20. RPuV assessment of anxiety comorbidity forest plots	p121
Supplemental Figure S21. LPuV forest plots	p122
Supplemental Figure S22. LPuV assessment of anxiety comorbidity forest plots	p123
Supplemental Figure S23. TCV forest plots	p124
Supplemental Figure S24. TCV assessment of anxiety comorbidity forest plots	p125
Supplemental Figure S25. RCV forest plots	p126
Supplemental Figure S26. RCV assessment of anxiety comorbidity forest plots	p127
Supplemental Figure S27. LCV forest plots	p128
Supplemental Figure S28. LCV assessment of anxiety comorbidity forest plots	p129
Supplemental Figure S29. TPaV forest plots	p130
Supplemental Figure S30. TPaV assessment of anxiety comorbidity forest plots	p131
Supplemental Figure S31. RPaV forest plots	p132

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Supplemental Figure S32. RPaV assessment of anxiety comorbidity forest plot	p133
Supplemental Figure S33. LPaV forest plots	p134
Supplemental Figure S34. LPaV assessment of anxiety comorbidity forest plot	p135
Supplemental Figure S35. TTV forest plots	p136
Supplemental Figure S36. TTV assessment of anxiety comorbidity forest plot	p137
Supplemental Figure S37. RTV forest plot	p138
Supplemental Figure S38. RTV assessment of anxiety comorbidity forest plot	p139
Supplemental Figure S39. LTV forest plot	p140
Supplemental Figure S40. LTV assessment of anxiety comorbidity forest plot	p141
Supplemental Figure S41. TAcV forest plot	p142
Supplemental Figure S42. WMV forest plots	p143
Supplemental Figure S43. WMV assessment of anxiety comorbidity forest plot	p144
Supplemental Figure S44. ICV forest plots	p145
Supplemental Figure S45. ICV assessment of anxiety comorbidity forest plots	p147

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Supplemental Methods

Data extraction

Data extracted included sample size, age, gender, and brain volumes for all studies. When provided, years of education, Mini-Mental State Examination (MMSE)¹ score, field strength, and segmentation type were also extracted. Further information was extracted for participants with depression including diagnostic method (i.e., Diagnostic and Statistical Manual of Mental Disorders (DSM)/International Classification of Diseases and Related Health Problems (ICD)), depressive and anxious symptomatology, depression status, number of previous episodes, onset and duration of illness, family history of depression, medication status (if in medication, medicines taken), and treatment resistance.

Data on depression status and explicit classification from reports were used to categorize depression subgroups at data extraction. No *a priori* subgroups were established, and categorisation was driven by the retrieved studies. These groups included current (Cur) or remitted (Rem) depression, subtype of depression (melancholic (Mel), psychotic (Psy), or atypical (Aty)), first (FE) or multiple (ME) episodes of depression, age of onset of depression (paediatric (PO), adult (AO), early (EO), or late (LO)), family history (FH) of depression, intake of antidepressants (Med/noMed), treatment resistance (TR), comorbidity with anxiety disorders (Anx), suicide attempt/ideation (Sui), and physical/sexual abuse (Abu). Heterogeneous samples and samples that could not be included in the above groups due to lack of information were merged into a mixed group (Mix), in an effort to reduce some of the heterogeneity in main analyses. In many instances, the Mix group represented the combined effect of subgroups, such as EO/LO, FE/ME, or Cur/Rem. If more than one category was suitable, other homogeneous subgroups were given precedence over Cur and Rem to prioritize other clinical features. Similarly, Cur and Rem subgroups were given precedence over Mix group.

Quality assessment

Quality of studies was assessed at study level with the Newcastle-Ottawa scale (NOS)², modified based on validated items included in previous reviews^{3,4}. Modifications were developed in consultation with senior author, and agreed by all authors. Studies were rated using a star-system and were judged based on the selection of healthy controls (HC) and depressed participants (DEP), on the comparability of these groups, on the ascertainment of depression assessment, and on non-response rates. A maximum of ten starts could be awarded to a study (Supplemental Table S1).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Missing data

If total volume measures were not reported, mean and standard deviation (SD) were derived from right and left volume measures according to the following formula:

$$mean_{Total} = mean_{Right} + mean_{Left}$$
 $SD_{Total} = \sqrt{SD_{Right}^2 + SD_{Left}^2}$

Sample selection in meta-analyses

A number of studies reported brain measures on multiple depression subgroups. Studies reporting on multiple independent subgroups were included in main analyses as separate samples, and then independently investigated in subgroup analyses. Studies reporting on multiple subgroups that were not independent were selected based on sample size: the largest subgroup was selected for main analyses, and then all subgroups were independently investigated in subgroup analyses. However, if sample size was identical between dependent subgroups, homogenous subgroups were selected for main analyses, and then all subgroups were independently investigated in subgroup analyses. Sensitivity analyses were conducted on the selection of homogeneous groups. Please refer to **Assessment of subgroup selection** and **Supplemental Tables S6 and S7**.

Meta-regression

Analyses first investigated the influence of age and sex as independent demographic variables of cohorts, that is, mean age/gender of HC and mean age/gender of DEP separately, and then combined into single measures of these demographics. While there were no substantial differences in age between cohorts, the number of females varied greatly between HC and DEP in some studies (visual inspection) and, thus, sex was further investigated as the difference in percent female between cohorts. Two models were used based on these observations: model A, with mean age of HC and DEP, and percent female of HC and DEP; and model B, with mean age of HC and DEP, and the difference in percent female between HC and DEP. In hippocampus volume (HcV), segmentation procedure, depressive symptoms, and medication status were investigated individually; with only segmentation procedure investigated within models due to power constraints.

Supplemental Results

Included studies

The online search identified 13,637 references. Once duplicates were removed, 9,229 unique references were screened by title. Title screening excluded 8,669 irrelevant entries, leaving 560 abstracts to be screened. Abstract

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

screening excluded a further 205 entries that failed inclusion/exclusion criteria, leaving 355 articles to be screened by full-text. Full-text screening excluded a further 43 articles that failed inclusion/exclusion criteria, leaving 312 articles for inclusion in review. After accounting for population studies, voxel-based morphometry (VBM), multiple reports of the same sample, white matter hyperintensity (WMH) studies and brain structures not included in the review due to insufficient studies, 105 articles from the online search were included in analyses.

19 studies were obtained through manual search, five⁵⁻⁹ of which were from bibliographies while the remaining ¹⁰⁻²⁴ were from previous reviews²⁵⁻²⁷. Four studies^{20,21,23,24} that failed inclusion/exclusion criteria were excluded by full-text screening, leaving 15 articles for inclusion in review. After accounting for population studies, VBM, multiple reports of the same sample, WMH and brain structures not included in the review, seven studies^{5,6,10-12,15,16} from manual search were included in the review. Ultimately, 112 studies were included in analyses comprising 105 records from online search and seven records from manual search. Detailed demographics of HC and DEP included can be found in **Supplemental Table S2**.

Quality assessment

Detailed description of scores can be found in **Supplemental Table S3**. Studies were rated out of 10 stars. The lowest score was 4.5/10 stars in three studies²⁸⁻³⁰, while the highest score was 8.5/10 stars in 19 studies³¹⁻⁴⁹. The three studies with low score were included in large meta-analyses for ICV, TBV, hippocampus, amygdala, putamen, and caudate where exclusion was unlikely to influence effect sizes. A sensitivity analysis on the moderating effect of NOS scores in total HcV found no significant results (k=61, QM-p=0.1871).

Meta-analyses

Management of duplicate samples was specific to brain region, and thus excluded studies have been specified for each analysis. In total 11 regions were investigated given minimum requirements: four global measures (GMV, WMV, TBV, and ICV), and seven subcortical measures (hippocampus, amygdala, caudate, pallidum, putamen, thalamus, and nucleus accumbens). Although there were enough studies to investigate some cortical regions such as frontal lobe⁵⁰⁻⁵², orbitofrontal cortex⁵³⁻⁵⁵, anterior cingulate cortex (ACC^{53,56,57}), and subgenual ACC⁵⁷⁻⁵⁹, tracing methods varied greatly and could not be pooled into meta-analyses. Furthermore, in the case of subgenual ACC, both tracing methods and naming differed among studies.

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

TBV

Excluded studies

15 studies^{52,60-73} were identified as duplicates and were excluded from analyses according to Methods. Two studies^{74,75} were excluded since neither age or gender could be established. One study¹⁷ was excluded since age of HC could not be established. Two studies^{76,77} were excluded due to the large variance in TBV measures. One study⁷⁸ was identified as an outlier in DEP main analyses and was excluded from these analyses.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S1.

Results

31 studies^{5,12,15,29,31,32,36,38,39,41,46,50,51,54,78-94} reporting differences in TBV were included (n=3,095, age=54.8 years, 66.7% female). No significant differences were found. Significant heterogeneity was found with DEP-LO (**Supplemental Table S4**).

Anxiety comorbidity assessment

Excluded studies

15 studies^{29,31,39,50,51,54,78,79,82-85,87,91,95} were excluded since no clear information on anxiety comorbidity could be established.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S2.

Anxiety exclusion results

12 studies^{5,32,36,38,80,81,86,88-90,92,93} reporting differences in TBV excluding anxiety disorders were included (n=1,565, age=59.7 years, 66.5% female). No significant volumetric differences were found between HC and DEP, or in subgroup analyses (**Supplemental Table S5**).

Neurosci 2020.

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Anxiety comorbidity results

Four studies^{12,15,41,46} with comorbid anxiety disorders were included (n=458, age=36.1 years 64.8% female). No

significant differences were found between HC and DEP (Supplemental Table S5).

GMV

Excluded studies

No duplicates were found, except for multiple groups of DEP in one study⁹⁶. The groups reported included DEP-Mix, DEP-PO and DEP-AO, and first-episode (FE) and multiple-episodes (ME) of depression. DEP-Mix, DEP-PO and DEP-AO groups were segregated according to comorbidity with anxiety disorders; whereas DEP-FE and DEP-ME presented comorbidity. Given sample size, DEP-Mix with and without comorbidity were selected for main analysis as per Methods, while homogeneous groups were selected for subgroup analyses. One study⁷⁷ was

excluded due to large variance in GMV measures.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S3.

Anxiety comorbidity assessment

Excluded studies

Three studies^{16,84,87} were excluded since no clear information on anxiety comorbidity could be established.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S4.

Anxiety comorbidity results

Five studies^{41,96-99} with comorbid anxiety disorders were included (n=742, age=37.6 years, 62.1% female). No significant volumetric differences were found between HC and DEP (**Supplemental Table S5**).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Hippocampus volume

Total hippocampus volume

Excluded studies

13 studies^{28,31,32,44,54,64,78,100-105} reported differences in total hippocampal volume (THcV), four of which^{32,44,54,100} also reported right (RHcV) and left (LHcV) volumes. 47 studies^{10,18,30,33,37,39,40,43,46,49,68,71,77,80,86,88,92,93,106-134} reported differences in RHcV and LHcV, from which THcV was derived according to Supplemental Methods. Nine studies^{18,64,68,71,112,115,124,126,134} were identified as duplicates and were excluded from analyses according to Methods. Five studies^{43,44,92,116,131} belonged to the same research group and reported volumes for DEP-Mix¹³¹, DEP-EO DEP-LO⁴⁴, DEP-Mel and DEP-Aty¹¹⁶, DEP-Rem⁴³, and DEP-Cur⁹². Given sample size, DEP-Cur was selected for DEP main analyses, while all others were for subgroup analyses. However, not enough studies were available to conduct DEP-Mel/DEP-Aty analyses and, therefore, this study¹¹⁶ was not included. One study¹⁰ reported volumes using manual and automated segmentation, with manual segmentation selected for analyses. Three studies^{74,75,135} were excluded since neither age or gender of samples could be established.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S5.

Anxiety comorbidity assessment

Excluded studies

11 studies^{10,28,30,31,39,54,78,101,105,108,128} were excluded since no clear information on anxiety comorbidity could be established.

Forest plots

Individual forest plots of main and subgroup analyses are shown in **Supplemental Figure S6**.

Anxiety comorbidity results

Ten studies^{46,100,102,114,120,122,123,129,130,132} with comorbid anxiety disorders were included (n=1,049, age=36.7 years, 58.2% female). No significant volumetric differences were found between HC and DEP, or in subgroup analysis. Significant heterogeneity was found in all analyses (**Supplemental Table S5**).

Neurosci 2020.

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Right hippocampus volume

Excluded studies

Eight studies^{18,68,71,112,115,124,126,134} were identified as duplicates and were excluded form analyses according to Methods. Five studies^{43,44,92,116,131} belonged to the same research group and reported volumes for DEP-Mix¹³¹, DEP-EO and DEP-LO⁴⁴, DEP-Mel and DEP-Aty¹¹⁶, DEP-Rem⁴³, and DEP-Cur⁹². Given sample size, DEP-Cur was selected for DEP main analyses, while all others were selected for subgroup analyses. However, not enough studies were available to conduct DEP-Mel/DEP-Aty analyses and, therefore, this study¹¹⁶ was not included. One study¹⁰ reported volumes using manual and automated segmentation, with manual segmentation selected for analyses. Three studies^{74,75,135} were excluded since neither age or gender could be established.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S7.

Anxiety comorbidity assessment

Excluded studies

Six studies 10,30,39,54,108,128 were excluded since no clear information on anxiety comorbidity could be established.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S8.

Anxiety comorbidity results

Nine studies^{46,100,114,120,122,123,129,130,132} with comorbid anxiety disorders were included (n=1,006, age=36.8 years, 58.1% female). No significant volumetric differences were found between HC and DEP, or in subgroup analyses. Significant heterogeneity was found in all analyses (**Supplemental Table S5**).

Neurosci 2020.

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Left hippocampus volume

Excluded studies

Eight studies^{18,68,71,112,115,124,126,134} were identified as duplicates and were excluded form analyses according to Methods. Five studies^{43,44,92,116,131} belonged to the same research group and reported volumes for DEP-Mix¹³¹, DEP-EO and DEP-LO⁴⁴, DEP-Mel and DEP-Aty¹¹⁶, DEP-Rem⁴³, and DEP-Cur⁹². Given sample size, DEP-Cur was selected for DEP main analyses, while all others were selected for subgroup analyses. However, not enough studies were available to conduct DEP-Mel/DEP-Aty analyses and, therefore, this study¹¹⁶ was not included. One study¹⁰ reported volumes using manual and automated segmentation, with manual segmentation selected for analyses. Three studies^{74,75,135} were excluded since neither age or gender could be established.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S9.

Anxiety comorbidity assessment

Excluded studies

Six studies 10,30,39,54,108,128 were excluded since no clear information on anxiety comorbidity could be established.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S10.

Anxiety comorbidity results

Nine studies^{46,100,114,120,122,123,129,130,133} with comorbid anxiety disorders were included (n=1,006, age=36.8 years, 58.1% female). No significant volumetric differences were found between HC and DEP, or in subgroup analyses. Significant heterogeneity was found in all analyses (**Supplemental Table S5**).

Neurosci 2020. DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Amygdala volume

Total amygdala volume

Excluded studies

Three studies^{28,101,136} reported differences in total amygdala volume (TAV), one of which¹³⁶ also reported right (RAV) and left (LAV) volumes. 17 studies^{5,6,37,46,47,69,73,81,93,110,111,113,114,120,133,137,138} reported differences in RAV and LAV, from which TAV was derived according to Supplemental Methods. Two studies^{5,113} were identified as duplicates and were excluded from analyses according to Methods. One study¹³⁶ was excluded since age of DEP sample could not be established. One study¹³⁸ was excluded since accurate number of males and females in DEP could not be established. One study¹³⁵ was excluded since neither age or gender of samples could be established. The same research group reported measures for DEP-Mix and DEP-Rem and DEP-Cur¹¹¹, and DEP-FE and DEP-ME⁶. Given sample size, DEP-FE and DEP-ME were selected for main analysis as per Methods.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S11.

Results

16 studies^{6,28,37,46,47,69,73,81,93,101,110,111,114,120,133,137} reporting differences in TAV (n=1,241, age=46.7 years, 61.6% female) were included. No significant differences were found. Most analyses showed significant heterogeneity (**Supplemental Table S4**).

Anxiety comorbidity assessment

Excluded studies

Two studies^{28,101} were excluded since no clear information on anxiety comorbidity could be established. The same research group reported measures for DEP-Mix and DEP-Rem and DEP-Cur¹¹¹, and DEP-FE and DEP-ME⁶ excluding anxiety disorders. Given sample size, DEP-FE and DEP-ME were selected for main analysis as per Methods.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S12.

Neurosci 2020.

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Anxiety exclusion results

Ten studies^{6,37,47,69,81,93,110,111,133,137} reporting differences in TAV excluding anxiety disorders were included (n=765, age=51.9 years, 64.1% female). No significant volumetric differences were found between HC and DEP, on in subgroup analyses. However, a trend was found in DEP analysis. Significant heterogeneity was found in all

analyses (Supplemental Table S5).

Right amygdala volume

Excluded studies

Two studies^{5,113} were identified as duplicates and were removed from analyses according to Methods. One study¹³⁶ was excluded since age of DEP sample could not be established. One study¹³⁸ was excluded since accurate number of males and females could not be established. One study¹³⁵ was excluded since neither age or gender of samples could be established. The same research group reported measures for DEP-Mix and DEP-Rem and DEP-Cur¹¹¹, and DEP-FE and DEP-ME series for main analysis as per

Methods.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S13.

Results

14 studies^{6,37,46,47,69,73,81,93,110,111,114,120,133,137} reporting differences in RAV were included (n=1,131, age=46.8 years, 61.2% female). No significant differences were found. Most analyses showed significant heterogeneity (**Supplemental Table S4**).

Anxiety comorbidity assessment

Excluded studies

All included studies had information on anxiety comorbidity. The same research group reported measures for DEP-Mix and DEP-Rem and DEP-Cur¹¹¹, and DEP-FE and DEP-ME⁶ excluding anxiety disorders. Given sample size, DEP-FE and DEP-ME were selected for main analysis as per Methods.

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S14.

Anxiety exclusion results

Ten studies^{6,37,47,69,81,93,110,111,133,137} reporting differences in RAV excluding anxiety disorders (n= 765, age= 51.9 years, 64.1% female) were included. No significant volumetric differences were found between HC and DEP, or in subgroup analyses. Significant heterogeneity was found in DEP and DEP-FE analyses (**Supplemental Table S5**).

Anxiety comorbidity results

Four studies^{46,73,114,120} with comorbid anxiety disorders were included (n=366, age=36.2 years, 55.2% female). No significant volumetric differences were found between HC and DEP (**Supplemental Table S5**).

Left amygdala volume

Excluded studies

Two studies^{5,113} were identified as duplicates and were removed from analyses according to Methods. One study¹³⁶ was excluded since age of DEP sample could not be established. One study¹³⁸ was excluded since accurate number of males and females could not be established. One study¹³⁵ was excluded since neither age or gender of samples could be established. The same research group reported measures for DEP-Mix and DEP-Rem and DEP-Cur¹¹¹, and DEP-FE and DEP-ME were selected for main analysis as per Methods.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S15.

Results

14 studies^{6,37,46,47,69,73,81,93,110,111,114,120,133,137} reporting differences in LAV were included (n=1,131, age=46.8 years, 61.2% female). No significant differences were found. Most analyses showed significant heterogeneity (**Supplemental Table S4**).

Neurosci 2020.

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Anxiety comorbidity assessment

Excluded studies

All included studies had information on anxiety comorbidity. The same research group reported measures for DEP-mix and DEP-Rem and DEP-Cur¹¹¹, and DEP-FE and DEP-ME⁶ excluding anxiety disorders. Given sample size, DEP-FE and DEP-ME were selected for main analysis as per Methods.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S16.

Anxiety exclusion results

Ten studies^{6,37,47,69,81,93,110,111,133,137} reporting differences in LAV excluding anxiety disorders (n=765, age=51.9 years, 64.1% female) were included. No significant volumetric differences were found between HC and DEP, or in subgroup analyses. However, a trend was found in DEP analysis. Except for DEP-Mix, significant heterogeneity was found in all analyses (**Supplemental Table S5**).

Putamen volume

Total putamen volume

Excluded studies

Seven studies^{14,28,52,95,139-141} reported differences in total putamen volume (TPuV), one of which¹³⁹ also reported right (RPuV) and left (LPuV) volumes. Nine studies^{37,38,114,122,128,133,137,142,143} reported differences in RPuV and LPuV, from which TPuV was derived according to Supplemental Methods. Two studies^{14,52} were identified as a duplicates and were excluded from analyses according to Methods. One study¹³⁹ was excluded since number males and females could not be established.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S17.

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Anxiety comorbidity assessment

Excluded studies

Three studies^{28,128,140} were excluded since no clear information on anxiety comorbidity could be established.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S18.

Anxiety comorbidity results

Four studies ^{95,114,122,141} reporting differences in TPuV including anxiety disorders were included (n=836, age=38.1 years, 58.9% female). No significant differences were found between HC and DEP. Significant heterogeneity was found (**Supplemental Table S5**).

Right putamen volume

Excluded studies

No duplicates were found. One study¹³⁹ was excluded since the number of males and females could not be established.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S19.

Anxiety comorbidity assessment

Excluded studies

One study¹²⁸ was excluded since no clear information on anxiety comorbidity could be established. The analysis with anxiety comorbidity was not conducted since only two studies^{114,122} were available.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S20.

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Left putamen volume

Excluded studies

No duplicates were found. One study¹³⁹ was excluded since the number of males and females could not be established.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S21.

Results

Nine studies^{37,38,114,122,128,133,137,142,143} reporting differences in LPuV were included (n=1,248, age=47.8 years, 59.3% female). No significant differences were found in (**Supplemental Table S4**).

Anxiety comorbidity assessment

Excluded studies

One study¹²⁸ was excluded since no clear information on anxiety comorbidity could be established. The analysis with anxiety comorbidity was not conducted since only two studies^{114,122} were available.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S22.

Caudate volume

Total caudate volume

Excluded studies

Eight studies^{13,14,28,52,62,65,140,141} reported differences in total caudate volume (TCV), one of which⁶² also reported right (RCV) and left (LCV) volumes. Five studies^{37,95,114,122,128,133,142-144} reported differences in RCV and LCV, from which TCV was derived according to Supplemental Methods. Three studies^{14,52,65} were identified as duplicates and were excluded from analyses according to Methods. Two studies^{13,62} belonged to the same research

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

group and reported volumes for DEP-Mix, DEP-EO and DEP-LO¹³; and DEP-Mix⁶². Given sample size, DEP-Mix in⁶² was selected for DEP analyses, while DEP-EO and DEP-LO in¹³ were selected for subgroup analyses. However, not enough studies were available to conduct DEP-EO/DEP-LO analyses and, therefore, this study¹³ was not included. One study¹³⁵ was excluded since neither age or gender of samples could be established.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S23.

Results

13 studies^{28,37,62,95,114,122,128,133,137,140-143} reporting differences in TCV were included (n=1,686, age=46.1 years, 62.4% female). No significant differences were found. Significant heterogeneity was found with DEP (**Supplemental Table S4**).

Anxiety comorbidity assessment

Excluded studies

Three studies^{28,128,140} were excluded since no clear information on anxiety comorbidity could be established.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S24.

Anxiety exclusion results

Six studies^{37,62,133,137,142,143} reporting differences in TCV excluding anxiety disorders were included (n=600, age=60.2 years, 66.5% female). No significant volumetric differences were found between HC and DEP, or in subgroup analysis. Significant heterogeneity was only found in DEP-Mix analysis (**Supplemental Table S5**).

Anxiety comorbidity results

Four studies^{95,114,122,141} reporting differences in TCV comorbid with anxiety disorders were included (n=836, age=38.1 years, 58.9% female). No significant differences were found between HC and DEP. Significant heterogeneity was found (**Supplemental Table S5**).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Right caudate volume

Excluded studies

No duplicates were found. One study¹³⁵ was excluded since neither age or gender of samples could be established.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S25.

Results

Nine studies^{37,62,114,122,128,133,137,142,143} reporting differences in RCV were included (n=1,241, age=47.8 years, 59.4% female). No significant differences were found (**Supplemental Table S4**).

Anxiety comorbidity assessment

Excluded studies

One study¹²⁸ was excluded since no clear information on anxiety comorbidity could be established. The analysis with anxiety comorbidity was not conducted since only two studies^{114,122} were available.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S26.

Anxiety exclusion results

Six studies^{37,62,133,137,142,143} reporting differences in RCV excluding anxiety disorders were included (n=600, age=60.2 years, 66.5% female). No significant volumetric differences were found between HC and DEP, or in subgroup analysis (**Supplemental Table S5**).

Left caudate volume

Excluded studies

No duplicates were found. One study¹³⁵ was excluded since neither age or gender of samples could be established.

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S27.

Results

Nine studies^{37,62,114,122,128,133,137,142,143} reporting differences in LCV were included (n=1,241, age=47.8 years, 59.4% female). No significant differences were found (**Supplemental Table S4**).

Anxiety comorbidity assessment

Excluded studies

One study¹²⁸ was excluded since no clear information on anxiety comorbidity could be established. The analysis with anxiety comorbidity was not conducted since only two studies^{114,122} were available.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S28.

Anxiety exclusion results

Six studies^{37,62,133,137,142,143} reporting differences in LCV excluding anxiety disorders were included (n=600, age=60.2 years, 66.5% female). No significant volumetric differences were found between HC and DEP, or in subgroup analysis (**Supplemental Table S5**).

Pallidum volume

Total pallidum volume

Excluded studies

Two studies^{95,141} reported differences in total pallidum volume (TPaV). Seven studies^{37,114,122,128,133,137,142} reported differences in right (RPaV) and left (LPaV) volumes, from which TPaV was derived according to Supplemental Methods. No duplicates were found.

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S29.

Results

Nine studies^{37,95,114,122,128,133,137,141,142} reporting differences in TPaV were included (n=1,231, age=41.6 years, 58.8% female). No significant differences were found. Significant heterogeneity was found with DEP (**Supplemental Table S4**).

Anxiety comorbidity assessment

Excluded studies

One study¹²⁸ was excluded since no clear information on anxiety comorbidity could be established.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S30.

Anxiety exclusion results

Four studies^{37,133,142,144} reporting differences in TPaV excluding anxiety disorders were included (n=306, age=53.3 years, 59.2% female). No significant differences were found between HC and DEP (**Supplemental Table S5**).

Anxiety comorbidity results

Four studies^{95,114,122,141} reporting differences in TPaV comorbid with anxiety were included (n=836, age=38.1 years, 58.9% female). No significant differences were found between HC and DEP. Significant heterogeneity was found (**Supplemental Table S5**).

Right pallidum volume

Excluded studies

No duplicates were found.

Online appendices are unedited and posted as supplied by the authors.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S31.

Results

Seven studies^{37,114,122,128,133,137,142} reporting differences in RPaV were included (n=947, age=41.8 years, 54.8% female). No significant differences were found. Significant heterogeneity was found with DEP (Supplemental Table S4).

Anxiety comorbidity assessment

Excluded studies

One study¹²⁸ was excluded since no clear information on anxiety comorbidity could be established. The analysis with anxiety comorbidity was not conducted since only two studies^{114,122} were available.

Forest plots

Individual forest plot of main analysis is shown in **Supplemental Figure S32**.

Left pallidum volume

Excluded studies

No duplicates were found.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S33.

Results

Seven studies^{37,114,122,128,133,137,142} reporting differences in LPaV were included (n=947, age=41.8 years, 54.8% female). No significant differences were found (Supplemental Table S4).

Neurosci 2020.

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Anxiety comorbidity assessment

Excluded studies

One study¹²⁸ was excluded since no clear information on anxiety comorbidity could be established. The analysis with anxiety comorbidity was not conducted since only two studies^{114,122} were available.

Forest plots

Individual forest plot of main analysis is shown in **Supplemental Figure S34**.

Anxiety exclusion results

Four studies^{37,133,137,142} reporting differences in LPaV excluding anxiety disorders were included (n=306, age=53.3 years, 59.2% female). No significant volumetric differences were found between HC and DEP (**Supplemental Table S5**).

Thalamus volume

Total thalamus volume

Excluded studies

Three studies^{13,14,52} reported differences in total thalamus volume (TTV). Six studies^{37,114,122,128,133,137} reported differences in right (RTV) and left (LTV) volumes, from which TTV was derived according to Supplemental Methods. One study¹⁴ was identified as a duplicate and was excluded according to Methods. Two studies^{13,52} belonged to the same group and reported multiple volumes for DEP-Mix, DEP-EO, and DEP-LO¹³, and separately for DEP-Mix⁵². Given sample size, DEP-Mix in⁵² was selected for main analysis while DEP-EO and DEP-LO in¹³ were selected for subgroup analysis. However, DEP-EO/DEP-LO analyses were not conducted due to low number of studies and, thus this study¹³ was not included in TTV analyses.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S35.

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeg K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. J Psychiatry Neurosci 2020. DOI: 10.1503/jpn.190156 Online appendices are unedited and posted as supplied by the authors. Anxiety comorbidity assessment Excluded studies Three studies 13,52,128 were excluded since no clear information on anxiety comorbidity could be established. The analysis with anxiety comorbidity was not conducted since only two studies^{114,122} were available. Forest plots Individual forest plot of main analysis is shown in Supplemental Figure S36. Right thalamus volume Excluded studies No duplicates were found. Forest plots Individual forest plot of main analysis is shown in Supplemental Figure S37. Results Six studies^{37,114,122,128,133,144} reporting differences in RTV were included (n=874, age=42.1 years, 55.6% female). No significant differences were found (Supplemental Table S4).

Anxiety comorbidity assessment

Excluded studies

One study¹²⁸ was excluded since no clear information on anxiety comorbidity could be established. The analysis comorbid with anxiety was not conducted since only two studies^{114,122} were available.

Forest plots

Individual forest plot of main analysis is shown in Supplemental Figure S38.

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Left thalamus volume

Excluded studies

No duplicates were found.

Forest plots

Individual forest plot of main analysis is shown in Supplemental Figure S39.

Results

Six studies^{37,114,122,128,133,144} reporting differences in LTV were included (n=874, age=42.1 years, 55.6% female). No significant differences were found (**Supplemental Table S4**).

Anxiety comorbidity assessment

Excluded studies

One study¹²⁸ was excluded since no clear information on anxiety comorbidity could be established. The analysis comorbid with anxiety was not conducted since only two studies^{114,122} were available.

Forest plots

Individual forest plot of main analysis is shown in Supplemental Figure S40.

Accumbens volume

Total accumbens volume

Excluded studies

Two studies^{95,140} reported differences in total accumbens volume (TAcV). Two studies^{19,114} reported differences in right (RAcV) and left (LAcV) volumes, from which TAcV was derived according to Supplemental Methods. No duplicates were found. No analyses for RAcV and LAcV were conducted since only two studies^{19,114} were available.

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Forest plots

Individual forest plot of main analysis is shown in Supplemental Figure S41.

Results

Four studies^{19,95,114,140} reporting differences in TAcV were included (n=563, age=36.5 years, 61.1% female). No significant differences were found. Significant heterogeneity was found (**Supplemental Table S4**).

Anxiety comorbidity assessment

Excluded studies

Two studies^{19,140} were excluded since no clear information on anxiety comorbidity could be established. The anxiety comorbidity assessment analyses were not conducted since only two studies two studies^{95,114} were available.

WMV

Excluded studies

One study³⁷ in which total WMV could be estimated from right and left volumes was included. No duplicates were found, except for the multiple groups of DEP in one study⁹⁶. The groups reported included DEP-Mix, DEP-PO and DEP-AO, and DEP-FE and DEP-ME. DEP-Mix, DEP-PO, and DEP-AO groups were segregated according to comorbidity with anxiety disorders; whereas DEP-FE and DEP-ME presented comorbidity. Given sample size, DEP-Mix with and without comorbidity were selected for main analysis as per Methods, while homogeneous groups were selected for subgroup analyses. One study⁷⁷ was excluded due to large variance in WMV measures.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S42.

Results

Ten studies^{5,37,41,84,87,88,93,96,145,146} reporting differences in WMV were included (n=1,245, age=44.5 years, 57.1% female). No significant differences were found (**Supplemental Table S4**).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Anxiety comorbidity assessment

Excluded studies

Two studies^{84,87} were excluded since no clear information on anxiety comorbidity could be established. The analysis with anxiety comorbidity was not conducted since only two studies^{41,96} were available.

Forest plots

Individual forest plot of main is shown in Supplemental Figure S43.

Anxiety exclusion results

Seven studies^{5,37,88,93,96,145,146} reporting differences in WMV excluding anxiety disorders were included (n=779, age=46.9 years, 57.8% female). No significant volumetric differences were found between HC and DEP (**Supplemental Table S5**).

ICV

Excluded studies

12 studies^{15,18,73,124,131,134,147-152} were identified as duplicates and were excluded from analyses according to Methods. One study¹⁵³ was excluded since age of HC could not be established. One study¹³⁶ was excluded since age of DEP could not be established. One study⁸⁵ included both major (MDD) and minor depression disorder groups, but only MDD group was selected. Two studies^{76,77} were excluded due to large variance of ICV measures. DEP-Cur in one study¹⁵ was excluded due to large variance of ICV measures.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S44.

Anxiety comorbidity assessment

Excluded studies

11 studies^{28,30,48,54,83,85,101,105,108,154,155} were excluded since no clear information on anxiety comorbidity could be established.

Neurosci 2020.

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Forest plots

Individual forest plots of main and subgroup analyses are shown in Supplemental Figure S45.

Anxiety comorbidity results

Nine studies^{46,58,102,114,123,129,130,156,157} with comorbid anxiety disorders were included (n=654, age=39.1 years, 61.9% female). No significant volumetric differences were found between HC and DEP, or in subgroup analyses (**Supplemental Table S5**).

Sensitivity analyses

Assessment of subgroup selection

A number of studies reported volumes for both DEP-Mix and homogeneous groups of depressives. Following exclusion of duplicates according to Methods, homogeneous groups were selected in DEP meta-analyses to provide an accurate representation of volumetric differences. The following analyses assess the effect of DEP-Mix exclusion in DEP meta-analyses in TBV, HcV, and ICV.

TBV

DEP analysis

Two studies^{80,86} reported volumes for DEP-Mix, and separately for DEP-EO and DEP-LO. No significant volumetric difference was found. Furthermore, no significant differences were found between main and sensitivity analysis (**Supplemental Table S6**).

DEP no ANX analysis

Two studies^{80,86} excluding anxiety disorders reported volumes for DEP-Mix, and separately for DEP-EO and DEP-LO. No significant volumetric difference was found. Furthermore, no significant differences were found between main and sensitivity analysis (**Supplemental Table S7**).

Neurosci 2020.

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Total hippocampus volume

DEP analysis

Two studies^{80,86} reported volumes for DEP-Mix, and separately for DEP-EO and DEP-LO. Two studies^{49,107} reported volumes for DEP-Mix, and separately for DEP-FE and DEP-ME. One study¹⁰³ reported volumes for DEP-Mix, and separately for DEP-TR and DEP-noTR. One study¹⁰⁵ reported volumes for DEP-Cur, and separately for DEP-Med and DEP-noMed. Significant volumetric differences were found, similar to main analysis. Furthermore, no significant differences were found between main and sensitivity analyses

 $(Supplemental\ Table\ S6).$

DEP no ANX analysis

Two studies^{80,86} reported volumes for DEP-Mix, and separately for DEP-EO and DEP-LO. Two studies^{49,107} reported volumes for DEP-Mix, and separately for DEP-FE and DEP-ME. One study¹⁰³ reported volumes for DEP-Mix, and separately for DEP-noTR. Significant volumetric differences were found, similar to main analysis. Furthermore, no significant differences were found between main and sensitivity analyses (**Supplemental Table S7**).

Right hippocampus volume

DEP analysis

Two studies^{80,86} reported volumes for DEP-Mix, and separately for DEP-EO and DEP-LO. Two studies^{49,107} reported volumes for DEP-Mix, and separately for DEP-FE and DEP-ME. Significant volumetric differences were found, similar to main analysis. Furthermore, no significant differences were found between main and sensitivity analyses (**Supplemental Table S6**).

DEP no ANX analysis

Two studies^{80,86} reported volumes for DEP-Mix, and separately for DEP-EO and DEP-LO. Two studies^{49,107} reported volumes for DEP-Mix, and separately for DEP-FE and DEP-ME. Significant volumetric differences were found, similar to main analysis. Furthermore, no significant differences were found between main and sensitivity analyses (**Supplemental Table S7**).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Left hippocampus volume

DEP analysis

Two studies^{80,86} reported volumes for DEP-Mix, and separately for DEP-EO and DEP-LO. Two studies^{49,107} reported volumes for DEP-Mix, and separately for DEP-FE and DEP-ME. Significant volumetric differences were found, similar to main analysis. Furthermore, no significant differences were found between main and sensitivity analyses (**Supplemental Table S6**).

DEP no ANX analysis

Two studies^{80,86} reported volumes for DEP-Mix, and separately for DEP-EO and DEP-LO. Two studies^{49,107} reported volumes for DEP-Mix, and separately for DEP-FE and DEP-ME. Significant volumetric differences were found, similar to main analysis. Furthermore, no significant differences were found between main and sensitivity analyses (**Supplemental Table S7**).

ICV

DEP analysis

One study⁸⁶ reported volumes for DEP-Mix, and separately for DEP-EO and DEP-LO. Two studies^{49,107} reported volumes for DEP-Mix and separately for DEP-FE and DEP-ME. One study¹⁵⁶ reported volumes for DEP-Mix, and separately for DEP-Rem and DEP-Cur. One study¹⁵⁸ reported volumes for DEP-Mix, and separately and for DEP-noMed and DEP-Med. One study¹⁰⁵ reported volumes for DEP-Cur, and separately for DEP-noMed and DEP-Med. No significant volumetric difference was found. Furthermore, no significant differences were found between main and sensitivity analysis (**Supplemental Table S6**).

DEP no ANX analysis

One study⁸⁶ reported volumes for DEP-Mix and separately for DEP-EO and DEP-LO. Two studies^{49,107} reported volumes for DEP-Mix and separately for DEP-FE and DEP-ME. One study¹⁵⁸ reported volumes for DEP-Mix and separately and for DEP-noMed and DEP-Med. A trend found. However, no significant differences were found between main and sensitivity analysis (**Supplemental Table S7**).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

DEP ANX analysis

One study¹⁵⁶ reported volumes for DEP-Mix and separately for DEP-Rem and DEP-Cur. No significant volumetric difference was found. Furthermore, no significant differences were found between main and sensitivity analysis (**Supplemental Table S7**).

Study influence assessment

Disproportionate study influence in reported estimates was investigated using the leave-one-out method. Assessment was conducted in analyses that included more than ten studies in order to limit intrinsic effects in analyses with fewer included studies. Study influence only affected the significance of estimates in ICV analyses.

TBV

Evidence of influence was found in two analyses. In DEP analysis (k=37, studies=27), four studies^{41,79,84,92} were identified; however, exclusion did not change significance of results. In DEP-Mix analysis (k=13, studies=12), two studies^{41,79} were identified; however, exclusion did not change significance of results (**Supplemental Table S8**).

GMV

Evidence of influence was found in DEP analysis (k=19, studies=15). One study⁹⁹ (DEP-FE) was identified; however, exclusion did not change significance of results (**Supplemental Table S8**).

Right hippocampus volume

Evidence of influence was found in DEP no ANX analysis (k=25, studies=20). One study⁸⁸ was identified; however, exclusion did not change significance of results (**Supplemental Table S8**).

Left hippocampus volume

Evidence of influence was found in two analyses. In DEP analysis (k=50, studies=34), one study¹²⁹ was identified; however, exclusion did not change significance of results. In DEP no ANX analysis (k=25, studies=20), one study⁸⁸ was identified; however, exclusion did not change significance of results (**Supplemental Table S8**).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Total amygdala volume

Evidence of influence was found in DEP analysis (k=25, studies=15). One study⁸¹ (DEP-LO) was identified; however, exclusion did not change significance of results (**Supplemental Table S8**).

Right amygdala volume

Evidence of influence was found in DEP analysis (k=23, studies=13), One study⁸¹ (DEP-LO) was identified; however, exclusion did not change significance of results (**Supplemental Table S8**).

Left amygdala volume

Evidence of influence was found in DEP analysis (k=23, studies=13), One study⁸¹ (DEP-LO) was identified; however, exclusion did not change significance of results (**Supplemental Table S8**).

ICV

Evidence of influence was found in four analyses. In DEP analysis (k=59, studies=42), three studies^{42,49,129} were identified; however, exclusions did not change the significance of results. In DEP-Mix analysis (k=25, studies=25) three studies^{42,49,129} were identified, with individual exclusions varying the significance of results and exclusion of all identified studies showing no significant volumetric differences. In DEP no ANX analysis (k=30, studies=23) two studies^{42,49} (DEP-Mix) were identified, with individual exclusions varying the significance of results and exclusion of all identified studies showing significant volumetric differences. In DEP-Mix no ANX analysis (k=15, studies=15) two studies^{42,49} (DEP-Mix) were identified, with individual exclusions varying the significance of results and exclusion of all identified studies showing non-significant volumetric differences (**Supplemental Table S8**).

Bias assessment

TBV

Six out of a total of 11 meta-analyses in TBV presented bias (54.5%). From the six main meta-analyses, three presented bias; while from the five meta-analyses assessing anxiety comorbidity, three presented bias. Using the fill-and-trim method, two analyses changed the significance of the presented results. Unlike initial results,

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

significant volumetric differences were found in the analysis with DEP-LO and DEP no ANX (**Supplemental Table S9**).

GMV

One out of a total of seven meta-analyses in GMV presented bias (14.3%). From the four main meta-analyses, one presented bias; while none of the three meta-analyses assessing anxiety comorbidity presented bias. Using the trim-and-fill method, the significance of results remained unchanged (**Supplemental Table S9**).

Total hippocampus volume

Ten out of a total of 18 meta-analyses in THeV presented bias (55.6%). From the ten main meta-analyses, five presented bias; while from the eight meta-analyses assessing anxiety comorbidity, five presented bias. Using the trim-and-fill method, two analyses changed the significance of the presented results. Unlike initial results, significant volumetric differences were found with DEP-EO no ANX and DEP ANX (Supplemental Table S9).

Right hippocampus volume

Eight out of a total of 16 meta-analyses in RHcV presented bias (50.0%). From the eight main meta-analyses, four presented bias; while from the eight meta-analyses assessing anxiety comorbidity, four presented bias. In one of these analyses (DEP-Mix ANX), bias was only present in Egger test. Using the trim-and-fill method, two analyses changed the significance of the presented results. Unlike initial results, significant volumetric differences were found with DEP-Cur and DEP-EO no ANX, and a trend with DEP ANX (**Supplemental Table S9**).

Left hippocampus volume

Eight out of a total of 16 meta-analyses in LHcV presented bias (50.0%). From the eight main meta-analyses, four presented bias; while from the eight meta-analyses assessing anxiety comorbidity, four presented bias. Using the trim-and-fill method, only analysis changed the significance of the presented results. Unlike initial results, significant volumetric differences were found with DEP ANX (**Supplemental Table S9**).

Total amygdala volume

Three out of a total of ten meta-analyses in TAV presented bias (30.0%). From the five main meta-analyses, two presented bias; while from the five meta-analyses assessing anxiety comorbidity, one presented bias. Using the trim-and-fill method, the significance of results remained unchanged (Supplemental Table S9).

Neurosci 2020.

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Right amygdala volume

Five out of a total of ten meta-analyses in RAV presented bias (50.0%). From the five main meta-analyses, four presented bias; while from the five meta-analyses assessing anxiety comorbidity, one presented bias. Using the trim-and-fill method, one analysis changed the significance of the presented results. Unlike initial results, significant volumetric differences were found with DEP no ANX (Supplemental Table S9).

significant volumente afficiences were found with DEF no 711 771 (Supplemental 1

Left amygdala volume

Two out of a total of ten meta-analyses in LAV presented bias (20.0%). From the five main meta-analyses, two presented bias; while none of the meta-analyses assessing anxiety comorbidity presented bias. Using the trimand-fill method, the significance of results remained unchanged (**Supplemental Table S9**).

Total putamen volume

Two out of a total of five meta-analyses in TPuV presented bias (40.0%). From the two main meta-analyses, one presented bias; while from the three meta-analyses assessing anxiety comorbidity, one presented bias. Using the trim-and-fill method, the significance of results remained unchanged (**Supplemental Table S9**).

Right putamen volume

Two out of a total of four meta-analyses in RPuV presented bias (50.0%). From the two main meta-analyses, none presented bias; while both meta-analyses assessing anxiety comorbidity presented bias. Using the trim-and-fill method, the significance of results remained unchanged (**Supplemental Table S9**).

Left putamen volume

Three out of a total of four meta-analyses in LPuV presented bias (75.0%). From the two main meta-analyses, one presented bias; while both meta-analyses assessing anxiety comorbidity presented bias. Using the trim-and-fill method, one analysis changed the significance of the presented results. Unlike initial results, no significant volumetric differences were found with DEP no ANX (**Supplemental Table S9**).

Total caudate volume

Two out of a total of five meta-analyses in TCV presented bias (40.0%). From the two main meta-analyses, one presented bias; while from the three meta-analyses assessing anxiety comorbidity, one presented bias. Using the

Neurosci 2020.

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

trim-and-fill method, one analysis changed the significance of the presented results. Unlike initial results,

significant volumetric differences were found with DEP-Mix (Supplemental Table S9).

Right caudate volume

Three out of a total of four meta-analyses in RCV presented bias (75.0%). From the two main meta-analyses, one

presented bias; while both meta-analyses assessing anxiety comorbidity presented bias. Using the trim-and-fill

method, the significance of results remained unchanged (Supplemental Table S9).

Left caudate volume

Three out of a total of four meta-analyses in LCV presented bias (75.0%). From the two main meta-analyses, one

presented bias; while both meta-analyses assessing anxiety comorbidity presented bias. Using the trim-and-fill

method, one analysis changed the significance of the presented results. Unlike initial results, significant

volumetric differences were found with DEP no ANX (Supplemental Table S9).

Total pallidum volume

Three out of a total of four meta-analyses in TPaV presented bias (75.0%). Both main meta-analyses presented

bias; while from the two meta-analyses assessing anxiety comorbidity, one presented bias. Using the trim-and-fill

method, the significance of results remained unchanged (Supplemental Table S9).

Right pallidum volume

All meta-analyses in RPaV presented bias (100.0%). Using the trim-and-fill method, one analysis changed the

significance of the presented results. Unlike initial result, significant differences were found with DEP-Mix

(Supplemental Table S9).

Left pallidum volume

All meta-analyses in LPaV presented bias (100.0%). Using the trim-and-fill method, the significance of results

remained unchanged (Supplemental Table S9).

Neurosci 2020.

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Right thalamus volume

One out of a total of two meta-analyses in RTV presented bias (50.0%). The only meta-analysis assessing anxiety comorbidity presented bias. Using the trim-and-fill method, the significance of results remained unchanged

(Supplemental Table S9).

Total accumbens volume

The only meta-analysis in TAcV presented bias (100.0%). Using the trim-and-fill method, the significance of

results remained unchanged (Supplemental Table S9).

WMV

Three out of a total of four meta-analyses in WMV presented bias (75.0%). From the three main meta-analyses, two presented bias; while the only meta-analysis assessing anxiety comorbidity presented bias. Using the trim-

and-fill method, the significance of results remained unchanged (Supplemental Table S9).

ICV

Nine out of a total of 18 meta-analyses in ICV presented bias (50.0%). From the 11 main meta-analyses, seven presented bias; while from the seven meta-analyses assessing anxiety comorbidity, two presented bias. Using the trim-and-fill method, one analysis changed the significance of the presented results. Unlike initial results, significant volumetric differences were found with DEP-Mix no ANX, and a trend with DEP-Rem (**Supplemental** To LL (SO)

Table S9).

Meta-regression

Although a trend was reported with age in RHcV, neither variable in isolation or as part of a model could significantly account for the observed heterogeneity in TBV, and HcV analyses (QMp>0.05). Similar results were found with segmentation procedure, depressive symptoms, and medication status in HcV. Furthermore, the test for residual heterogeneity in these meta-regressions suggested that other moderators may influence observed outcomes measures (QE-p<0.0001) (Supplemental Table S10).

The effect of gender, as the difference between the percent female in HC and DEP, was found to be significant in ICV. The effect of gender accounted for 22.4% of the observed variance in ICV (QMp=0.0325), with no evidence

of other moderators influencing this measure (QEp>0.05) (Supplemental Table S10).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

References

- 1. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. *J Psychiatr Res* 1975; **12**(3): 189-98.
- 2. Wells GA, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2014. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed Aug 2017).
- 3. Brambilla P, Hardan A, di Nemi SU, et al. Brain anatomy and development in autism: review of structural MRI studies. *Brain Res Bull* 2003; **61**(6): 557-69.
- 4. Shepherd AM, Matheson SL, Laurens KR, et al. Systematic meta-analysis of insula volume in schizophrenia. *Biol Psychiatry* 2012; **72**(9): 775-84.
- 5. Frodl T, Meisenzahl E, Zetzsche T, et al. Enlargement of the amygdala in patients with a first episode of major depression. *Biol Psychiatry* 2002; **51**(9): 708-14.
- 6. Frod T, Meisenzahl EM, Zetzsche T, et al. Larger amygdala volumes in first depressive episode as compared to recurrent major depression and healthy control subjects. *Biol Psychiatry* 2003; **53**(4): 338-44.
- 7. Caetano SC, Sassi R, Brambilla P, et al. MRI study of thalamic volumes in bipolar and unipolar patients and healthy individuals. *Psychiatry Res* 2001; **108**(3): 161-8.
- 8. Frodl T, Meisenzahl EM, Zill P, et al. Reduced hippocampal volumes associated with the long variant of the serotonin transporter polymorphism in major depression. *Arch Gen Psychiatry* 2004; **61**(2): 177-83.
- 9. Wagner G, Koch K, Schachtzabel C, et al. Structural brain alterations in patients with major depressive disorder and high risk for suicide: evidence for a distinct neurobiological entity? *Neuroimage* 2011; **54**(2): 1607-14.
- 10. Bergouignan L, Chupin M, Czechowska Y, et al. Can voxel based morphometry, manual segmentation and automated segmentation equally detect hippocampal volume differences in acute depression? *Neuroimage* 2009: **45**(1): 29-37.
- 11. Caetano SC, Hatch JP, Brambilla P, et al. Anatomical MRI study of hippocampus and amygdala in patients with current and remitted major depression. *Psychiatry Res* 2004; **132**(2): 141-7.
- 12. Exner C, Lange C, Irle E. Impaired implicit learning and reduced pre-supplementary motor cortex size in early-onset major depression with melancholic features. *J Affect Disord* 2009; **119**(1-3): 156-62.
- 13. Krishnan KR, McDonald WM, Doraiswamy PM, et al. Neuroanatomical substrates of depression in the elderly. *Eur Arch Psychiatry Clin Neurosci* 1993; **243**(1): 41-6.
- 14. Lisanby SH, McDonald WM, Massey EW, et al. Diminished subcortical nuclei volumes in Parkinson's disease by MR imaging. *J Neural Transm Suppl* 1993; **40**: 13-21.
- 15. Lorenzetti V, Allen NB, Fornito A, et al. Pituitary gland volume in currently depressed and remitted depressed patients. *Psychiatry Res* 2009; **172**(1): 55-60.
- 16. Penttila J, Paillere-Martinot ML, Martinot JL, et al. Cortical folding in patients with bipolar disorder or unipolar depression. *J Psychiatry Neurosci* 2009; **34**(2): 127-35.
- 17. Sheline YI, Gado MH, Kraemer HC. Untreated depression and hippocampal volume loss. *Am J Psychiatry* 2003; **160**(8): 1516-8.
- 18. Tae WS, Kim SS, Lee KU, et al. Validation of hippocampal volumes measured using a manual method and two automated methods (FreeSurfer and IBASPM) in chronic major depressive disorder. *Neuroradiology* 2008; **50**(7): 569-81.
- 19. Abdallah CG, Jackowski A, Salas R, et al. The Nucleus Accumbens and Ketamine Treatment in Major Depressive Disorder. *Neuropsychopharmacology* 2017; **42**(8): 1739-46.
- 20. Jessen F, Schuhmacher A, von Widdern O, et al. No association of the Val66Met polymorphism of the brain-derived neurotrophic factor with hippocampal volume in major depression. *Psychiatr Genet* 2009; **19**(2): 99-101.
- 21. Miller DS, Kumar A, Yousem DM, et al. MRI High-Intensity Signals in Late-Life Depression and Alzheimer's Disease: A Comparison of Subjects Without Major Vascular Risk Factors. *Am J Geriatr Psychiatry* 1994; **2**(4): 332-7.
- 22. Milne A, MacQueen GM, Yucel K, et al. Hippocampal metabolic abnormalities at first onset and with recurrent episodes of a major depressive disorder: a proton magnetic resonance spectroscopy study. *Neuroimage* 2009; **47**(1): 36-41.
- 23. Tupler LA, Krishnan KR, McDonald WM, et al. Anatomic location and laterality of MRI signal hyperintensities in late-life depression. *J Psychosom Res* 2002; **53**(2): 665-76.

DOI: 10.1503/jpn.190156

- 24. Zubenko GS, Sullivan P, Nelson JP, et al. Brain imaging abnormalities in mental disorders of late life. *Arch Neurol* 1990; **47**(10): 1107-11.
- 25. Hamilton JP, Siemer M, Gotlib IH. Amygdala volume in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. *Mol Psychiatry* 2008; **13**(11): 993-1000.
- 26. Kempton MJ, Salvador Z, Munafo MR, et al. Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Arch Gen Psychiatry 2011; **68**(7): 675-90.
- 27. McKinnon MC, Yucel K, Nazarov A, et al. A meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorder. *J Psychiatry Neurosci* 2009; **34**(1): 41-54.
- 28. Hickie IB, Naismith SL, Ward PB, et al. Serotonin transporter gene status predicts caudate nucleus but not amygdala or hippocampal volumes in older persons with major depression. *J Affect Disord* 2007; **98**(1-2): 137-42
- 29. Naismith S, Hickie I, Ward PB, et al. Caudate nucleus volumes and genetic determinants of homocysteine metabolism in the prediction of psychomotor speed in older persons with depression. *Am J Psychiatry* 2002; **159**(12): 2096-8.
- 30. Saylam C, Ucerler H, Kitis O, et al. Reduced hippocampal volume in drug-free depressed patients. *Surg Radiol Anat* 2006; **28**(1): 82-7.
- 31. Ahdidan J, Foldager L, Rosenberg R, et al. Hippocampal volume and serotonin transporter polymorphism in major depressive disorder. *Acta Neuropsychiatr* 2013; **25**(4): 206-14.
- 32. Ashtari M, Greenwald BS, Kramer-Ginsberg E, et al. Hippocampal/amygdala volumes in geriatric depression. *Psychol Med* 1999; **29**(3): 629-38.
- 33. Eker MC, Kitis O, Okur H, et al. Smaller hippocampus volume is associated with short variant of 5-HTTLPR polymorphism in medication-free major depressive disorder patients. *Neuropsychobiology* 2011; **63**(1): 22-8.
- 34. Elderkin-Thompson V, Ballmaier M, Hellemann G, et al. Daily functioning and prefrontal brain morphology in healthy and depressed community-dwelling elderly. *Am J Geriatr Psychiatry* 2008; **16**(8): 633-42.
- 35. Lavretsky H, Ballmaier M, Pham D, et al. Neuroanatomical characteristics of geriatric apathy and depression: a magnetic resonance imaging study. *Am J Geriatr Psychiatry* 2007; **15**(5): 386-94.
- 36. Lenze SN, Xiong C, Sheline YI. Childhood adversity predicts earlier onset of major depression but not reduced hippocampal volume. *Psychiatry Res* 2008; **162**(1): 39-49.
- 37. Lim HK, Jung WS, Ahn KJ, et al. Regional cortical thickness and subcortical volume changes are associated with cognitive impairments in the drug-naive patients with late-onset depression. *Neuropsychopharmacology* 2012; **37**(3): 838-49.
- 38. Pan CC, McQuoid DR, Taylor WD, et al. Association analysis of the COMT/MTHFR genes and geriatric depression: An MRI study of the putamen. *Int J Geriatr Psychiatry* 2009; **24**(8): 847-55.
- 39. Posener JA, Wang L, Price JL, et al. High-dimensional mapping of the hippocampus in depression. *Am J Psychiatry* 2003; **160**(1): 83-9.
- 40. Sivakumar PT, Kalmady SV, Venkatasubramanian G, et al. Volumetric analysis of hippocampal subregions in late onset depression: a 3 tesla magnetic resonance imaging study. *Asian J Psychiatr* 2015; **13**: 38-43.
- 41. Stratmann M, Konrad C, Kugel H, et al. Insular and hippocampal gray matter volume reductions in patients with major depressive disorder. *PLoS One* 2014; **9**(7): e102692.
- 42. Taylor WD, Macfall JR, Payne ME, et al. Orbitofrontal cortex volume in late life depression: influence of hyperintense lesions and genetic polymorphisms. *Psychol Med* 2007; **37**(12): 1763-73.
- 43. Taylor WD, McQuoid DR, Payne ME, et al. Hippocampus atrophy and the longitudinal course of latelife depression. *Am J Geriatr Psychiatry* 2014; **22**(12): 1504-12.
- 44. Taylor WD, Steffens DC, Payne ME, et al. Influence of serotonin transporter promoter region polymorphisms on hippocampal volumes in late-life depression. *Arch Gen Psychiatry* 2005; **62**(5): 537-44.
- 45. Vasic N, Wolf ND, Gron G, et al. Baseline brain perfusion and brain structure in patients with major depression: A multimodal magnetic resonance imaging study. *J Psychiatry Neurosci* 2015; **40**(6): 412-21.
- 46. Weniger G, Lange C, Irle E. Abnormal size of the amygdala predicts impaired emotional memory in major depressive disorder. *J Affect Disord* 2006; **94**(1-3): 219-29.
- 47. Zavorotnyy M, Zollner R, Schulte-Gustenberg L, et al. Low left amygdala volume is associated with a longer duration of unipolar depression. *J Neural Transm (Vienna)* 2018; **125**(2): 229-38.
- 48. Lavretsky H, Roybal DJ, Ballmaier M, et al. Antidepressant exposure may protect against decrement in frontal gray matter volumes in geriatric depression. *J Clin Psychiatry* 2005; **66**(8): 964-7.

DOI: 10.1503/jpn.190156

- 49. Meisenzahl EM, Seifert D, Bottlender R, et al. Differences in hippocampal volume between major depression and schizophrenia: A comparative neuroimaging study. *Eur Arch Psychiatry Clin Neurosci* 2010; **260**(2): 127-37.
- 50. Almeida OP, Burton EJ, Ferrier N, et al. Depression with late onset is associated with right frontal lobe atrophy. *Psychol Med* 2003; **33**(4): 675-81.
- 51. Kumar A, Bilker W, Jin Z, et al. Atrophy and high intensity lesions: complementary neurobiological mechanisms in late-life major depression. *Neuropsychopharmacology* 2000; **22**(3): 264-74.
- 52. Parashos IA, Tupler LA, Blitchington T, et al. Magnetic-resonance morphometry in patients with major depression. *Psychiatry Res* 1998; **84**(1): 7-15.
- 53. Ballmaier M, Toga AW, Blanton RE, et al. Anterior cingulate, gyrus rectus, and orbitofrontal abnormalities in elderly depressed patients: an MRI-based parcellation of the prefrontal cortex. *Am J Psychiatry* 2004; **161**(1): 99-108.
- 54. Janssen J, Hulshoff Pol HE, Lampe IK, et al. Hippocampal changes and white matter lesions in early-onset depression. *Biol Psychiatry* 2004; **56**(11): 825-31.
- 55. Lacerda AL, Keshavan MS, Hardan AY, et al. Anatomic evaluation of the orbitofrontal cortex in major depressive disorder. *Biological Psychiatry* 2004; **55**(4): 353-8.
- 56. Caetano SC, Kaur S, Brambilla P, et al. Smaller cingulate volumes in unipolar depressed patients. *Biological Psychiatry* 2006; **59**(8): 702-6.
- 57. Frodl T, Jager M, Born C, et al. Anterior cingulate cortex does not differ between patients with major depression and healthy controls, but relatively large anterior cingulate cortex predicts a good clinical course. *Psychiatry Res Neuroimaging* 2008; **163**(1): 76-83.
- 58. Bijanki KR, Hodis B, Brumm MC, et al. Hippocampal and left subcallosal anterior cingulate atrophy in psychotic depression. *PLoS One* 2014; **9**(10): e110770.
- 59. Yucel K, McKinnon MC, Chahal R, et al. Anterior cingulate volumes in never-treated patients with major depressive disorder. *Neuropsychopharmacology* 2008; **33**(13): 3157-63.
- 60. Axelson DA, Doraiswamy PM, McDonald WM, et al. Hypercortisolemia and hippocampal changes in depression. *Psychiatry Res* 1993; **47**(2): 163-73.
- 61. Chang C-C, Yu S-C, McQuoid DR, et al. Reduction of dorsolateral prefrontal cortex gray matter in latelife depression. *Psychiatry Res Neuroimaging* 2011; **193**(1): 1-6.
- 62. Hannestad J, Taylor WD, McQuoid DR, et al. White matter lesion volumes and caudate volumes in latelife depression. *Int J Geriatr Psychiatry* 2006; **21**(12): 1193-8.
- 63. Kohler S, Ashton CH, Marsh R, et al. Electrophysiological changes in late life depression and their relation to structural brain changes. *Int Psychogeriatr* 2011; **23**(1): 141-8.
- 64. Kohler S, Thomas AJ, Lloyd A, et al. White matter hyperintensities, cortisol levels, brain atrophy and continuing cognitive deficits in late-life depression. *Br J Psychiatry* 2010; **196**(2): 143-9.
- 65. Krishnan KRR, McDonald WM, Escalona PR, et al. Magnetic Resonance Imaging of the Caudate Nuclei in Depression: Preliminary Observations. *Arch Gen Psychiatry* 1992; **49**(7): 553-7.
- 66. Kumar A, Miller D, Ewbank D, et al. Quantitative anatomic measures and comorbid medical illness in late-life major depression. *Am J Geriatr Psychiatry* 1997; **5**(1): 15-25.
- 67. Lee S-H, Payne ME, Steffens DC, et al. Subcortical lesion severity and orbitofrontal cortex volume in geriatric depression. *Biol Psychiatry* 2003; **54**(5): 529-33.
- 68. Qiu A, Taylor WD, Zhao Z, et al. APOE related hippocampal shape alteration in geriatric depression. *Neuroimage* 2009; **44**(3): 620-6.
- 69. Sheline YI, Gado MH, Price JL. Amygdala core nuclei volumes are decreased in recurrent major depression. [Erratum appears in Neuroreport 1998 Jul 13;9(10):2436]. *Neuroreport* 1998; **9**(9): 2023-8.
- 70. Sheline YI, Sanghavi M, Mintun MA, et al. Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. *J Neurosci* 1999; **19**(12): 5034-43.
- 71. Steffens DC, McQuoid DR, Payne ME, et al. Change in hippocampal volume on magnetic resonance imaging and cognitive decline among older depressed and nondepressed subjects in the neurocognitive outcomes of depression in the elderly study. *Am J Geriatr Psychiatry* 2011; **19**(1): 4-12.
- 72. Steffens DC, McQuoid DR, Welsh-Bohmer KA, et al. Left orbital frontal cortex volume and performance on the benton visual retention test in older depressives and controls. *Neuropsychopharmacology* 2003; **28**(12): 2179-83.
- 73. Lorenzetti V, Allen NB, Whittle S, et al. Amygdala volumes in a sample of current depressed and remitted depressed patients and healthy controls. *J Affect Disord* 2010; **120**(1-3): 112-9.

DOI: 10.1503/jpn.190156

- 74. O'Brien JT, Lloyd A, McKeith I, et al. A longitudinal study of hippocampal volume, cortisol levels, and cognition in older depressed subjects. *Am J Psychiatry* 2004; **161**(11): 2081-90.
- 75. Benjamin S, McQuoid DR, Potter GG, et al. The brain-derived neurotrophic factor Val66Met polymorphism, hippocampal volume, and cognitive function in geriatric depression. *Am J Geriatr Psychiatry* 2010; **18**(4): 323-31.
- 76. Furtado CP, Maller JJ, Fitzgerald PB. A magnetic resonance imaging study of the entorhinal cortex in treatment-resistant depression. *Psychiatry Res* 2008; **163**(2): 133-42.
- 77. Maller JJ, Daskalakis ZJ, Fitzgerald PB. Hippocampal volumetrics in depression: the importance of the posterior tail. *Hippocampus* 2007; **17**(11): 1023-7.
- 78. Janssen J, Hulshoff Pol HE, de Leeuw FE, et al. Hippocampal volume and subcortical white matter lesions in late life depression: comparison of early and late onset depression. *J Neurol Neurosurg Psychiatry* 2007; **78**(6): 638-40.
- 79. Andreescu C, Butters MA, Begley A, et al. Gray matter changes in late life depression-A structural MRI analysis. *Neuropsychopharmacology* 2008; **33**(11): 2566-72.
- 80. Ballmaier M, Narr KL, Toga AW, et al. Hippocampal morphology and distinguishing late-onset from early-onset elderly depression. *Am J Psychiatry* 2008; **165**(2): 229-37.
- 81. Burke J, McQuoid DR, Payne ME, et al. Amygdala volume in late-life depression: relationship with age of onset. *Am J Geriatr Psychiatry* 2011; **19**(9): 771-6.
- 82. Cohen JD, Nichols T, Keller J, et al. Insular cortex abnormalities in psychotic major depression: relationship to gender and psychotic symptoms. *Neurosci Res* 2013; **75**(4): 331-9.
- 83. Colloby SJ, Vasudev A, O'Brien JT, et al. Relationship of orthostatic blood pressure to white matter hyperintensities and subcortical volumes in late-life depression. *Br J Psychiatry* 2011; **199**(5): 404-10.
- 84. Devantier TA, Norgaard BL, Poulsen MK, et al. White matter lesions, carotid and coronary atherosclerosis in late-onset depression and healthy controls. *Psychosomatics* 2016; **57**(4): 369-77.
- 85. Kumar A, Jin Z, Bilker W, et al. Late-onset minor and major depression: early evidence for common neuroanatomical substrates detected by using MRI. *Proc Natl Acad Sci U S A* 1998; **95**(13): 7654-8.
- 86. Lloyd AJ, Ferrier IN, Barber R, et al. Hippocampal volume change in depression: late- and early-onset illness compared. *Br J Psychiatry* 2004; **184**: 488-95.
- 87. Machino A, Kunisato Y, Matsumoto T, et al. Possible involvement of rumination in gray matter abnormalities in persistent symptoms of major depression: an exploratory magnetic resonance imaging voxel-based morphometry study. *J Affect Disord* 2014; **168**: 229-35.
- 88. Maller JJ, Daskalakis ZJ, Thomson RH, et al. Hippocampal volumetrics in treatment-resistant depression and schizophrenia: the devil's in de-tail. *Hippocampus* 2012; **22**(1): 9-16.
- 89. Ozalay O, Calli C, Kitis O, et al. The relationship between the anterior corpus callosum size and prefrontal cortex volume in drug-free depressed patients. *J Affect Disord* 2013; **146**(2): 281-5.
- 90. Ozalay O, Aksoy B, Tunay S, et al. Cortical thickness and VBM in young women at risk for familial depression and their depressed mothers with positive family history.[Erratum appears in Psychiatry Res Neuroimaging. 2016 Oct 30;256:70 Note: Chandhoki, Swati [corrected to Chandhoke, Swati]; PMID: 27617885]. *Psychiatry Res Neuroimaging* 2016; **252**: 1-9.
- 91. Savitz JB, Nugent AC, Bogers W, et al. Habenula volume in bipolar disorder and major depressive disorder: A high-resolution magnetic resonance imaging study. *Biol Psychiatry* 2011; **69**(4): 336-43.
- 92. Sawyer K, Corsentino E, Sachs-Ericsson N, et al. Depression, hippocampal volume changes, and cognitive decline in a clinical sample of older depressed outpatients and non-depressed controls. *Aging Ment Health* 2012; **16**(6): 753-62.
- 93. van Eijndhoven P, van Wingen G, van Oijen K, et al. Amygdala volume marks the acute state in the early course of depression. *Biol Psychiatry* 2009; **65**(9): 812-8.
- 94. Schmidt FM, Schindler S, Adamidis M, et al. Habenula volume increases with disease severity in unmedicated major depressive disorder as revealed by 7T MRI. *Eur Arch Psychiatry Clin Neurosci* 2017; **267**(2): 107-15.
- 95. Sacchet MD, Camacho MC, Livermore EE, et al. Accelerated aging of the putamen in patients with major depressive disorder. *J Psychiatry Neurosci* 2017; **42**(3): 164-71.
- 96. van Tol M-J, van der Wee NJ, van den Heuvel OA, et al. Regional brain volume in depression and anxiety disorders. *Arch Gen Psychiatry* 2010; **67**(10): 1002-11.
- 97. Cardoner N, Soriano-Mas C, Pujol J, et al. Brain structural correlates of depressive comorbidity in obsessive-compulsive disorder. *Neuroimage* 2007; **38**(3): 413-21.

DOI: 10.1503/jpn.190156

- 98. Ribeiz SRI, Duran F, Oliveira MC, et al. Structural brain changes as biomarkers and outcome predictors in patients with late-life depression: A cross-sectional and prospective study. *PLoS One* 2013; **8**(11).
- 99. Yang S, Cheng Y, Mo Y, et al. Childhood maltreatment is associated with gray matter volume abnormalities in patients with first-episode depression. *Psychiatry Res Neuroimaging* 2017; **268**: 27-34.
- 100. Kronmuller K-T, Schroder J, Kohler S, et al. Hippocampal volume in first episode and recurrent depression. *Psychiatry Res Neuroimaging* 2009; **174**(1): 62-6.
- 101. Savitz J, Drevets WC, Smith CM, et al. Putative neuroprotective and neurotoxic kynurenine pathway metabolites are associated with hippocampal and amygdalar volumes in subjects with major depressive disorder. *Neuropsychopharmacology* 2015; **40**(2): 463-71.
- 102. Wolkowitz OM, Mellon SH, Lindqvist D, et al. PBMC telomerase activity, but not leukocyte telomere length, correlates with hippocampal volume in major depression. *Psychiatry Res* 2015; **232**(1): 58-64.
- 103. Abdallah CG, Jackowski A, Sato JR, et al. Prefrontal cortical GABA abnormalities are associated with reduced hippocampal volume in major depressive disorder. *Eur Neuropsychopharmacol* 2015; **25**(8): 1082-90.
- 104. Kanellopoulos D, Gunning FM, Morimoto SS, et al. Hippocampal volumes and the brain-derived neurotrophic factor val66met polymorphism in geriatric major depression. *Am J Geriatr Psychiatry* 2011; **19**(1): 13-22.
- 105. Ota M, Sato N, Hidese S, et al. Structural differences in hippocampal subfields among schizophrenia patients, major depressive disorder patients, and healthy subjects. *Psychiatry Res Neuroimaging* 2017; **259**: 54-9.
- 106. Bearden CE, Thompson PM, Avedissian C, et al. Altered hippocampal morphology in unmedicated patients with major depressive illness. *ASN Neuro* 2009; **1**(4).
- 107. Cole J, Toga AW, Hojatkashani C, et al. Subregional hippocampal deformations in major depressive disorder. *J Affect Disord* 2010; **126**(1-2): 272-7.
- 108. Cole J, Weinberger DR, Mattay VS, et al. No effect of 5HTTLPR or BDNF Val66Met polymorphism on hippocampal morphology in major depression. *Genes Brain Behav* 2011; **10**(7): 756-64.
- 109. Eker C, Kitis O, Taneli F, et al. Correlation of serum BDNF levels with hippocampal volumes in first episode, medication-free depressed patients. *Eur Arch Psychiatry Clin Neurosci* 2010; **260**(7): 527-33.
- 110. Frodl T, Carballedo A, Hughes MM, et al. Reduced expression of glucocorticoid-inducible genes GILZ and SGK-1: high IL-6 levels are associated with reduced hippocampal volumes in major depressive disorder. *Transl Psychiatry* 2012; **2**: e88.
- 111. Frodl T, Jager M, Smajstrlova I, et al. Effect of hippocampal and amygdala volumes on clinical outcomes in major depression: A 3-year prospective magnetic resonance imaging study. *J Psychiatry Neurosci* 2008; **33**(5): 423-30.
- 112. Frodl T, Meisenzahl EM, Zetzsche T, et al. Hippocampal changes in patients with a first episode of major depression. *Am J Psychiatry* 2002; **159**(7): 1112-8.
- 113. Frodl T, Meisenzahl EM, Zetzsche T, et al. Hippocampal and amygdala changes in patients with major depressive disorder and healthy controls during a 1-year follow-up. *J Clin Psychiatry* 2004; **65**(4): 492-9.
- 114. Gifuni AJ, Ding Y, Olie E, et al. Subcortical nuclei volumes in suicidal behavior: nucleus accumbens may modulate the lethality of acts. *Brain Imaging Behav* 2016; **10**(1): 96-104.
- 115. Gonul AS, Kitis O, Eker M, et al. Association of the brain-derived neurotrophic factor Val66Met polymorphism with hippocampus volumes in drug-free depressed patients. *World J Biol Psychiatry* 2011; **12**(1-2): 110-8.
- 116. Greenberg DL, Payne ME, MacFall JR, et al. Hippocampal volumes and depression subtypes. *Psychiatry Res* 2008; **163**(2): 126-32.
- 117. Han KM, Won E, Sim Y, et al. Hippocampal subfield analysis in medication-naive female patients with major depressive disorder. *J Affect Disord* 2016; **194**: 21-9.
- 118. Han K-M, Choi S, Jung J, et al. Cortical thickness, cortical and subcortical volume, and white matter integrity in patients with their first episode of major depression. *J Affect Disord* 2014; **155**: 42-8.
- 119. Hviid LB, Ravnkilde B, Ahdidan J, et al. Hippocampal visuospatial function and volume in remitted depressed patients: an 8-year follow-up study. *J Affect Disord* 2010; **125**(1-3): 177-83.
- 120. Keller J, Shen L, Gomez RG, et al. Hippocampal and amygdalar volumes in psychotic and nonpsychotic unipolar depression. *Am J Psychiatry* 2008; **165**(7): 872-80.
- 121. Lim HK, Hong SC, Jung WS, et al. Automated hippocampal subfields segmentation in late life depression. *J Affect Disord* 2012; **143**(1-3): 253-6.
- 122. Nugent AC, Davis RM, Zarate CA, Jr., et al. Reduced thalamic volumes in major depressive disorder. *Psychiatry Res* 2013; **213**(3): 179-85.

DOI: 10.1503/jpn.190156

- 123. Phillips JL, Batten LA, Tremblay P, et al. A Prospective, Longitudinal Study of the Effect of Remission on Cortical Thickness and Hippocampal Volume in Patients with Treatment-Resistant Depression. *Int J Neuropsychopharmacol* 2015; **18**(8).
- 124. Phillips JL, Batten LA, Tremblay P, et al. Impact of monoamine-related gene polymorphisms on hippocampal volume in treatment-resistant depression. *Acta Neuropsychiatr* 2015; **27**(6): 353-61.
- 125. Rusch BD, Abercrombie HC, Oakes TR, et al. Hippocampal morphometry in depressed patients and control subjects: relations to anxiety symptoms. *Biol Psychiatry* 2001; **50**(12): 960-4.
- 126. Steffens DC, Byrum CE, McQuoid DR, et al. Hippocampal volume in geriatric depression. *Biol Psychiatry* 2000; **48**(4): 301-9.
- 127. Tae WS, Kim SS, Lee KU, et al. Hippocampal shape deformation in female patients with unremitting major depressive disorder. *AJNR Am J Neuroradiol* 2011; **32**(4): 671-6.
- 128. Turner AD, Furey ML, Drevets WC, et al. Association between subcortical volumes and verbal memory in unmedicated depressed patients and healthy controls. *Neuropsychologia* 2012; **50**(9): 2348-55.
- 129. Vythilingam M, Heim C, Newport J, et al. Childhood trauma associated with smaller hippocampal volume in women with major depression. *Am J Psychiatry* 2002; **159**(12): 2072-80.
- 130. Vythilingam M, Vermetten E, Anderson GM, et al. Hippocampal volume, memory, and cortisol status in major depressive disorder: effects of treatment. *Biol Psychiatry* 2004; **56**(2): 101-12.
- 131. Zannas AS, McQuoid DR, Payne ME, et al. Negative life stress and longitudinal hippocampal volume changes in older adults with and without depression. *J Psychiatr Res* 2013; 47(6): 829-34.
- 132. Zhao K, Liu H, Yan R, et al. Cortical thickness and subcortical structure volume abnormalities in patients with major depression with and without anxious symptoms. *Brain Behav* 2017; **7**(8): e00754.
- 133. Zhao K, Liu H, Yan R, et al. Altered patterns of association between cortical thickness and subcortical volume in patients with first episode major depressive disorder: A structural MRI study. *Psychiatry Res Neuroimaging* 2017; **260**: 16-22.
- 134. Zhao Z, Taylor WD, Styner M, et al. Hippocampus shape analysis and late-life depression. *PLoS One* 2008; **3**(3): e1837.
- 135. Saleh A, Potter GG, McQuoid DR, et al. Effects of early life stress on depression, cognitive performance and brain morphology. *Psychol Med* 2017; **47**(1): 171-81.
- 136. Malykhin NV, Carter R, Hegadoren KM, et al. Fronto-limbic volumetric changes in major depressive disorder. *J Affect Disord* 2012; **136**(3): 1104-13.
- 137. Sexton CE, Allan CL, Le Masurier M, et al. Magnetic resonance imaging in late-life depression: multimodal examination of network disruption. *Archives of General Psychiatry* 2012; **69**(7): 680-9.
- 138. Saleh K, Carballedo A, Lisiecka D, et al. Impact of family history and depression on amygdala volume. [Erratum appears in Psychiatry Res. 2014 Jun 30;222(3):176]. *Psychiatry Res* 2012; **203**(1): 24-30.
- 139. Husain MM, McDonald WM, Doraiswamy P, et al. A magnetic resonance imaging study of putamen nuclei in major depression. *Psychiatry Res Neuroimaging* 1991; **40**(2): 95-9.
- 140. Savitz J, Dantzer R, Meier TB, et al. Activation of the kynurenine pathway is associated with striatal volume in major depressive disorder. *Psychoneuroendocrinology* 2015; **62**: 54-8.
- 141. Dombrovski AY, Siegle GJ, Szanto K, et al. The temptation of suicide: striatal gray matter, discounting of delayed rewards, and suicide attempts in late-life depression. *Psychol Med* 2012; **42**(6): 1203-15.
- 142. Lacerda ALT, Nicoletti MA, Brambilla P, et al. Anatomical MRI study of basal ganglia in major depressive disorder. *Psychiatry Res Neuroimaging* 2003; **124**(3): 129-40.
- 143. Lenze EJ, Sheline YI. Absence of striatal volume differences between depressed subjects with no cormorbid medical illness and matched comparison subjects. *Am J Psychiatry* 1999; **156**(12): 1989-91.
- 144. Sexton CE, Mackay CE, Ebmeier KP. A systematic review and meta-analysis of magnetic resonance imaging studies in late-life depression. *Am J Geriatr Psychiatry* 2013; **21**(2): 184-95.
- 145. Abe O, Yamasue H, Kasai K, et al. Voxel-based analyses of gray/white matter volume and diffusion tensor data in major depression. *Psychiatry Res Neuroimaging* 2010; **181**(1): 64-70.
- 146. Soriano-Mas C, Hernandez-Ribas R, Pujol J, et al. Cross-sectional and longitudinal assessment of structural brain alterations in melancholic depression. *Biol Psychiatry* 2011; **69**(4): 318-25.
- 147. Frodl T, Schaub A, Banac S, et al. Reduced hippocampal volume correlates with executive dysfunctioning in major depression. *J Psychiatry Neurosci* 2006; **31**(5): 316-25.
- 148. Lavretsky H, Kurbanyan K, Ballmaier M, et al. Sex differences in brain structure in geriatric depression. *Am J Geriatr Psychiatry* 2004; **12**(6): 653-7.
- 149. Sun J, Maller JJ, Daskalakis ZJ, et al. Morphology of the corpus callosum in treatment-resistant schizophrenia and major depression. *Acta Psychiatr Scand* 2009; **120**(4): 265-73.

DOI: 10.1503/jpn.190156

- 150. Takahashi T, Yucel M, Lorenzetti V, et al. Volumetric MRI study of the insular cortex in individuals with current and past major depression. *J Affect Disord* 2010; **121**(3): 231-8.
- 151. Takahashi T, Yucel M, Lorenzetti V, et al. An MRI study of the superior temporal subregions in patients with current and past major depression. *Prog Neuropsychopharmacol Biol Psychiatry* 2010; **34**(1): 98-103.
- 152. Weber K, Giannakopoulos P, Delaloye C, et al. Personality traits, cognition and volumetric MRI changes in elderly patients with early-onset depression: a 2-year follow-up study. *Psychiatry Res* 2012; **198**(1): 47-52.
- 153. Jaworska N, Yücel K, Courtright A, et al. Subgenual anterior cingulate cortex and hippocampal volumes in depressed youth: The role of comorbidity and age. *J Affect Disord* 2016; **190**: 726-32.
- 154. Carceller-Sindreu M, de Diego-Adelino J, Serra-Blasco M, et al. Volumetric MRI study of the habenula in first episode, recurrent and chronic major depression. *Eur Neuropsychopharmacol* 2015; **25**(11): 2015-21.
- 155. Wisse LE, Biessels GJ, Stegenga BT, et al. Major depressive episodes over the course of 7 years and hippocampal subfield volumes at 7 tesla MRI: the PREDICT-MR study. *J Affect Disord* 2015; **175**: 1-7.
- 156. Klauser P, Fornito A, Lorenzetti V, et al. Cortico-limbic network abnormalities in individuals with current and past major depressive disorder. *J Affect Disord* 2015; **173**: 45-52.
- 157. Rodriguez-Cano E, Sarro S, Monte GC, et al. Evidence for structural and functional abnormality in the subgenual anterior cingulate cortex in major depressive disorder. *Psychol Med* 2014; 44(15): 3263-73.
- Huang Y, Coupland NJ, Lebel R, et al. Structural changes in hippocampal subfields in major depressive disorder: A high-field magnetic resonance imaging study. *Biol Psychiatry* 2013; **74**(1): 62-8.

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Supplemental Table S1. Modified Newcastle-Ottawa scale

Detailed description of items included in the assessment of study quality using a modified version of the Newcastle-Ottawa scale (NOS). Items that grant a star are indicated with (\star). A study can be awarded a maximum of one star in each item, except for 2a and 3b were two stars can be assigned. A maximum of ten stars can be

1. Selection	2. Comparability	3. Exposure
a. Is the case definition adequate?	a. Comparability of cases and controls on	a. Same method of ascertainment for cases
 i. yes, independent validation based on diagnostic criteria (DSM or ICD)★ ii. yes, based on self-report with no reference to diagnostic criteria 	i. study controls for age and gender★ ('/★ if one) ii. study controls for neurological disease	i. yes★ ii. no iii. not stated
iii. no description b. Representativeness of the cases i. consecutive or representative series of cases within hospital/clinic★ ii. not stated, but description of source(s) of cases½★ iii. potential for selection biases or not stated c. Selection of Controls	or dementia (or < 60yo)★ iii. sample ≥60yo with no mention of control for neurological disease or dementia	b. Ascertainment of depression i. psychiatric/clinical assessment record★ ii. structured interview blind to case/control status★ iii. interview not blinded to case/control status iv. written self-report or medical record only v. no description
 i. community controls from the same area as cases★ ii. hospital controls or controls attending clinic iii. no description d. Definition of Controls		c. Non-Response rate i. same rate for both groups (if no exclusions stated, assign star)★ ii. non respondents described iii. rate different or no designation
i. no history of depression or any other psychiatric disorder★ ii. no history of depression, but other psychiatric disorders may be present iii. no description		

awarded to a single study.

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Supplemental Table S2. Detailed demographic data of included studies

n: total number of participants, HC: healthy controls, DEP: depressed participants, M: males, F: female/number of females, %F: percent female, SD: standard deviation, Scanner: scanner strength in Tesla (T), Mix: heterogeneous group of depressed, EO: early-onset depression, LO: late-onset depression, FE: first episode, ME: multiple episodes, noMed: not taking antidepressants, Med: taking antidepressants, TR: treatment-resistant depression, Psy: psychotic depression, Mel: melancholic depression, Rem: depression in remission, Cur: currently in depression, Sui: suicide attempt/ideation, FH: family history of depression, Abu: physical/sexual abuse, Anx: depression comorbid with anxiety.

*Data provided by authors

†HC and DEP-Rem used in HcV analyses.

					НС	2				DEP			D	EP su	bgroup	s			
				Age (years)			Age (years)			Age (years)			Age (years)			Age (years)			
Reference	n	%F	n	mean (SD)	F	n	mean (SD)	F	n	mean (SD)	F	n	mean (SD)	F	n	mean (SD)	F	DEP subgroups	Scanner
Abdallah et al., 2015	59	40.7	26	37.3 (13.3)	14							19	39.6 (10.9)	6	14	43.9 (12.3)	4	noTR/TR	3.0 T
Abdallah et al., 2017	60	58.3	26	37.4 (15.3)	12							34	41.7 (11.7)	23				Cur	3.0 T
Abe et al., 2010	63	47.6	42	48.0 (13.2)	20				21	48.1 (13.5)	10							Mix	1.5 T
Ahdidan et al., 2013 (M)*	13	0.0	9	35.6 (10.3)	0				4	32.0 (3.5)	0							Mix	1.5 T
Ahdidan et al., 2013 (F)*	43	100.0	24	37.0 (11.6)	24				19	41.0 (13.0)	19							Mix	1.5 T
Almeida et al., 2003	88	77.3	37	72.9 (6.6)	27							24	72.8 (6.6)	23	27	75.5 (5.8)	18	EO/LO	1.0 T
Andreescu et al., 2008	103	64.1	32	71.0 (6.7)	17				71	72.2 (6.2)	49							Mix	1.5 T
Arnone et al., 2013	130	71.5	66	32.1 (9.3)	46							25	34.5 (11.0)	20	39	36.3 (8.8)	27	Rem/Cur	1.5 T
Ashtari et al., 1999	86	65.1	46	71.4 (0.3)	28				40	74.3 (6.0)	28							Mix	1.0 T
Ballmaier et al., 2008	80	66.3	34	72.4 (6.9)	19				46	71.1 (7.66)	34	24	68.0 (5.8)	20	22	74.5 (8.1)	14	Mix/EO/LO	1.5 T
Bearden et al., 2009	62	77.4	31	36.7 (10.7)	24				31	39.2 (11.9)	24							Mix	1.5 T

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020. DOI: 10.1503/jpn.190156

					НС	;				DEP			Г	EP sul	bgroup	s			
				Age (years)			Age (years)			Age (years)			Age (years)			Age (years)			
Reference	n	%F	n	mean (SD)	F	n	mean (SD)	F	n	mean (SD)	F	n	mean (SD)	F	n	mean (SD)	F	DEP subgroups	Scanner
Bergouigan et al., 2009	42	73.8	21	28.2 (5.5)	14							21	33.2 (9.6)	17				LO	1.5 T
Bijanki et al., 2014	40	65.0	20	45.4 (9.9)	13							20	46.0 (9.5)	13				Psy	1.5 T
Burke et al., 2011	122	60.7	31	68.8 (6.0)	21							54	66.1 (6.0)	34	37	70.1 (6.6)	19	EO/LO	1.5 T
Caetano et al., 2004	62	77.4	31	36.7 (10.7)	24				31	39.2 (11.9)	24							Mix	1.5 T
Carceller-Sindreu et al., 2015	95	75.8	34	47.9 (8.1)	24				21	44.4 (6.7)	14	20	47.1 (8.2)	18	20	48.6 (8.0)	16	FE/ME/TR	3.0 T
Cardoner et al., 2007	105	46.7	72	30.1 (10.2)	32							33	30.1 (10.2)	17				Anx	1.5 T
Cohen et al., 2013	61	54.1	22	32.2 (11.5)	11				19	37.3 (11.7)	13	20	36.4 (13.4)	9				Mix/Psy	3.0 T
Cole et al., 2010	74	75.7	37	42.2 (9.0)	28				37	41.9 (8.9)	28	13	38.1 (7.9)	11	24	44.0 (9.4)	17	Mix/FE/ME	1.5 T
Cole et al., 2011	195	57.9	111	33.0 (9.2)	56							84	48.8 (8.9)	57				ME	1.5 T
Colloby et al., 2011	68	69.1	30	74.4 (6.4)	20				38	74.1 (6.1)	27							Mix	3.0 T
Devantier et al., 2016	56	46.4	27	59.5 (5.0)	13							29	59.8 (4.5)	13				LO	3.0 T
De Winter et al., 2017	100	70.0	52	72.4 (6.4)	37				48	74.1 (7.51)	33							Mix	3.0 T
Dombrovsky et al., 2012*	52	57.7	19	70.5 (7.5)	12				20	67.7 (7.0)	13	13	66.0 (6.4)	5				Mix/Sui	3.0 T
Eker et al., 2010	47	74.5	22	29.7 (6.4)	17							25	32.1 (9.3)	18				FE	1.5 T
Eker et al., 2011	87	69.0	43	30.4 (6.7)	27				44	33.6 (9.5)	33							Mix	1.5 T
Elderkin-Thompson et al., 2008	84	63.1	41	72.2 (7.3)	20							18	67.4 (5.9)	15	25	73.0 (8.2)	18	EO/LO	1.5 T
Emsell et al., 2017	107	72.0	52	72.7 (6.5)	38				55	73.6 (7.4)	39							Cur	3.0 T
Exner et al., 2009	52	73.1	26	33.0 (8.9)	18							26	35.0 (10.5)	20				Mel	1.5 T
Frodl et al., 2002	60	56.7	30	40.6 (12.5)	17							30	40.3 (12.6)	17				FE	1.5 T
Frodl et al., 2003	114	52.6	30	40.6 (12.5)	17	27	46.3 (11.3)	13				30	40.3 (12.6)	17	27	49.1 (10.5)	13	FE/ME	1.5 T
Frodl et al., 2004	48	60.4	30	45.7 (12.9)	18							18	46.4 (15.4)	11				Rem	1.5 T
Frodl et al., 2008†	60	63.3	30	43.6 (13.1)	19				30	45.0 (11.1)	19	17	42.7 (10.5)	12	13	48.1 (11.7)	7	Mix/Rem/Cur	1.5 T
Frodl et al., 2012	83	59.0	43	37.0 (13.7)	25				40	41.4 (10.9)	24							Mix	3.0 T
Fung et al., 2015	48	60.4	29	27.1 (8.4)	18				19	30.0 (8.9)	11							Mix	3.0 T
Gifuni et al., 2016 (Sample 1)*	44	0.0	12	41.5 (11.1)	0							14	43.9 (10.5)	0	18	33.6 (10.9)	0	Rem/Sui	1.5 T
Gifuni et al., 2016 (Sample 2 M)*	64	0.0	7	42.2 (8.5)	0							13	39.0 (9.7)	0	44	40.2 (6.3)	0	Rem/Sui	1.5 T
Gifuni et al., 2016 (Sample 2 F)*	63	100.0	18	37.1 (10.4)	18							25	36.7 (7.8)	25	20	36.1 (7.0)	20	Rem/Sui	1.5 T
Han et al., 2014	42	71.4	22	43.7 (12.3)	15							20	42.7 (12.4)	15				FE	3.0 T

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020. DOI: 10.1503/jpn.190156

					НС	;				DEP			Г	EP sul	bgroup	s			
				Age (years)			Age (years)			Age (years)			Age (years)			Age (years)			
Reference	n	%F	n	mean (SD)	F	n	mean (SD)	F	n	mean (SD)	F	n	mean (SD)	F	n	mean (SD)	F	DEP subgroups	Scanner
Han et al., 2016	41	100.0	21	42.3 (10.2)	21							20	42.3 (13.7)	20				noMed	1.5 T
Han et al., 2017	227	75.3	101	40.6 (13.8)	70				126	43.8 (11.6)	101							Mix	3.0 T
Hannestad et al., 2006	246	69.1	64	70.0 (7.7)	41				182	70.2 (5.8)	129							Mix	1.5 T
Hickie et al., 2007	61	63.9	16	55.8 (10.3)	9				45	52.0 (12.8)	30							Mix	1.5 T
Huang et al., 2013	47	61.7	27	32.8 (9.9)	19				20	35.0 (10.5)	10	9	32.7 (11.6)	4	11	36.9 (9.6)	6	Mix/noMed/Med	4.7 T
Hviid et al., 2010	69	69.6	38	47.7 (11.2)	28							31	47.5 (11.9)	20				Rem	1.5 T
Janssen et al., 2004	69	100.0	41	62.4 (11.4)	41							28	64.0 (10.9)	28				EO	1.5 T
Janssen et al., 2007	37	100.0	22	71.1 (7.5)	22							15	72.7 (6.7)	15				LO	1.5 T
Kanellopoulos et al., 2010*	56	62.5	23	70.7 (5.7)	14				33	72.3 (6.8)	21							Mix	1.5 T
Keller et al., 2008	64	53.1	22	32.2 (11.5)	11							19	36.6 (11.9)	12	23	36.5 (13.2)	11	Cur/Psy	3.0 T
Klauser et al., 2015	89	68.5	33	34.7 (9.9)	21				56	34.0 (9.0)	40	27	35.0 (9.7)	18	29	33.1 (8.3)	22	Mix/Rem/Cur	1.5 T
Kronmuller et al., 2009 (M)	35	0.0	11	42.0 (11.3)	0							13	38.1 (11.9)	0	11	48.3 (8.7)	0	FE/ME	1.5 T
Kronmuller et al., 2009 (F)	52	100.0	19	42.7 (14.0)	19							13	41.5 (16.6)	13	20	45.9 (11.8)	20	FE/ME	1.5 T
Kumar et al., 1998	65	73.8	30	69.4 (6.1)	23							35	74.6 (6.9)	25				LO	1.5 T
Kumar et al., 2000	81	72.8	30	69.4 (6.1)	23				51	74.3 (6.6)	36							Mix	1.5 T
Lacerda et al., 2003	73	45.2	48	35.1 (10.0)	29				25	41.2 (11.0)	4							Mix	1.5 T
Lavretsky et al., 2005	82	63.4	41	72.2 (7.3)	20							30	71.7 (7.8)	25	11	67.4 (6.1)	7	noMed/Med	1.5 T
Lavretsky et al., 2007	84	63.1	41	72.2 (7.3)	20				43	70.7 (7.8)	33							Mix	1.5 T
Lenze et al., 1999	48	100.0	24	53.0 (??)	24				24	53.0 (??)	24							Mix	1.5 T
Lenze et al., 2008	55	100.0	24	46.0 (14.0)	24							31	50.0 (15.0)	31				Rem	1.5 T
Lim et al., 2012a	60	51.7	30	72.4 (4.5)	16				30	73.7 (6.4)	15							Mix	3.0 T
Lim et al., 2012b	95	77.9	47	70.7 (4.4)	38							48	71.8 (4.8)	36				LO	3.0 T
Lloyd et al., 2004	90	77.8	39	73.1 (6.7)	29				51	74.0 (6.3)	41	23	72.7 (6.7)	22	28	75.1 (5.8)	19	Mix/EO/LO	1.0 T
Lorenzetti et al., 2009	89	68.5	33	34.0 (9.9)	21							27	35.1 (10.0)	18	29	32.5 (8.3)	22	Rem/Cur	1.5 T
Lorenzetti et al., 2010	87	70.1	31	34.7 (9.9)	21							27	35.1 (10.0)	18	29	32.5 (8.3)	22	Rem/Cur	1.5 T
Machino et al., 2014	58	44.8	29	38.7 (8.4)	13							29	39.6 (8.3)	13				TR	1.5 T
Maller et al., 2007 (M)	35	0.0	13	39.3 (12.7)	0				22	37.3 (8.8)	0							Mix	1.5 T
Maller et al., 2007 (F)	40	100.0	17	35.8 (11.0)	17				23	37.5 (13.0)	23							Mix	1.5 T

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020. DOI: 10.1503/jpn.190156

					НС	;				DEP			Γ	DEP su	bgroup	s			
				Age (years)			Age (years)			Age (years)			Age (years)			Age (years)			
Reference	n	%F	n	mean (SD)	F	n	mean (SD)	F	n	mean (SD)	F	n	mean (SD)	F	n	mean (SD)	F	DEP subgroups	Scanner
Maller et al., 2012	258	47.7	76	35.0 (9.8)	35							182	42.2 (14.0)	88				TR	1.5 T
Malykhin et al., 2010	73	76.7	34	33.5 (8.1)	27							23	35.7 (8.5)	15	16	32.2 (7.8)	14	noMed/Med	1.5 T
Meisenzahl et al., 2010	230	46.5	138	33.3 (12.2)	60				92	44.6 (12.3)	47	47	41.8 (13.5)	26	45	45.5 (11.1)	21	Mix/FE/ME	1.5 T
Naismith et al., 2002	67	65.7	20	56.1 (9.8)	12				47	51.8 (12.4)	32							Mix	NA
Nugent et al., 2013	381	58.8	169	34.0 (9.3)	98							71	38.0 (12.1)	50	141	36.0 (11.1)	76	Rem/Cur	3.0 T
Ota et al., 2017	71	46.5	35	38.9 (13.4)	16				36	38.4 (11.3)	17	19	35.7 (11.7)	10	17	41.3 (10.3)	7	Rem/noMed/Med	3.0 T
Ozalay et al., 2013	69	73.9	33	31.4 (7.8)	23							36	31.6 (8.0)	28				noMed	1.5 T
Ozalay et al., 2016	48	100.0	24	47.3 (5.6)	24							24	46.2 (3.9)	24				FH	3.0 T
Pan et al., 2009	253	68.4	83	69.8 (5.6)	61				170	69.4 (7.5)	112							Mix	1.5 T
Parashos et al., 1998	64	56.3	32	53.8 (17.7)	18				32	54.2 (17.6)	18							Mix	1.5 T
Penttila et al., 2009	105	54.3	70	42.8 (11.5)	33							35	47.2 (8.8)	24				TR	1.5 T
Phillips et al., 2015	54	66.7	28	45.7 (10.6)\	18							26	46.0 (10.4)	18				TR	1.5 T
Posener et al., 2003	69	55.1	42	33.2 (10.8)	23							27	33.0 (10.7)	15				Cur	1.5 T
Ribeiz et al., 2013	52	76.9	22	70.4 (7.6)	17				30	70.7 (6.6)	23							Mix	1.5 T
Rodriguez-Cano et al., 2014	96	60.4	64	46.0 (9.8)	38				32	48.7 (13.0)	20							Mix	1.5 T
Rusch et al., 2001	40	57.5	15	37.4 (14.4)	9				25	33.2 (9.5)	14							Mix	1.5 T
Sacchet et al., 2017*	232	75.4	116	33.7 (10.5)	84				116	36.5 (11.6)	91							Mix	3.0 T
Savitz et al., 2011	134	62.7	74	37.1 (11.9)	45							32	41.3 (13.3)	24	28	43.9 (11.5)	15	Rem/Cur	3.0 T
Savitz et al., 2015a	100	71.0	47	34.3 (11.4)	29							53	34.6 (9.8)	42				noMed	3.0 T
Savitz et al., 2015b	49	69.4	20	35.0 (10.9)	10							29	36.4 (10.0)	24				Cur	3.0 T
Sawyer et al., 2012	384	68.8	146	70.4 (6.3)	103							238	70.0 (7.5)	161				Cur	1.5 T
Saylam et al., 2006	48	75.0	24	30.2 (6.1)	18				24	33.4 (9.3)	18							Mix	1.5 T
Schmidt et al., 2017	60	61.7	20	36.5 (13.2)	12							20	36.2 (12.8)	12	20	40.6 (12.1)	13	noMed/Med	7.0 T
Sexton et al., 2012	61	65.6	25	71.8 (7.3)	16				36	71.8 (7.7)	24							Mix	3.0 T
Sheline et al., 1998	40	100.0	20	53.0 (17.0)	20							20	54.0 (18.0)	20				Rem	1.5 T
Sivakumar et al., 2015	45	48.9	20	65.4 (5.7)	7							25	65.3 (5.7)	15				LO	3.0 T
Soriano-Mas et al., 2011	110	58.2	40	59.2 (7.1)	23							70	61.6 (9.7)	41				Mel	1.5 T
Stratmann et al., 2014	264	56.8	132	37.8 (11.4)	74				132	37.9 (11.9)	76							Mix	3.0 T

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.

					НС					DEP			Б	EP sul	bgroup	s			
				Age (years)			Age (years)			Age (years)			Age (years)			Age (years)			
Reference	n	%F	n	mean (SD)	F	n	mean (SD)	F	n	mean (SD)	F	n	mean (SD)	F	n	mean (SD)	F	DEP subgroups	Scanner
Tae et al., 2011	42	100.0	21	42.3 (10.2)	21				21	41.7 (11.0)	21							Mix	1.5 T
Taylor et al., 2005	218	70.6	83	69.4 (6.3)	64							72	68.7 (6.4)	51	63	71.5 (7.9)	39	EO/LO	1.5 T
Taylor et al., 2007	370	67.6	144	70.3 (6.5)	100				226	70.0 (7.4)	150							Mix	1.5 T
Taylor et al., 2014	144	69.4	70	69.7 (6.2)	57							47	69.3 (6.5)	28	27	72.1 (7.3)	15	Rem/Cur	1.5 T
Taylor et al., 2015	144	67.4	91	29.9 (9.1)	56							53	37.5 (8.9)	41				EO	NA
Turner et al., 2012*	89	57.3	44	33.6 (9.7)	24				45	36.7 (9.6)	27							Mix	3.0 T
Ueda et al., 2016	78	33.3	48	41.2 (11.4)	13							30	44.3 (13.0)	13				FE	3.0 T
van Eijndhoven et al., 2009	60	66.7	20	37.3 (12.7)	13							20	35.8 (11.7)	14	20	34.1 (11.6)	13	Rem/FE	1.5 T
van Tol et al., 2010	221	65.2	65	40.5 (9.7)	41	58	38.9 (9.0)	37	68	37.2 (10.2)	44	88	37.3 (10.6)	59	68	37.4 (10.1)	41	Mix/Anx/FE	3.0 T
Vasic et al., 2015	72	61.1	29	34.5 (10.7)	18				43	37.1 (10.9)	26							Mix	3.0 T
Vassilopoulou et al., 2013	57	73.7	18	46.6 (7.5)	13							22	52.1 (8.2)	17	17	52.9 (10.8)	12	Mel/Psy	1.5 T
Vythilingam et al., 2002	46	100.0	14	27.0 (5.0)	14				11	34.0 (8.0)	11	21	33.0 (6.0)	21				Mix/Abu	1.5 T
Vythilingam et al., 2004	71	62.0	33	34.0 (10.0)	21				38	41.0 (11.0)	23							Mix	1.5 T
Weber et al., 2010	100	79.0	62	71.1 (7.3)	48							38	66.1 (6.2)	31				EO	3.0 T
Weniger et al., 2006	44	100.0	23	32.0 (7.0)	23				21	34.0 (9.0)	21							Mix	1.5 T
Wisse et al., 2015	47	61.7	34	62.0 (11.0)	23				13	54.0 (7.0)	6							Mix	1.5 T
Wolkowitz et al., 2015	43	62.8	18	37.8 (12.0)	12							25	34.9 (9.6)	15				noMed	4.0 T
Yang et al., 2017	168	72.6	68	29.8 (6.5)	49	16	32.9 (7.6)	12				43	30.1 (7.5)	31	41	31.7 (8.0)	30	FE/Abu	3.0 T
Zannas et al., 2013	159	69.8	70	69.1 (6.0)	56				89	69.9 (6.9)	55							Mix	1.5 T
Zavorotnyy et al., 2018	53	77.4	30	49.6 (14.6)	23				23	48.7 (13.7)	18							Mix	3.0 T
Zhao et al., 2017a	88	46.6	43	31.3 (7.8)	21				45	32.7 (7.9)	20							Mix	3.0 T
Zhao et al., 2017b	77	44.2	41	30.8 (7.3)	18							36	32.8 (8.0)	16				FE	3.0 T

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Supplemental Table S3. Detailed NOS scores

Detailed description of scores in each item of the modified NOS. 0= no star, $0.5=\frac{1}{2}$ \star , 1= \star .

			Selec	tion		Compa	rability		Exp	osure		
Reference	Rater	1a	1b	1c	1d	2a (age/gender)	2a (neuro/dem)	3a	3b (record)	3b (interview)	3c	Score
Abdallah et al., 2017	KA	1	0	0	1	0.5	1	0	1	0	1	5.5
	DEO	1	0	0	1	0.5	1	0	1	0	1	5.5
Abdallah et al., 2015	KA	1	0	0	1	1	1	0	1	0	1	6.0
	DEO	1	0	0	1	1	1	0	1	0	1	6.0
Abe et al., 2010	KA	1	0	0	1	1	1	0	1	0	1	6.0
	DEO	1	0	0	1	1	1	0	1	0	1	6.0
Ahdidan et al., 2013	KA	1	0.5	1	1	1	1	1	1	0	1	8.5
	DEO	1	0.5	1	1	1	1	1	1	0	1	8.5
Almeida et al., 2003	KA	1	0.5	0	0	1	1	0	1	0	1	5.5
	DEO	1	0.5	0	0	1	1	0	1	0	1	5.5
Andreescu et al., 2008	KA	1	0.5	0	1	1	1	0	1	0	1	6.5
	DEO	1	0.5	0	1	1	1	0	1	0	1	6.5
Arnone et al., 2013	KA	1	0	0	1	1	1	1	1	0	1	7.0
	DEO	1	0	0	1	1	1	1	1	0	1	7.0
Ashtari et al., 1999	KA	1	0.5	1	1	1	1	1	1	0	1	8.5
	DEO	1	0.5	1	1	1	1	1	1	0	1	8.5
Ballmaier et al., 2008	KA	1	0.5	1	1	1	1	0	1	0	1	7.5
	DEO	1	0.5	1	1	1	1	0	1	0	1	7.5
Bearden et al., 2009	KA	1	0	1	1	1	1	0	1	0	1	7.0
	DEO	1	0	1	1	1	1	0	1	0	1	7.0
Bergouigan et al., 2009	KA	1	0.5	1	1	1	1	1	1	0	0	7.5
	DEO	1	0.5	1	1	1	1	1	1	0	0	7.5
Bijanki et al., 2014	KA	1	0.5	1	1	1	1	0	0	0	0	5.5
	DEO	1	0.5	1	1	1	1	0	0	0	0	5.5
Burke et al., 2011	KA	1	0.5	1	1	1	1	0	1	0	0	6.5
	DEO	1	0.5	1	1	1	1	0	1	0	0	6.5
Caetano et al., 2004	KA	1	0	0	1	1	1	0	1	0	1	6.0
	DEO	1	0	0	1	1	1	0	1	0	1	6.0
Carceller-Sindreu et al., 2015	KA	1	0.5	0	1	1	1	1	0	0	1	6.5
	DEO	1	0.5	0	1	1	1	1	0	0	1	6.5

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.

Reference	Sb 3b cord) (interview) 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.0 8.0 6.0 6.0
Cardoner et al., 2007	1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0	1 1 1 1	8.0 8.0 6.0 6.0 7.5
DEO	1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0	1 1 1 1	8.0 6.0 6.0 7.5
Cohen et al., 2013 KA 1 0.5 0.5 1 1 0 0 0 Cole et al., 2010 KA 1 0.5 1 1 1 1 0 0 DEO 1 0.5 1 1 1 1 1 0 Cole et al., 2011 KA 1 0.5 1 1 1 1 1 0 DEO 1 0.5 0 1 1 1 0 Cole et al., 2011 KA 1 0.5 0 1 1 1 1 0 Colloby et al., 2011 KA 1 0.5 0 1 1 1 0.5 1 1 0 DEO 1 0.5 1 1 0.5 1 1 0 DEO 1 0.5 1 1 1 0.5 1 1 1 0 Devantier et al., 2016 KA 1 0.5 1 1 1 0.5 1 1 1 0 Devantier et al., 2017 KA 1 1 0.5 1 1 1 1 1 1 1 De Winter et al., 2017 KA 1 1 0 1 1 1 1 1 Debur 1 0.5 0 1 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0	1 1 1	6.0 6.0 7.5
DEO	1 0 1 0 1 0 1 0 1 0	1 1 1	6.0 7.5
Cole et al., 2010 KA 1 0.5 1 1 1 1 0 DEO 1 0.5 1 1 1 1 0 Cole et al., 2011 KA 1 0.5 0 1 1 1 0 Colloby et al., 2011 KA 1 0.5 1 1 0.5 1 1 DEO 1 0.5 1 1 0.5 1 1 Devantier et al., 2016 KA 1 0.5 1 1 1 0 DEO 1 0.5 1 1 1 1 1 Devantier et al., 2016 KA 1 0.5 1 1 1 1 1 DEO 1 0.5 1	1 0 1 0 1 0 1 0 0 0	1	7.5
DEO	1 0 1 0 1 0 0 0	1	
Cole et al., 2011 KA 1 0.5 0 1 1 1 0 Colloby et al., 2011 KA 1 0.5 0 1 1 1 0 Colloby et al., 2011 KA 1 0.5 1 1 0.5 1 1 DEO 1 0.5 1 1 0.5 1 1 0 Devantier et al., 2016 KA 1 0.5 1 1 1 1 0 0 0.5 1 1 1 0 1 0	1 0 1 0 0 0	-	75
DEO	0 0	1	7.5
Colloby et al., 2011 KA 1 0.5 1 1 0.5 1 1 1 DEO 1 0.5 1 1 1 0.5 1 1 1 Devantier et al., 2016 KA 1 0.5 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1	0 0	1	6.5 6.5
DEO 1 0.5 1 1 0.5 1 1 Devantier et al., 2016 KA 1 0.5 1 1 1 1 0 DEO 1 0.5 1 1 1 1 1 1 De Winter et al., 2017 KA 1 1 0 1 1 1 1 1 DEO 1 1 0 1 1 1 1 1 Dender ovsky et al., 2012 KA 1 0.5 0 1 0.5 1 1 DEO 1 0.5 0 1 0.5 1 1 Eker et al., 2010 KA 1 0.5 0 1 1 1 0		-	
Devantier et al., 2016 KA 1 0.5 1 1 1 1 0 DEO 1 0.5 1 1 1 1 1 De Winter et al., 2017 KA 1 1 0 1 1 1 1 DEO 1 1 0 1 1 1 1 Dombrovsky et al., 2012 KA 1 0.5 0 1 0.5 1 1 DEO 1 0.5 0 1 0.5 1 1 Eker et al., 2010 KA 1 0.5 0 1 1 1 0		1	7.0 7.0
DEO 1 0.5 1 1 1 1 1 De Winter et al., 2017 KA 1 1 0 1 1 1 1 1 DEO 1 1 0 1 1 1 1 1 Den Deo 1 0.5 0 1 0.5 1 1 Eker et al., 2010 KA 1 0.5 0 1 1 1 0 DEO 1 0.5 0 1 1 1 0		-	
De Winter et al., 2017 KA 1 1 0 1 1 1 1 1 DEO 1 1 0 1 1 1 1 1 Dombrovsky et al., 2012 KA 1 0.5 0 1 0.5 1 1 DEO 1 0.5 0 1 0.5 1 1 Eker et al., 2010 KA 1 0.5 0 1 1 1 0 DEO 1 0.5 0 1 1 1 0	1 0 1 0	1 0	7.5 7.5
DEO 1 1 0 1 1 1 1 Dombrovsky et al., 2012 KA 1 0.5 0 1 0.5 1 1 DEO 1 0.5 0 1 0.5 1 1 Eker et al., 2010 KA 1 0.5 0 1 1 1 0 DEO 1 0.5 0 1 1 1 0		-	
Dombrovsky et al., 2012 KA 1 0.5 0 1 0.5 1 1 DEO 1 0.5 0 1 0.5 1 1 Eker et al., 2010 KA 1 0.5 0 1 1 1 0 DEO 1 0.5 0 1 1 1 0	1 0 1 0	0	7.0 7.0
DEO 1 0.5 0 1 0.5 1 1 Eker et al., 2010 KA 1 0.5 0 1 1 1 0 DEO 1 0.5 0 1 1 1 0		-	
Eker et al., 2010 KA 1 0.5 0 1 1 1 0 DEO 1 0.5 0 1 1 1 0	1 0	1	7.0
DEO 1 0.5 0 1 1 0	1 0	1	7.0
	1 0	1	6.5 6.5
Eker et al., 2011 KA 1 0.5 1 1 1 1 1	1 0	1	
	1 0	1	8.5 8.5
		-	
	1 0 1 0	1	8.5 8.5
	1 0	0	7.5
	1 0	0	7.5
	1 0	0	6.0
	1 0	0	6.0
	1 0	1	5.5
	1 0	1	5.5
	1 0	0	6.5
	1 0	0	6.5
	1 0	1	6.5
	1 0	1	6.5
	1 0	1	7.5
	1 0	1	7.5
	1 0	1	6.5
	1 0	1	6.5
		-	
DEO 1 0.5 1 1 0.5 1 0	1 0	1	7.0

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.

			Selec	tion		Compa	rability		Exp	osure		
Reference	Rater	1a	1b	1c	1d	2a (age/gender)	2a (neuro/dem)	3a	3b (record)	3b (interview)	3c	Score
Gifuni et al., 2016	KA	1	0.5	1	1	0.5	1	0	1	0	0	6.0
Gram et an, 2010	DEO	1	0.5	1	1	0.5	1	0	1	0	0	6.0
Han et al., 2014	KA	1	0.5	1	1	1	0	0	1	0	1	6.5
11un et un, 2011	DEO	1	0.5	1	1	1	0	0	1	0	1	6.5
Han et al., 2016	KA	1	0.5	1	1	1	1	0	1	0	1	7.5
11an et an, 2010	DEO	1	0.5	1	1	1	1	0	1	0	1	7.5
Han et al., 2017	KA	1	0.5	1	1	1	1	0	1	0	1	7.5
,	DEO	1	0.5	1	1	1	1	0	1	0	1	7.5
Hannestad et al., 2006	KA	1	0.5	1	0	1	1	0	0	0	1	5.5
	DEO	1	0.5	1	0	1	1	0	0	0	1	5.5
Hickie et al., 2007	KA	1	0.5	1	0	0	1	0	0	0	1	4.5
	DEO	1	0.5	1	0	0	1	0	0	0	1	4.5
Huang et al., 2013	KA	1	0	0	1	0	1	0	1	0	1	5.0
	DEO	1	0	0	1	0	1	0	1	0	1	5.0
Hviid et al., 2010	KA	1	1	0	1	0	1	0	1	0	0	5.0
	DEO	1	1	0	1	0	1	0	1	0	0	5.0
Janssen et al., 2007	KA	1	0.5	1	1	1	1	0	1	0	1	7.5
	DEO	1	0.5	1	1	1	1	0	1	0	1	7.5
Janssen et al., 2004	KA	1	0.5	1	1	1	1	0	1	0	1	7.5
	DEO	1	0.5	1	1	1	1	0	1	0	1	7.5
Kanellopoulos et al., 2010	KA	1	0.5	1	1	1	1	0	1	0	1	7.5
	DEO	1	0.5	1	1	1	1	0	1	0	1	7.5
Keller et al., 2008	KA	1	0.5	0	1	1	0	1	1	0	1	6.5
	DEO	1	0.5	0	1	1	0	1	1	0	1	6.5
Klauser et al., 2015	KA	1	0.5	1	1	1	1	1	1	0	0	7.5
	DEO	1	0.5	1	1	1	1	1	1	0	0	7.5
Kronmuller et al., 2009	KA	1	1	0	1	1	1	1	1	0	0	7.0
	DEO	1	1	0	1	1	1	1	1	0	0	7.0
Kumar et al., 2000	KA	1	0.5	1	1	1	1	0	1	0	1	7.5
	DEO	1	0.5	1	1	1	1	0	1	0	1	7.5
Kumar et al., 1998	KA	1	0.5	1	1	1	1	0	1	0	1	7.5
	DEO	1	0.5	1	1	1	1	0	1	0	1	7.5
Lacerda et al., 2003	KA	1	0	0	1	0.5	1	0	1	0	1	5.5
	DEO	1	0	0	1	0.5	1	0	1	0	1	5.5
Lavretsky et al., 2007	KA	1	0.5	1	1	1	1	1	1	0	1	8.5
	DEO	1	0.5	1	1	1	1	1	1	0	1	8.5
Lavretsky et al., 2005	KA	1	0.5	1	1	1	1	1	1	0	1	8.5

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.

			Selec	tion		Compa	rability		Exp	osure		
D. C.	n	1a	1b	1c	1d	2a	2a	3a	3b	3b	3c	
Reference	Rater DEO	1	0.5	1	1	(age/gender)	(neuro/dem)	1	(record)	(interview)	1	Score 8.5
Lenze et al., 1999	KA	1	0.5	1	0	1	1	0	1	0	1	6.5
Eche et al., 1999	DEO	1	0.5	1	0	1	1	0	1	0	1	6.5
Lenze et al., 2008	KA	1	0.5	1	1	1	1	1	1	0	1	8.5
Lenze et al., 2000	DEO	1	0.5	1	1	1	1	1	1	0	1	8.5
Lim et al., 2012a	KA	1	0.5	0	1	1	1	0	1	0	1	6.0
Lim Ct al., 2012a	DEO	1	0	0	1	1	1	0	1	0	1	6.0
Lim et al., 2012b	KA	1	0.5	1	1	1	1	1	1	0	1	8.5
Lini et al., 20120	DEO	1	0.5	1	1	1	1	1	1	0	1	8.5
Lloyd et al., 2004	KA	1	0.5	1	1	0	1	0	0	0	1	5.5
Lioyu et al., 2004	DEO	1	0.5	1	1	0	1	0	0	0	1	5.5
	DEO	1	0.5	1	1	0	1				1	3.3
Lorenzetti et al., 2009	KA	1	0.5	0	1	1	1	1	1	0	0	6.5
Lorenzetti et al., 2007	DEO	1	0.5	0	1	1	1	1	1	0	0	6.5
Lorenzetti et al., 2010	KA	1	0.5	0	1	0.5	1	1	1	0	0	6.0
Estenzett et an, 2010	DEO	1	0.5	0	1	0.5	1	1	1	0	0	6.0
Machino et al., 2014	KA	1	0.5	0	1	1	1	0	1	0	1	6.5
Machino et ali, 2011	DEO	1	0.5	0	1	1	1	0	1	0	1	6.5
Maller et al., 2007	KA	1	0.5	1	1	1	1	0	1	0	1	7.5
	DEO	1	0.5	1	1	1	1	0	1	0	1	7.5
Maller et al., 2012	KA	1	0.5	1	1	0.5	1	0	1	0	1	7.0
,	DEO	1	0.5	1	1	0.5	1	0	1	0	1	7.0
Malykhin et al., 2010	KA	1	0.5	1	1	1	1	0	1	0	1	7.5
.,	DEO	1	0.5	1	1	1	1	0	1	0	1	7.5
Meisenzahl et al., 2010	KA	1	0.5	1	1	1	1	1	1	0	1	8.5
,	DEO	1	0.5	1	1	1	1	1	1	0	1	8.5
Naismith et al., 2002	KA	1	0.5	1	0	0	1	0	0	0	1	4.5
	DEO	1	0.5	1	0	0	1	0	0	0	1	4.5
Nugent et al., 2013	KA	1	0.5	0	1	1	0	0	1	0	1	5.5
	DEO	1	0.5	0	1	1	0	0	1	0	1	5.5
Ota et al., 2017	KA	1	0	0	1	1	1	1	1	0	0	6.0
	DEO	1	0	0	1	1	1	1	1	0	0	6.0
Ozalay et al., 2013	KA	1	0	0	1	1	1	0	1	0	1	6.0
	DEO	1	0	0	1	1	1	0	1	0	1	6.0
Ozalay et al., 2016	KA	1	0.5	1	1	1	1	0	1	0	0	6.5
,	DEO	1	0.5	1	1	1	1	0	1	0	0	6.5
Pan et al., 2009	KA	1	0.5	1	1	1	1	1	1	0	1	8.5
,	DEO	1	0.5	1	1	1	1	1	1	0	1	8.5
			•			<u> </u>						

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.

			Selec	tion		Compa	rability		Exp	osure		
Defenence	Doton	1a	1b	1c	1d	2a (age/gender)	2a	3a	3b	3b	3c	Caana
Reference Parashos et al., 1998	Rater KA	1	0.5	0	1	(age/gender)	(neuro/dem)	0	(record)	(interview)	1	Score 6.5
Tarasnos et al., 1990	DEO	1	0.5	0	1	1	1	0	1	0	1	6.5
Penttila et al., 2009	KA	1	1	1	1	1	1	0	1	0	1	8.0
Tenetina et ain, 2009	DEO	1	1	1	1	1	1	0	1	0	1	8.0
Phillips et al., 2015	KA	1	0.5	1	1	1	1	0	1	0	0	6.5
1 mmps et un, 2010	DEO	1	0.5	1	1	1	1	0	1	0	0	6.5
Posener et al., 2003	KA	1	0.5	1	1	1	1	1	1	0	1	8.5
ŕ	DEO	1	0.5	1	1	1	1	1	1	0	1	8.5
Ribeiz et al., 2013	KA	1	0.5	1	1	0	1	0	1	0	1	6.5
	DEO	1	0.5	1	1	0	1	0	1	0	1	6.5
Rodriguez-Cano et al., 2014	KA	1	0.5	1	1	0.5	1	0	1	0	1	7.0
	DEO	1	0.5	1	1	0.5	1	0	1	0	1	7.0
Rusch et al., 2001	KA	1	0.5	1	1	0	0	0	1	0	1	5.5
	DEO	1	0.5	1	1	0	0	0	1	0	1	5.5
Sacchet et al., 2017	KA	1	0	0	1	1	1	0	1	0	1	6.0
	DEO	1	0	0	1	1	1	0	1	0	1	6.0
Savitz et al., 2015a	KA	1	0	0	1	1	1	0	1	0	1	6.0
	DEO	1	0	0	1	1	1	0	1	0	1	6.0
Savitz et al., 2015b	KA	1	0	0	1	1	1	0	1	0	0	5.0
	DEO	1	0	0	1	1	1	0	1	0	0	5.0
Savitz et al., 2011	KA	1	0	0	1	0	1	0	1	0	1	5.0
	DEO	1	0	0	1	0	1	0	1	0	1	5.0
Sawyer et al., 2012	KA	1	0.5	1	1	0.5	1	1	1	0	1	8.0
	DEO	1	0.5	1	1	0.5	1	1	1	0	1	8.0
Saylam et al., 2006	KA	1	0	0	1	0.5	1	0	0	0	1	4.5
	DEO	1	0	0	1	0.5	1	0	0	0	1	4.5
Schmidt et al., 2017	KA	1	0.5	0	1	1	1	0	1	0	1	6.5
	DEO	1	0.5	0	1	1	1	0	1	0	1	6.5
Sexton et al., 2012	KA	1	0.5	1	1	1	1	0	1	0	1	7.5
	DEO	1	0.5	1	1	1	1	0	1	0	1	7.5
Sheline et al., 1998	KA	1	0.5	1	1	1	1	1	1	0	0	7.5
	DEO	1	0.5	1	1	1	1	1	1	0	0	7.5
Sivakumar et al., 2015	KA	1	0.5	1	1	1	1	1	1	0	1	8.5
	DEO	1	0.5	1	1	1	1	1	1	0	1	8.5
Soriano-Mas et al., 2011	KA	1	1	1	1	1	1	0	1	0	1	8.0
	DEO	1	1	1	1	1	1	0	1	0	1	8.0
Stratmann et al., 2014	KA	1	0.5	1	1	1	1	1	1	0	1	8.5

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.

			Selec	ction		Compa	rability		Exp	osure		
D.f	D-4	1a	1b	1c	1d	2a	2a	3a	3b	3b	3c	G
Reference	Rater DEO	1	0.5	1	1	(age/gender)	(neuro/dem)	1	(record)	(interview)	1	Score 8.5
Tae et al., 2011	KA	1	0.5	1	1	1	1	0	1	0	1	7.5
	DEO	1	0.5	1	1	1	1	0	1	0	1	7.5
Taylor et al., 2015	KA	1	0.5	0	1	1	1	0	1	0	0	5.5
	DEO	1	0.5	0	1	1	1	0	1	0	0	5.5
Taylor et al., 2007	KA	1	0.5	1	1	1	1	1	1	0	1	8.5
	DEO	1	0.5	1	1	1	1	1	1	0	1	8.5
Taylor et al., 2014	KA	1	0.5	1	1	1	1	1	1	0	1	8.5
	DEO	1	0.5	1	1	1	1	1	1	0	1	8.5
Taylor et al., 2005	KA	1	0.5	1	1	1	1	1	1	0	1	8.5
	DEO	1	0.5	1	1	1	1	1	1	0	1	8.5
Turner et al., 2012	KA	1	0	0	1	0.5	1	1	1	0	1	6.5
	DEO	1	0	0	1	0.5	1	1	1	0	1	6.5
Ueda et al., 2016	KA	1	0.5	1	0	1	1	0	1	0	1	6.5
	DEO	1	0.5	1	0	1	1	0	1	0	1	6.5
van Eijndhoven et al., 2009	KA	1	0.5	1	1	1	1	0	1	0	1	7.5
	DEO	1	0.5	1	1	1	1	0	1	0	1	7.5
van Tol et al., 2010	KA	1	1	1	1	1	1	0	1	0	0	7.0
	DEO	1	1	1	1	1	1	0	1	0	0	7.0
Vasic et al., 2015	KA	1	0.5	1	1	1	1	1	1	0	1	8.5
	DEO	1	0.5	1	1	1	1	1	1	0	1	8.5
Vassilopoulou et al., 2013	KA	1	0.5	1	0	0.5	1	0	1	0	0	5.0
	DEO	1	0.5	1	0	0.5	1	0	1	0	0	5.0
Vythilingam et al., 2002	KA	1	0.5	1	1	1	1	0	1	0	1	7.5
	DEO	1	0.5	1	1	1	1	0	1	0	1	7.5
Vythilingam et al., 2004	KA	1	0.5	1	1	0.5	1	0	1	0	1	7.0
	DEO	1	0.5	1	1	0.5	1	0	1	0	1	7.0
Weber et al., 2010	KA	1	0.5	1	1	1	1	1	1	0	0	7.5
	DEO	1	0.5	1	1	1	1	1	1	0	0	7.5
Weniger et al., 2006	KA	1	0.5	1	1	1	1	1	1	0	1	8.5
	DEO	1	0.5	1	1	1	1	1	1	0	1	8.5
Wisse et al., 2015	KA	1	1	0	0	1	0	1	1	0	0	5.0
	DEO	1	1	0	0	1	0	1	1	0	0	5.0
Wolkowitz et al., 2015	KA	1	0.5	0.5	1	1	0	1	1	0	1	7.0
	DEO	1	0.5	0.5	1	1	0	1	1	0	1	7.0
Yang et al., 2017	KA	1	0.5	1	1	0.5	1	0	1	0	1	7.0
	DEO	1	0.5	1	1	0.5	1	0	1	0	1	7.0

DOI: 10.1503/jpn.190156

			Selec	tion		Compa	rability		Exp	osure		
Reference	Rater	1a	1b	1c	1d	2a (age/gender)	2a (neuro/dem)	3a	3b (record)	3b (interview)	3c	Score
Zannas et al., 2013	KA	1	0.5	1	1	1	1	1	1	0	0	7.5
	DEO	1	0.5	1	1	1	1	1	1	0	0	7.5
Zavorotnyy et al., 2018	KA	1	0.5	1	1	1	1	1	1	0	1	8.5
	DEO	1	0.5	1	1	1	1	1	1	0	1	8.5
Zhao et al., 2017a	KA	1	0.5	0	1	1	1	0	1	0	1	6.5
	DEO	1	0.5	0	1	1	1	0	1	0	1	6.5
Zhao et al., 2017b	KA	1	0.5	0	1	1	1	0	1	0	1	6.5
	DEO	1	0.5	0	1	1	1	0	1	0	1	6.5

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Supplemental Table S4. Meta-analysis results per brain region

k: number of samples or subsamples, n: total number of participants, HC: healthy controls, DEP: depressed participants, M: males, F: females, MD: mean difference, SE: standard error, CI: confidence interval, Qp: Q-statistic p-value, τ^2 : variance of true effects, I²: proportion real differences between studies, TBV: total brain, GMV: grey matter, WMV: white matter, ICV: intracranial, THcV: total hippocampus, RHcV: right hippocampus, LHcV: left hippocampus, TAV: total amygdala, RAV: right amygdala, LAV: left amygdala, TPuV: total putamen, RPuV: right putamen, LPuV: left putamen, TCV: total caudate, RCV: right caudate, LCV: left caudate, TPaV: total pallidum, RPaV: right pallidum, LPaV: left pallidum, TTV: total thalamus, RTV: right thalamus, LTV: left thalamus, TAcV: total accumbens volumes, Mix: heterogeneous group of depressed, EO: early-onset depression, LO: late-onset depression, FE: first episode, ME: multiple episodes, noMed: not taking antidepressants, Med: taking antidepressants, TR: treatment-resistant depression, Rem: depression in remission, Cur: currently in depression. Bold font indicates significance at p≤0.05 and I²>50%.

					Number of sul	ojects	Age (years)				Meta-ana	lysis result	s		
Region	Analysis	Studies	k	Total	нс	DEP	нс	DEP	MD	SE	95%	6 CI	р	Qp	τ^2	\mathbf{I}^2
TBV	HC vs DEP	27	37	2618	1123	1495	50.73	53.19	-1.506	4.127	-9.595	6.583	0.715	0.279	0.000	0.00%
					(M: 391, F: 732)	(M: 496, F: 999)										
	HC vs DEP-Mix	12	13	1233	524	709	56.76	61.08	8.375	6.116	-3.612	20.361	0.171	0.183	0.000	0.00%
					(M: 183, F: 341)	(M: 221, F: 488)										
	HC vs DEP-EO	6	6	370	208	162	65.18	66.12	2.201	11.192	-19.734	24.136	0.844	0.849	0.000	0.00%
					(M: 53, F: 155)	(M: 31, F: 131)										
	HC vs DEP-LO	7	7	413	220	193	69.97	71.55	16.391	12.855	-8.805	41.587	0.202	<0.0001	688.646	71.95%
					(M: 66, F: 154)	(M: 70, F: 123)										
	HC vs DEP-Rem	4	4	261	151	110	37.87	41.22	7.234	16.222	-24.561	39.029	0.656	0.926	0.000	0.00%
					(M: 48, F: 103)	(M: 23, F: 87)										
	HC vs DEP-Cur	4	4	617	295	322	52.70	61.27	-7.031	10.479	-27.570	13.508	0.502	0.938	0.000	0.00%

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020. DOI: 10.1503/jpn.190156

					Number of su	bjects	Age ((years)				Meta-anal	ysis results	i		
Region	Analysis	Studies	k	Total	HC	DEP	нс	DEP	MD	SE	95%	6 CI	р	Qp	$ au^2$	I^2
					(M: 103, F: 192)	(M: 109, F: 213)										
GMV	HC vs DEP	15	19	1788	823	965	39.77	41.72	5.541	2.437	0.765	10.318	0.023	0.276	0.000	0.00%
					(M: 372, F: 451)	(M: 392, F: 573)										
GMV	HC vs DEP-Mix	4	4	512	261	251	42.88	42.46	1.999	5.425	-8.633	12.632	0.712	0.607	0.000	0.00%
					(M: 109, F: 152)	(M: 98, F: 153)										
	HC vs DEP-FE	5	5	415	224	191	36.72	36.94	6.125	4.440	-2.578	14.827	0.168	0.546	0.000	0.00%
					(M: 95, F: 129)	(M: 76, F: 115)										
	HC vs DEP-TR	3	3	421	175	246	38.73	42.59	10.666	8.021	-5.054	26.387	0.184	0.136	93.016	47.89%
					(M: 94, F: 81)	(M: 121, F: 125)										
WMV	HC vs DEP	10	12	1245	508	737	44.66	44.42	-2.351	3.377	-8.969	4.267	0.486	0.217	12.782	9.34%
					(M: 221, F: 287)	(M: 313, F: 424)										
	HC vs DEP-Mix	3	3	460	239	221	40.35	38.62	-0.346	5.599	-11.320	10.628	0.951	0.687	0.000	0.00%
					(M: 104, F: 135)	(M: 91, F: 130)										
	HC vs DEP-FE	3	3	226	108	118	39.08	37.56	6.645	9.677	-12.323	25.612	0.492	0.237	75.471	25.98%
					(M: 41, F: 67)	(M: 47, F: 71)										
ICV	HC vs DEP	42	59	3775	1728	2047	48.86	51.07	5.806	4.516	-3.045	14.658	0.199	0.069	220.756	21.38%
					(M: 618, F: 1110)	(M: 691, F: 1356)										
	HC vs DEP-Mix	25	25	2235	1080	1155	50.51	54.79	11.731	5.838	0.288	23.173	0.045	0.278	121.417	15.50%
					(M: 383, F: 697)	(M: 364, F: 791)										
	HC vs DEP-EO	5	5	434	274	160	56.56	57.37	5.162	18.859	-31.800	42.125	0.784	0.106	839.154	48.09%
					(M: 80, F: 194)	(M: 23, F: 137)										
	HC vs DEP-LO	3	3	198	110	88	71.76	74.29	13.652	18.797	-23.189	50.492	0.468	0.542	0.000	0.00%
					(M: 38, F: 72)	(M: 26, F: 62)										
	HC vs DEP-FE	4	4	337	231	106	36.53	39.57	8.328	18.012	-26.975	43.631	0.644	0.268	327.309	23.99%

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.

					Number of su	bjects	Age (years)				Meta-ana	lysis results	S		
Region	Analysis	Studies	k	Total	нс	DEP	нс	DEP	MD	SE	95%	CI	р	Qp	$ au^2$	I^2
					(M: 102, F: 129)	(M: 37, F: 69)										
	HC vs DEP-ME	4	4	493	320	173	35.78	47.09	22.036	20.536	-18.214	62.286	0.283	0.062	919.847	56.87%
					(M: 152, F: 168)	(M: 60, F: 113)										
	HC vs DEP-noMed	6	6	302	176	126	44.98	44.94	-18.519	16.384	-50.630	13.592	0.258	0.666	0.000	0.00%
					(M: 61, F: 115)	(M: 37, F: 89)										
ICV	HC vs DEP-Med	l 4	l 4	192	137	55	46.32	42.99	-0.831	23.732	-47.345	45.683	0.972	0.977	0.000	0.00%
IC V	THE VS DET-IVIEU	-	7	192	(M: 55, F: 82)	(M: 21, F: 34)	40.32	42.99	-0.831	23.732	-47.343	45.065	0.972	0.977	0.000	0.0070
	HC vs DEP-TR	3	,	366	138	, , ,	40.36	43.18	-0.749	18.685	-37.371	35.874	0.968	0.987	0.000	0.00%
	HC VS DEP-1R	3	3	300	(M: 61, F: 77)	228	40.36	43.18	-0.749	18.085	-3/.3/1	33.874	0.968	0.987	0.000	0.00%
	HG DED D		_ ا	266	, , ,	(M: 106, F: 122)	52.45	40.54	14.507	14.125	12 201	12.116	0.202	0.210	0.000	0.000/
	HC vs DEP-Rem	3	5	266	140	126	53.47	49.54	-14.587	14.135	-42.291	13.116	0.302	0.310	0.000	0.00%
	ug pen g		_	206	(M: 44, F: 96)	(M: 55, F: 71)	56.51	52.25	6.705	10.224	44.670	21.070	0.725	0.125	(27.05)	24.100/
	HC vs DEP-Cur	5	5	386	210	176	56.51	53.37	-6.795	19.324	-44.670	31.079	0.725	0.125	627.956	34.19%
					(M: 68, F: 142)	(M: 59, F: 117)										
THeV	HC vs DEP	42	61	3879	1737	2142	44.60	47.84	0.202	0.040	0.123	0.281	<0.0001	< 0.0001	0.072	86.58%
					(M: 651, F: 1086)	(M: 788, F: 1354)										
	HC vs DEP-Mix	24	26	1826	881	945	46.13	50.79	0.267	0.059	0.150	0.383	<0.0001	<0.0001	0.071	83.25%
					(M: 324, F: 557)	(M: 334, F: 611)										
	HC vs DEP-EO	4	4	344	197	147	69.18	68.32	0.153	0.096	-0.035	0.340	0.111	0.087	0.019	53.55%
					(M: 44, F: 153)	(M: 26, F: 121)										
	HC vs DEP-LO	7	7	488	266	222	67.13	68.07	0.347	0.100	0.151	0.543	0.001	< 0.0001	0.049	77.86%
					(M: 73, F: 193)	(M: 67, F: 155)										
	HC vs DEP-FE	7	8	497	310	187	35.66	37.50	0.105	0.108	-0.106	0.316	0.329	0.001	0.064	73.46%
					(M: 140, F: 170)	(M: 75, F: 112)										

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020. DOI: 10.1503/jpn.190156

					Number of su	bjects	Age (years)				Meta-ana	alysis results	S		
Region	Analysis	Studies	k	Total	нс	DEP	нс	DEP	MD	SE	95%		р	Qp	$ au^2$	I^2
	HC vs DEP-ME	4	5	500	316	184	35.10	47.02	0.320	0.091	0.141	0.499	0.001	0.011	0.024	68.43%
					(M: 153, F: 163)	(M: 69, F: 115)										
	HC vs DEP-no Med	3	3	138	74	64	39.61	37.43	0.121	0.168	-0.209	0.451	0.471	0.084	0.049	59.43%
					(M: 25, F: 49)	(M: 19, F: 45)										
	HC vs DEP TR	3	3	352	130	222	37.77	42.74	0.546	0.284	-0.011	1.103	0.055	< 0.0001	0.207	96.82%
					(M: 63, F: 67)	(M: 112, F: 110)										
	HC vs DEP-Rem	6	8	603	364	239	44.00	46.10	-0.022	0.050	-0.121	0.076	0.657	0.841	0.000	0.00%
					(M: 132, F: 232)	(M: 91, F: 148)										
THcV	HC vs DEP-Cur	7	7	967	464	503	46.34	52.47	0.108	0.078	-0.044	0.260	0.162	0.010	0.025	64.83%
					(M: 184, F: 280)	(M: 191, F: 312)										
RHcV	HC vs DEP	34	50	3447	1544	1903	44.35	47.86	0.114	0.023	0.069	0.159	<0.0001	< 0.0001	0.017	76.61%
					(M: 579, F: 965)	(M: 700, F: 1203)										
	HC vs DEP-Mix	20	21	1594	783	811	45.91	50.55	0.137	0.031	0.075	0.198	< 0.0001	< 0.0001	0.013	68.44%
					(M: 287, F: 496)	(M: 280, F: 531)										
	HC vs DEP-EO	4	4	344	197	147	69.18	68.32	0.118	0.054	0.012	0.223	0.029	0.133	0.005	44.34%
					(M: 44, F: 153)	(M: 26, F: 121)										
	HC vs DEP-LO	6	6	451	244	207	66.78	67.73	0.204	0.061	0.085	0.323	0.001	0.047	0.011	54.43%
					(M: 73, F: 171)	(M: 67, F: 140)										
	HC vs DEP-FE	7	8	497	310	187	35.66	37.50	0.047	0.062	-0.074	0.168	0.444	0.012	0.017	61.02%
					(M: 140, F: 170)	(M: 75, F: 112)										
	HC vs DEP-ME	4	5	500	316	184	35.10	47.02	0.183	0.030	0.125	0.242	<0.0001	0.206	0.000	5.69%
					(M: 153, F: 163)	(M: 69, F: 115)										
	HC vs DEP-Rem	6	8	603	364	239	44.00	46.10	-0.020	0.033	-0.085	0.046	0.558	0.932	0.000	0.00%
					(M: 132, F: 232)	(M: 91, F: 148)										

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020. DOI: 10.1503/jpn.190156

					Number of su	bjects	Age (years)				Meta-ana	alysis results	;		
Region	Analysis	Studies	k	Total	нс	DEP	нс	DEP	MD	SE	95%	CI	р	Qp	$ au^2$	\mathbf{I}^2
	HC vs DEP-Cur	5	5	847	409	438	47.53	54.69	0.052	0.047	-0.040	0.144	0.268	0.137	0.004	40.92%
					(M: 155, F: 254)	(M: 167, F: 271)										
LHcV	HC vs DEP	34	50	3447	1544	1903	44.35	47.86	0.105	0.023	0.060	0.150	<0.0001	<0.0001	0.017	77.01%
					(M: 579, F: 965)	(M: 700, F: 1203)										
	HC vs DEP-Mix	20	21	1594	783	811	45.91	50.55	0.133	0.031	0.071	0.194	<0.0001	<0.0001	0.013	67.97%
					(M: 287, F: 496)	(M: 280, F: 531)										
	HC vs DEP-EO	4	4	344	197	147	69.18	68.32	0.051	0.041	-0.030	0.132	0.214	0.306	0.001	14.68%
					(M: 44, F: 153)	(M: 26, F: 121)										
	HC vs DEP-LO	6	6	451	244	207	66.78	67.73	0.176	0.049	0.081	0.271	0.0003	0.183	0.005	34.90%
					(M: 73, F: 171)	(M: 67, F: 140)										
LHcV	HC vs DEP-FE	7	8	497	310	187	35.66	37.50	0.068	0.052	-0.033	0.169	0.188	0.040	0.011	52.77%
					(M: 140, F: 170)	(M: 75, F: 112)										
	HC vs DEP-ME	4	5	500	316	184	35.10	47.02	0.121	0.054	0.015	0.227	0.025	0.023	0.008	62.41%
					(M: 153, F: 163)	(M: 69, F: 115)										
	HC vs DEP-Rem	6	8	603	364	239	44.00	46.10	-0.001	0.034	-0.067	0.065	0.981	0.789	0.000	0.00%
					(M: 132, F: 232)	(M: 91, F: 148)										
	HC vs DEP-Cur	5	5	847	409	438	47.53	54.69	0.042	0.048	-0.052	0.136	0.379	0.129	0.005	46.31%
					(M: 155, F: 254)	(M: 167, F: 271)										
TAV	HC vs DEP	15	25	1181	463	718	46.31	47.12	0.091	0.061	-0.029	0.211	0.139	<0.0001	0.081	90.25%
					(M: 167, F: 296)	(M: 287, F: 431)										
	HC vs DEP-Mix	6	6	362	167	195	46.77	50.08	0.018	0.087	-0.153	0.188	0.203	0.001	0.035	78.81%
					(M: 52, F: 115)	(M: 59, F: 136)										
	HC vs DEP-FE	3	3	177	91	86	35.46	35.72	-0.146	0.182	-0.503	0.211	0.424	< 0.0001	0.087	89.00%

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.

					Number of sul	bjects	Age (years)				Meta-ana	lysis result	s		
Region	Analysis	Studies	k	Total	нс	DEP	HC	DEP	MD	SE	95%	. CI	р	Qp	τ^2	I^2
					(M: 43, F: 48)	(M: 40, F: 46)								-		
	HC vs DEP-Rem	5	7	274	138	136	40.95	40.50	-0.035	0.049	-0.131	0.060	0.470	0.075	0.007	42.17%
					(M: 47, F: 91)	(M: 47, F: 89)										
	HC vs DEP-Cur	4	4	193	103	90	36.81	36.88	-0.025	0.092	-0.204	0.155	0.788	0.122	0.017	50.56%
					(M: 42, F: 61)	(M: 25, F: 65)										
RAV	HC vs DEP	13	23	1071	427	644	46.48	47.26	0.044	0.029	-0.014	0.101	0.136	<0.0001	0.014	77.75%
					(M: 150, F: 277)	(M: 267, F: 377)										
	HC vs DEP-Mix	5	5	301	151	150	45.81	49.51	0.001	0.035	-0.067	0.069	0.985	0.191	0.002	31.11%
					(M: 45, F: 106)	(M: 44, F: 106)										
	HC vs DEP-FE	3	3	177	91	86	35.46	35.72	-0.074	0.087	-0.244	0.096	0.396	0.017	0.016	73.80%
					(M: 43, F: 48)	(M: 40, F: 46)										
	HC vs DEP-Rem	5	7	274	138	136	40.95	40.50	-0.016	0.024	-0.064	0.032	0.510	0.632	0.000	0.12%
					(M: 47, F: 91)	(M: 47, F: 89)										
	l · · · ·															
RAV	HC vs DEP-Cur	3	3	144	83	61	37.25	37.11	-0.032	0.038	-0.106	0.043	0.402	0.830	0.000	0.00%
					(M: 32, F: 51)	(M: 20, F: 41)										
LAV	HC vs DEP	13	23	1071	427	644	46.48	47.26	0.026	0.035	-0.042	0.095	0.453	<0.0001	0.022	84.24%
					(M: 150, F: 277)	(M: 267, F: 377)										
	HC vs DEP-Mix	5	5	301	151	150	45.81	49.51	-0.013	0.053	-0.117	0.090	0.803	0.008	0.010	72.34%
					(M: 45, F: 106)	(M: 44, F: 106)										
	HC vs DEP-FE	3	3	177	91	86	35.46	35.72	-0.064	0.099	-0.257	0.130	0.521	0.001	0.024	82.32%
					(M: 43, F: 48)	(M: 40, F: 46)										
	HC vs DEP-Rem	5	7	274	138	136	40.95	40.50	-0.027	0.033	-0.091	0.038	0.418	0.118	0.003	36.44%
					(M: 47, F: 91)	(M: 47, F: 89)										

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.

					Number of su	bjects	Age (years)				Meta-ana	lysis result:	S		
Region	Analysis	Studies	k	Total	нс	DEP	нс	DEP	MD	SE	95%	. CI	р	Qp	$ au^2$	\mathbf{I}^2
	HC vs DEP-Cur	3	3	144	83 (M: 32, F: 51)	61 (M: 20, F: 41)	37.25	37.11	-0.059	0.037	-0.132	0.013	0.109	0.878	0.000	0.00%
TPuV	HC vs DEP	13	20	1693	716	977	44.09	47.59	0.212	0.075	0.065	0.359	0.005	0.0001	0.059	59.70%
					(M: 256, F: 460)	(M: 382, F: 595)										
	HC vs DEP-Mix	8	8	856	375 (M: 116, F: 259)	481 (M: 156, F: 325)	48.43	54.61	0.203	0.074	0.058	0.348	0.006	0.653	0.000	0.00%
RPuV	HC vs DEP	9	15	1248	518	730	45.97	49.14	0.088	0.044	0.002	0.175	0.046	0.085	0.010	37.43%
	HC vs DEP-Mix	5	5	524	(M: 192 F: 326) 224	(M: 316, F: 414) 300	53.66	61.13	0.094	0.062	-0.028	0.215	0.131	0.857	0.000	0.00%
					(M: 70, F: 154)	(M: 109, F: 191)										
LPuV	HC vs DEP	9	15	1248	518 (M: 192, F: 326)	730 (M: 316, F: 414)	45.97	49.14	0.081	0.047	-0.010	0.173	0.081	0.072	0.011	39.47%
	HC vs DEP-Mix	5	5	524	224 (M: 70, F: 154)	300 (M: 109, F: 191)	53.66	61.13	0.071	0.059	-0.044	0.187	0.226	0.734	0.000	0.00%
TCV	HC vs DEP	13	20	1686	697	989	43.41	48.00	0.031	0.059	-0.085	0.147	0.597	0.005	0.031	51.88%
					(M: 257, F: 440)	(M: 377, F: 612)										
TCV	HC vs DEP-Mix	8	8	849	356 (M: 117, F: 239)	493 (M: 151, F: 342)	47.33	55.26	0.140	0.086	-0.028	0.308	0.102	0.243	0.016	28.16%
RCV	HC vs DEP	9	15	1241	499 (M: 193, F: 306)	742 (M: 311, F: 431)	45.09	49.67	0.017	0.036	-0.053	0.086	0.635	0.106	0.006	33.31%
	HC vs DEP-Mix	5	5	517	205	312	52.23	61.91	0.060	0.051	-0.039	0.160	0.235	0.378	0.000	1.71%
LCV	HC vs DEP	9	15	1241	(M: 71, F: 134)	(M: 104, F: 208)	45.09	49.67	0.021	0.032	-0.041	0.083	0.507	0.129	0.004	25.39%
					(M: 193, F: 306)	(M: 311, F: 431)										

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.

					Number of su	bjects	Age (years)				Meta-ana	alysis results	i		
Region	Analysis	Studies	k	Total	нс	DEP	HC	DEP	MD	SE	95%	. CI	р	Qp	$ au^2$	\mathbf{I}^2
	HC vs DEP-Mix	5	5	517	205 (M: 71, F: 134)	312 (M: 104, F: 208)	52.23	61.91	0.080	0.053	-0.024	0.184	0.130	0.225	0.003	24.11%
TPaV	HC vs DEP	9	16	1231	546	685	40.29	42.70	0.051	0.028	-0.004	0.106	0.070	0.0001	0.008	67.88%
	HC vs DEP-Mix	5	5	494	(M: 209, F: 337) 252 (M: 87, F: 165)	(M: 298, F: 387) 242 (M: 83, F: 159)	40.49	44.86	0.044	0.038	-0.031	0.118	0.248	0.183	0.003	38.94%
RPaV	HC vs DEP	7	13	947	411 (M: 170, F: 241)	536 (M: 258, F: 278)	40.75	42.54	0.028	0.020	-0.012	0.068	0.165	0.001	0.003	64.66%
	HC vs DEP-Mix	3	3	223	117 (M: 48, F: 69)	106 (M: 51, F: 55)	42.35	49.70	0.054	0.033	-0.011	0.120	0.104	0.978	0.000	0.00%
LPaV	HC vs DEP	7	13	947	411 (M: 170, F: 241)	536 (M: 258, F: 278)	40.75	42.54	0.025	0.015	-0.004	0.054	0.095	0.144	0.001	19.16%
	HC vs DEP-Mix	3	3	223	117 (M: 48, F: 69)	106 (M: 51, F: 55)	42.35	49.70	0.018	0.038	-0.056	0.092	0.631	0.244	0.001	25.99%
TTV	HC vs DEP	7	13	938	395 (M: 165, F: 230)	543 (M: 251, F: 292)	42.50	43.29	0.140	0.194	-0.242	0.520	0.473	<0.0001	0.400	87.36%
	HC vs DEP-Mix	3	3	214	101 (M: 43, F: 58)	113 (M: 44, F: 69)	49.44	52.85	0.774	0.184	0.414	1.134	<0.0001	0.751	0.000	0.00%
RTV	HC vs DEP	6	12	874	363 (M: 151, F: 212)	511 (M: 237, F: 274)	41.50	42.61	0.091	0.097	-0.100	0.281	0.351	<0.0001	0.081	76.54%
LTV	HC vs DEP	6	12	874	363 (M: 151, F: 212)	511 (M: 237, F: 274)	41.50	42.61	0.036	0.098	-0.156	0.227	0.715	<0.0001	0.076	73.60%
TAcV	HC vs DEP	4	9	563	226 (M: 83, F: 143)	337 (M: 136, F: 201)	35.20	37.45	-0.018	0.025	-0.067	0.032	0.491	0.001	0.004	69.57%

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Supplemental Table S5. Assessment of anxiety comorbidity per brain region

k: number of samples or subsamples, n: total number of subjects, HC: healthy controls, DEP: depressed participants, M: males, F: females, MD: mean difference, SE: standard error, CI: confidence interval, Qp: Q-statistic p-value, τ²: variance of true effects, I²: proportion real differences between studies, TBV: total brain, GMV: grey matter, WMV: white matter, ICV: intracranial, THcV: total hippocampus, RHcV: right hippocampus, LHcV: left hippocampus, TAV: total amygdala, RAV: right amygdala, LAV: left amygdala, TPuV: total putamen, RPuV: right putamen, TCV: total caudate, RCV: right caudate, LCV: left caudate, TPaV: total pallidum, RPaV: right pallidum, LPaV: left pallidum, TTV: total thalamus, RTV: right thalamus, LTV: left thalamus volumes, Mix: heterogeneous group of depressed, EO: early-onset depression, LO: late-onset depression, FE: first episode, ME: multiple episodes, noMed: not taking antidepressants, Med: taking antidepressants, TR: treatment-resistant depression, Rem: depression in remission, Cur: currently in depression, no ANX: no comorbidity, ANX: comorbidity. Bold font indicates significance at p≤0.05 and I²>50%.

				Number of subjects Total HC DEP			Age (years)				Meta-anal	ysis results	s		
Region	Analysis	Studies	k	Total	НС	DEP	нс	DEP	MD	SE	95%	CI	р	Qp	$ au^2$	\mathbf{I}^2
TBV	HC vs DEP no ANX	10	13	1190	472	718	56.74	56.78	-7.371	6.963	-21.017	6.276	0.290	0.483	0.000	0.00%
					(M: 157, F: 315)	(M: 239, F: 479)										
	HC vs DEP-Mix no ANX	4	4	509	202	307	71.24	71.06	1.279	10.776	-19.841	22.400	0.906	0.860	0.000	0.00%
					(M: 65, F: 137)	(M: 92, F: 215)										
	HC vs DEP-EO no ANX	3	3	205	104	101	71.58	68.05	9.827	16.042	-21.615	41.269	0.540	0.638	0.000	0.00%
					(M: 35, F: 69)	(M: 25, F: 76)										
	HC vs DEP-LO no ANX	3	3	191	104	87	71.58	72.82	7.435	15.440	-22.828	37.697	0.630	0.463	0.000	0.00%
					(M: 35, F: 69)	(M: 35, F: 52)										
	HC vs DEP ANX	4	6	458	214	244	36.02	36.10	-1.866	10.281	-22.015	18.284	0.856	0.850	0.000	0.00%
					(M: 78, F: 136)	(M: 83, F: 161)										

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020. DOI: 10.1503/jpn.190156

					Number of su	bjects	Age (years)				Meta-ana	lysis results	i		
Region	Analysis	Studies	k	Total	нс	DEP	HC HC	DEP	MD	SE	95%	CI	р	Qp	$ au^2$	I^2
GMV	HC vs DEP no ANX	8	10	892	387	505	40.68	43.04	11.005	4.810	1.578	20.432	0.022	0.547	22.880	9.86%
					(M: 179, F: 208)	(M: 218, F: 287)										
	HC vs DEP-FE no ANX	3	3	178	98	80	40.22	40.25	15.396	9.344	-2.919	33.710	0.099	0.439	0.000	0.00%
					(M: 55, F: 43)	(M: 37, F: 43)										
Lavar	l rra - pppr		l z	l = 40	255	265	1 25 06	20.44	2.550	2.512	2 225	10.445	0.211	0.4.50	0.000	0.000/
GMV	HC vs DEP ANX	5	6	742	375	367	37.06	38.11	3.559	3.513	-3.327	10.445	0.311	0.153	0.000	0.00%
					(M: 150, F: 225)	(M: 131, F: 236)										
WMV	HC vs DEP no ANX	7	8	779	320	459	46.78	47.01	3.662	4.126	-4.425	11.749	0.375	0.486	0.000	0.00%
					(M: 133, F: 187)	(M: 196, F: 263)										
ICV	HC vs DEP no ANX	23	30	2353	1083	1270	51.55	54.47	13.802	6.204	1.642	25.962	0.026	0.274	191.157	17.78%
					(M: 391, F: 692)	(M: 421, F: 849)										
	HC vs DEP-Mix no ANX	16	16	1686	809	877	52.24	57.60	12.765	7.932	-2.782	28.312	0.108	0.192	230.603	24.89%
					(M: 299, F: 510)	(M: 282, F: 595)										
	HC vs DEP-EO no ANX	4	4	365	233	132	55.54	55.95	21.650	15.926	-9.564	52.864	0.174	0.451	0.000	0.00%
					(M: 80, F: 153)	(M: 23, F: 109)										
	HC vs DEP-FE no ANX	3	3	282	197	85	34.57	38.38	20.913	16.023	-10.491	52.317	0.192	0.328	0.000	0.00%
					(M: 92, F: 105)	(M: 30, F: 55)										
	HC vs DEP-noMed no ANX	3	3	134	82	52	35.53	37.70	-37.443	23.304	-83.119	8.233	0.108	0.650	0.000	0.00%
					(M: 15, F: 67)	(M: 13, F: 39)										
	HC vs DEP ANX	9	16	654	270	384	39.47	38.87	-4.747	9.293	-22.961	13.467	0.610	0.040	411.763	38.08%
					(M: 92, F: 178)	(M: 157, F: 227)										
	HC vs DEP-Mix ANX	5	5	325	167	158	37.89	38.66	4.848	12.412	-19.479	29.175	0.696	0.175	206.245	25.43%
					(M: 50, F: 117)	(M: 43, F: 115)										
THeV	HC vs DEP no ANX	22	28	2121	952	1169	50.29	54.02	0.246	0.058	0.133	0.360	<0.0001	<0.0001	0.073	83.74%

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020. DOI: 10.1503/jpn.190156

					Number of su	bjects	Age (years)				Meta-ana	lysis results	S		
Region	Analysis	Studies	k	Total	нс	DEP	НС	DEP	MD	SE	95%	CI	р	Qp	$ au^2$	\mathbf{I}^2
					(M: 360, F: 592)	(M: 422, F: 747)										
	HC vs DEP-Mix no ANX	16	17	1344	651	693	50.32	55.09	0.261	0.077	0.111	0.411	0.001	<0.0001	0.080	85.31%
					(M: 248, F: 403)	(M: 251, F: 442)										
	HC vs DEP-EO no ANX	3	3	275	156	119	70.97	69.33	0.107	0.109	-0.107	0.321	0.327	0.068	0.022	62.09%
					(M: 44, F: 112)	(M: 26, F: 93)										
THeV	HC vs DEP-LO no ANX	5	5	409	223	186	70.41	71.64	0.373	0.099	0.179	0.567	0.0002	0.027	0.032	65.14%
					(M: 66, F: 157)	(M: 63, F: 123)										
THeV	HC vs DEP-FE no ANX	6	6	441	280	161	34.93	37.14	0.065	0.119	-0.168	0.297	0.585	0.001	0.064	77.13%
					(M: 129, F: 151)	(M: 62, F: 99)										
	HC vs DEP-Rem no ANX	4	4	274	158	116	55.74	54.16	-0.020	0.068	-0.153	0.113	0.768	0.613	0.000	0.00%
					(M: 42, F: 116)	(M: 43, F: 73)										
	HC vs DEP ANX	10	21	1049	417	632	35.32	37.66	0.105	0.081	-0.054	0.264	0.197	<0.0001	0.104	90.13%
					(M: 162, F: 255)	(M: 276, F: 356)										
	HC vs DEP-Mix ANX	4	4	228	113	115	31.69	35.80	0.302	0.207	-0.104	0.708	0.145	<0.0001	0.154	91.54%
					(M: 34, F: 79)	(M: 40, F: 75)										
RHeV	HC vs DEP no ANX	20	25	2006	903	1103	50.14	53.85	0.134	0.030	0.075	0.193	<0.0001	<0.0001	0.015	69.53%
					(M: 339, F: 564)	(M: 387, F: 716)										
	HC vs DEP-Mix no ANX	14	15	1229	602	627	50.10	54.91	0.128	0.037	0.056	0.201	0.001	0.0002	0.013	67.88%
					(M: 227, F: 375)	(M: 216, F: 411)										
	HC vs DEP-EO no ANX	3	3	275	156	119	70.97	69.33	0.084	0.050	-0.015	0.183	0.094	0.271	0.002	28.16%
					(M: 44, F: 112)	(M: 26, F: 93)										
	HC vs DEP-LO no ANX	5	5	409	223	186	70.41	71.64	0.189	0.061	0.070	0.308	0.002	0.051	0.010	57.59%
					(M: 66, F: 157)	(M: 63, F: 123)										
	HC vs DEP-FE no ANX	6	6	441	280	161	34.93	37.14	0.032	0.072	-0.109	0.173	0.653	0.007	0.021	68.74%

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020. DOI: 10.1503/jpn.190156

					Number of subjects			years)	Meta-analysis results								
Region	Analysis	Studies	k	Total	нс	DEP	нс	DEP	MD	SE	95%	CI	р	Qp	$ au^2$	I^2	
					(M: 129, F: 151)	(M: 62, F: 99)											
	HC vs DEP-Rem no ANX	4	4	274	158	116	55.74	54.16	-0.007	0.044	-0.093	0.079	0.877	0.645	0.000	0.00%	
					(M: 42, F: 116)	(M: 43, F: 73)											
	HC vs DEP ANX	9	20	1006	399	607	35.21	37.78	0.057	0.043	-0.027	0.140	0.182	< 0.0001	0.023	81.49%	
					(M: 156, F: 243)	(M: 266, F: 341)											
	HC vs DEP-Mix ANX	4	4	228	113	115	31.69	35.80	0.173	0.108	-0.038	0.384	0.107	0.001	0.037	83.69%	
					(M: 34, F: 79)	(M: 40, F: 75)											
LHcV	HC vs DEP no ANX	20	25	2006	903	1103	50.14	53.85	0.124	0.029	0.067	0.180	<0.0001	< 0.0001	0.013	67.74%	
					(M: 339, F: 564)	(M: 387, F: 716)											
LHcV	HC vs DEP-Mix no ANX	14	15	1229	602	627	50.10	54.91	0.137	0.034	0.070	0.204	<0.0001	0.001	0.010	62.22%	
					(M: 227, F: 375)	(M: 216, F: 411)											
	HC vs DEP-EO no ANX	3	3	275	156	119	70.97	69.33	0.036	0.053	-0.069	0.141	0.500	0.181	0.003	39.69%	
					(M: 44, F: 112)	(M: 26, F: 93)											
	HC vs DEP-LO no ANX	5	5	409	223	186	70.41	71.64	0.167	0.049	0.071	0.264	0.001	0.172	0.005	38.87%	
					(M: 66, F: 157)	(M: 63, F: 123)											
	HC vs DEP-FE no ANX	6	6	441	280	161	34.93	37.14	0.041	0.049	-0.055	0.137	0.406	0.165	0.005	34.46%	
					(M: 129, F: 151)	(M: 62, F: 99)											
	HC vs DEP-Rem no ANX	4	4	274	158	116	55.74	54.16	-0.002	0.043	-0.086	0.082	0.962	0.533	0.000	0.00%	
					(M: 42, F: 116)	(M: 43, F: 73)											
	HC vs DEP ANX	9	20	1006	399	607	35.21	37.78	0.073	0.044	-0.013	0.159	0.096	<0.0001	0.026	83.45%	
					(M: 156, F: 243)	(M: 266, F: 341)											
	HC vs DEP-Mix ANX	4	4	228	113	115	31.69	35.80	0.111	0.107	-0.098	0.320	0.297	< 0.0001	0.037	83.78%	
					(M: 34, F: 79)	(M: 40, F: 75)											
TAV	HC vs DEP no ANX	9	12	705	314	391	50.53	54.13	0.199	0.109	-0.014	0.412	0.067	<0.0001	0.130	93.25%	

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.

					Number of subjects			years)	Meta-analysis results									
Region	Analysis	Studies	k	Total	HC	DEP	нс	DEP	MD	SE	95%	CI	р	Qp	$ au^2$	\mathbf{I}^2		
					(M: 110, F: 204)	(M: 143, F: 248)												
	HC vs DEP-Mix no ANX	4	4	257	128	129	48.29	52.03	0.040	0.075	-0.108	0.188	0.600	0.039	0.015	66.18%		
					(M: 45, F: 83)	(M: 44, F: 85)												
	HC vs DEP-FE no ANX	3	3	177	91	86	35.46	35.72	-0.146	0.182	-0.503	0.211	0.424	< 0.0001	0.087	89.00%		
					(M: 43, F: 48)	(M: 40, F: 46)												
TAV	HC vs DEP-Rem no ANX	3	3	127	70	57	44.49	44.24	0.061	0.157	-0.246	0.369	0.697	0.012	0.056	76.19%		
					(M: 18, F: 52)	(M: 11, F: 46)												
	HC vs DEP ANX	4	11	366	113	253	35.23	36.65	-0.066	0.026	-0.116	-0.016	0.010	0.249	0.000	0.05%		
					(M: 40, F: 73)	(M: 124, F: 129)												
RAV	HC vs DEP no ANX	9	12	705	314	391	50.53	54.13	0.094	0.052	-0.009	0.195	0.072	< 0.0001	0.026	84.76%		
					(M: 110, F: 204)	(M: 143, F: 248)												
RAV	HC vs DEP-Mix no ANX	4	4	257	128	129	48.29	52.03	0.022	0.030	-0.037	0.080	0.465	0.265	0.000	0.02%		
					(M: 45, F: 83)	(M: 44, F: 85)												
	HC vs DEP-FE no ANX	3	3	177	91	86	35.46	35.72	-0.074	0.087	-0.244	0.096	0.396	0.017	0.016	73.80%		
					(M: 43, F: 48)	(M: 40, F: 46)												
	HC vs DEP-Rem no ANX	3	3	127	70	57	44.49	44.24	-0.003	0.079	-0.158	0.152	0.971	0.141	0.009	48.99%		
					(M: 18, F: 52)	(M: 11, F: 46)												
	HC vs DEP ANX	4	11	366	113	253	35.23	36.65	-0.013	0.018	-0.047	0.022	0.479	0.694	0.000	0.09%		
					(M: 40, F: 73)	(M: 124, F: 129)												
LAV	HC vs DEP no ANX	9	4	705	314	391	50.53	54.13	0.105	0.056	-0.004	0.213	0.059	< 0.0001	0.031	87.46%		
					(M: 110, F: 204)	(M: 143, F: 248)												
	HC vs DEP-Mix no ANX	4	4	257	128	129	48.29	52.03	0.028	0.042	-0.053	0.110	0.497	0.119	0.003	49.46%		
					(M: 45, F: 83)	(M: 44, F: 85)												
	HC vs DEP-FE no ANX	3	3	177	91	86	35.46	35.72	-0.064	0.099	-0.257	0.130	0.521	0.001	0.024	82.32%		

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020. DOI: 10.1503/jpn.190156

					Number of subjects		Age (years)				Meta-anal	lysis results	S		
Region	Analysis	Studies	k	Total	НС	DEP	нс	DEP	MD	SE	95%	CI	р	Qp	$ au^2$	I^2
					(M: 43, F: 48)	(M: 40, F: 46)										
	HC vs DEP-Rem no ANX	3	3	127	70	57	44.49	44.24	0.050	0.083	-0.113	0.212	0.549	0.063	0.013	62.05%
					(M: 18, F: 52)	(M: 11, F: 46)										
	HC vs DEP ANX	4	11	366	113	253	35.23	36.65	-0.062	0.019	-0.099	-0.025	0.001	0.605	0.000	0.00%
					(M: 40, F: 73)	(M: 124, F: 129)										
TPuV	HC vs DEP no ANX	6	6	607	268	339	56.45	62.87	0.335	0.124	0.092	0.578	0.007	0.029	0.053	58.96%
					(M: 82, F: 186)	(M: 123, F: 216)										
	HC vs DEP-Mix no ANX	4	4	435	180	255	58.57	65.43	0.148	0.096	-0.040	0.336	0.123	0.422	0.000	0.00%
					(M: 50, F: 130)	(M: 91, F: 164)										
	HC vs DEP ANX	4	11	836	341	495	36.53	39.10	0.100	0.115	-0.125	0.325	0.384	0.002	0.075	63.52%
					(M: 129, F: 212)	(M: 215, F: 280)										
RPuV	HC vs DEP no ANX	6	6	607	268	339	56.45	62.87	0.167	0.053	0.063	0.271	0.002	0.503	0.001	2.61%
					(M: 82, F: 186)	(M: 123, F: 216)										
RPuV	HC vs DEP-Mix no ANX	4	4	435	180	255	58.57	65.43	0.087	0.070	-0.049	0.223	0.211	0.733	0.000	0.00%
					(M: 50, F: 130)	(M: 91, F: 164)										
LPuV	HC vs DEP no ANX	6	6	607	268	339	56.45	62.87	0.171	0.076	0.022	0.321	0.025	0.120	0.015	44.32%
					(M: 82, F: 186)	(M: 123, F: 216)										
	HC vs DEP-Mix no ANX	4	4	435	180	255	58.57	65.43	0.059	0.066	-0.070	0.188	0.367	0.607	0.000	0.00%
					(M: 50, F: 130)	(M: 91, F: 164)										
TCV	HC vs DEP no ANX	6	6	600	249	351	55.48	63.51	0.118	0.083	-0.045	0.281	0.156	0.132	0.015	36.44%
					(M: 83, F: 166)	(M: 118, F: 233)										
	HC vs DEP-Mix no ANX	4	4	428	161	267	57.32	66.16	0.121	0.146	-0.166	0.407	0.409	0.049	0.052	62.73%
					(M: 51, F: 110)	(M: 86, F: 181)										
	HC vs DEP ANX	4	11	836	341	495	36.53	39.10	-0.059	0.089	-0.233	0.115	0.505	0.002	0.046	62.56%

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.

				Number of subjects			Age (years)	Meta-analysis results								
Region	Analysis	Studies	k	Total	нс	DEP	нс	DEP	MD	SE	95%	CI	р	Qp	$ au^2$	\mathbf{I}^2	
					(M: 129, F: 212)	(M: 215, F: 280)											
RCV	HC vs DEP no ANX	6	6	600	249	351	55.48	63.51	0.044	0.042	-0.039	0.126	0.300	0.540	0.000	0.03%	
					(M: 83, F: 166)	(M: 118, F: 233)											
	HC vs DEP-Mix no ANX	4	4	428	161	267	57.32	66.16	0.041	0.063	-0.083	0.164	0.519	0.299	0.002	14.86%	
					(M: 51, F: 110)	(M: 86, F: 181)											
LCV	HC vs DEP no ANX	6	6	600	249	351	55.48	63.51	0.078	0.047	-0.015	0.170	0.099	0.336	0.002	11.50%	
					(M: 83, F: 166)	(M: 118, F: 233)											
	HC vs DEP-Mix no ANX	4	4	428	161	267	57.32	66.16	0.091	0.073	-0.052	0.234	0.212	0.150	0.009	41.19%	
					(M: 51, F: 110)	(M: 86, F: 181)											
TPaV	HC vs DEP no ANX	4	4	306	161	145	50.08	56.85	0.079	0.045	-0.009	0.168	0.080	0.278	0.002	29.36%	
					(M: 60, F: 101)	(M: 65, F: 80)											
	HC vs DEP ANX	4	11	836	341	495	37.11	39.10	0.039	0.040	-0.039	0.116	0.328	<0.0001	0.013	78.85%	
					(M: 129, F: 212)	(M: 215, F: 280)											
RPaV	HC vs DEP no ANX	4	4	306	161	145	50.08	56.85	0.050	0.024	0.003	0.097	0.039	0.911	0.000	0.00%	
					(M: 60, F: 101)	(M: 65, F: 80)											
LPaV	HC vs DEP no ANX	4	4	306	161	145	50.08	56.85	0.028	0.037	-0.045	0.101	0.454	0.149	0.002	44.08%	
					(M: 60, F: 101)	(M: 65, F: 80)											
TTV	HC vs DEP no ANX	3	3	233	113	120	56.46	60.11	0.433	0.140	0.158	0.708	0.002	0.629	0.000	0.00%	
					(M: 41, F: 72)	(M: 44, F: 76)											
RTV	HC vs DEP no ANX	3	3	233	113	120	56.46	60.11	0.220	0.096	0.032	0.408	0.022	0.799	0.000	0.00%	
					(M: 41, F: 72)	(M: 44, F: 76)											
LTV	HC vs DEP no ANX	3	3	233	113	120	56.46	60.11	0.217	0.102	0.016	0.418	0.034	0.783	0.000	0.00%	
					(M: 41, F: 72)	(M: 44, F: 76)											

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Supplemental Table S6. Sensitivity analyses on selection of homogeneous groups

Meta-analyses contrasting homogenous group selection in main analyses (HC vs DEP) and heterogeneous group selection (DEP SEN). k: number of samples or subsamples, n: total number of participants, HC: healthy controls, DEP: depressed participants, MD: mean difference, SE: standard error, CI: confidence interval, Qp: Q-statistic p-value, τ^2 : variance of true effects, I²: proportion real differences between studies, zp: z-statistic p-value, TBV: total brain, ICV: intracranial, THcV: total hippocampus, RHcV: right hippocampus, LHcV: left hippocampus volumes. Bold font indicates significance at p \leq 0.05 and I²>50%.

					Number of sub	ojects	Age (Contrast to main model									
Region	Analysis	Studies	k	Total	Total HC DEP HC DEP MD SE 95% CI		р	Qp	$ au^2$	I^2	z-value	zp						
TBV	HC vs DEP	27	37	2618	1123	1495	50.73	53.19	-1.506	4.127	-9.595	6.583	0.715	0.279	0.000	0.00%	-0.007	0.994
					(M: 391, F: 732)	(M: 496, F: 999)												
	DEP SEN	27	35	2618	1123	1495	50.73	53.19	-1.465	4.177	-9.651	6.722	0.726	0.246	0.000	0.00%		
					(M: 391, F: 732)	(M: 496, F: 999)												
ICV	HC vs DEP	42	59	3775	1728	2047	48.86	51.07	5.806	4.516	-3.045	14.658	0.199	0.069	220.756	21.38%	0.259	0.796
					(M: 618, F: 1110)	(M: 691, F: 1356)												
	DEP SEN	42	53	3775	1728	2047	48.86	51.12	4.117	4.709	-5.113	13.348	0.382	0.053	226.942	22.69%		
					(M: 618, F: 1110)	(M: 691, F: 1356)												
THeV	HC vs DEP	42	61	3879	1737	2142	44.60	47.84	0.202	0.040	0.123	0.281	< 0.0001	< 0.0001	0.072	86.58%	0.147	0.883
					(M: 651, F: 1086)	(M: 788, F: 1354)												
	DEP SEN	42	55	3879	1737	2142	44.60	47.89	0.193	0.043	0.110	0.277	< 0.0001	< 0.0001	0.074	87.53%		
					(M: 651, F: 1086)	(M: 788, F: 1354)												
RHcV	HC vs DEP	34	50	3447	1544	1903	44.35	47.86	0.114	0.023	0.069	0.159	<0.0001	<0.0001	0.017	76.61%	0.188	0.851

					Number of sub	ojects	Age (Age (years) Meta-analysis results										
Region	Analysis	Studies	k	Total	НС	DEP	нс	DEP	MD	SE	95%	6 CI	р	Qp	$ au^2$	I^2	z-value	zp
	DEP SEN	34	46	3447	(M: 579, F: 965) 1544 (M: 579, F: 965)	(M: 700, F: 1203) 1903 (M: 700, F: 1203)	44.35	47.91	0.108	0.024	0.060 0.156		<0.0001	<0.0001	0.017	77.90%		
LHcV	HC vs DEP	34	50	3447	1544	1903	44.35	47.86	0.105	0.023	0.060	0.150	<0.0001	<0.0001	0.017	77.01%	0.087	0.930
	DEP SEN	34	46	3447	(M: 579, F: 965) 1544 (M: 579, F: 965)	(M: 700, F: 1203) 1903 (M: 700, F: 1203)	44.35	47.91	0.102	0.024	0.054	0.149	<0.0001	<0.0001	0.017	78.15%		

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Supplemental Table S7. Sensitivity analyses on selection of homogeneous groups in anxiety comorbidity assessment

Meta-analyses contrasting homogenous group selection in main analyses (HC vs DEP) and heterogeneous group selection (DEP SEN), excluding anxiety comorbidity (no ANX) and comorbid with anxiety (ANX). k: number of samples or subsamples, n: total number of participants, HC: healthy controls, DEP: depressed participants, MD: mean difference, SE: standard error, CI: confidence interval, Qp: Q-statistic p-value, τ^2 : variance of true effects, I²: proportion real differences between studies, zp: z-statistic p-value, TBV: total brain, ICV: intracranial, THcV: total hippocampus, RHcV: right hippocampus, LHcV: left hippocampus volumes. Bold font indicates significance at p≤0.05 and I²>50%.

					Number of su	bjects	Age (years)				Meta-ana	lysis result	s			Contrast mod	
Region	Analysis	Studies	k	Total	HC	DEP	HC	DEP	MD	SE	95%	CI	р	Qp	$ au^2$	\mathbf{I}^2	z-value	zp
TBV	HC vs DEP no ANX	10	13	1190	472	718	56.74	56.78	-7.371	6.963	-21.017	6.276	0.290	0.483	0.000	0.00%	0.030	0.976
					(M: 157, F: 315)	(M: 239, F: 479)												
	DEP no ANX SEN	10	11	1190	472	718	56.74	56.77	-7.670	7.210	-21.801	6.461	0.287	0.415	0.000	0.00%		
					(M: 157, F: 315)	(M: 239, F: 479)												
ICV	HC vs DEP no ANX	23	30	2353	1083	1270	51.55	54.47	13.802	6.204	1.642	25.962	0.026	0.274	191.157	17.78%	0.198	0.843
					(M: 391, F: 692)	(M: 421, F: 849)												
	DEP no ANX SEN	23	26	2353	1083	1270	51.55	54.54	12.013	6.548	-0.820	24.846	0.067	0.297	184.854	17.88%		
					(M: 391, F: 692)	(M: 421, F: 849)												
	HC vs DEP ANX	9	16	654	270	384	39.47	38.87	-4.747	9.293	-22.961	13.467	0.610	0.040	411.763	38.08%	0.088	0.930
					(M: 92, F: 178)	(M: 157, F: 227)												
	DEP ANX SEN	9	15	654	270	384	39.47	38.87	-5.949	10.036	-25.619	13.721	0.553	0.029	529.084	45.14%		

DOI: 10.1503/jpn.190156

					Number of su	bjects	Age (years)				Meta-an	alysis resul	ts			Contrast mod	
Region	Analysis	Studies	k	Total	HC (M: 92, F: 178)	DEP (M: 157, F: 227)	нс	DEP	MD	SE	95%	CI	p	Qp	$ au^2$	I^2	z-value	zp
THeV	HC vs DEP no ANX	22	28	2121	952	1169	50.29	54.02	0.246	0.058	0.133	0.360	<0.0001	<0.0001	0.073	83.74%	0.190	0.850
	DEP no ANX SEN	22	23	2121	(M: 360, F: 592) 952	(M: 422, F: 747) 1169	50.29	54.10	0.230	0.065	0.103	0.356	0.0004	<0.0001	0.077	85.39%		
					(M: 360, F: 592)	(M: 422, F: 747)												
RHeV	HC vs DEP no ANX	20	25	2006	903 (M: 339, F: 564)	1103 (M: 387, F: 716)	50.14	53.85	0.134	0.030	0.075	0.193	<0.0001	<0.0001	0.015	69.53%	0.195	0.845
	DEP no ANX SEN	20	21	2006	903 (M: 339, F: 564)	1103 (M: 387, F: 716)	50.14	53.93	0.125	0.034	0.059	0.191	0.0002	<0.0001	0.016	72.22%		
LHeV	HC vs DEP no ANX	20	25	2006	903 (M: 339, F: 564)	1103 (M: 387, F: 716)	50.14	53.85	0.124	0.029	0.067	0.180	<0.0001	<0.0001	0.013	67.74%	0.054	0.957
	DEP no ANX SEN	20	21	2006	903 (M: 339, F: 564)	1103 (M: 387, F: 716)	50.14	53.93	0.122	0.032	0.059	0.184	0.0001	<0.0001	0.014	69.90%		

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Supplemental Table S8. Assessment of study influence

Leave-one-out method results per brain region. Reported meta-analyses are shown first (underlined) to aid comparison with leave-one-out method (EXC Ref). Analyses excluding all identified studies in leave-one-out method (EXC all) are also reported. k: number of samples or subsamples, HC: healthy controls, DEP: depressed participants, MD: mean difference, SE: standard error, CI: confidence interval, Qp: Q-statistic p-value, τ^2 : variance of true effects, I²: proportion real differences between studies, TBV: total brain, ICV: intracranial, GMV: grey matter, RHcV: right hippocampus, LHcV: left hippocampus, TAV: total amygdala, RAV: right amygdala, LAV: left amygdala volumes, Mix: heterogeneous group of depressed, FE: first episode, ME: multiple episodes, Abu: physical/sexual abuse, no ANX: analysis excluding anxiety comorbidity. Bold font indicates significance at p \leq 0.05 and I²>50%.

						Leave	e-one-out m	ieta-analys	is results		
Region	Analysis	Studies	k	MD	SE	95%	CI	р	Qp	$ au^2$	I^2
TBV	<u>DEP</u>	<u>27</u>	<u>37</u>	<u>-1.506</u>	<u>4.127</u>	-9.595	<u>6.583</u>	<u>0.715</u>	0.279	0.000	0.00%
	EXC Andreescu (2008)	26	36	-0.968	4.582	-9.948	8.013	0.833	0.242	42.674	5.76%
	EXC Devantier (2016)	26	36	0.328	4.334	-8.165	8.822	0.940	0.312	0.000	0.00%
	EXC Sawyer (2012)	26	36	-0.511	4.492	-9.315	8.293	0.910	0.253	25.623	3.54%
	EXC Stratmann (2014)	26	36	-1.211	4.563	-10.155	7.732	0.791	0.241	39.549	5.37%
	EXC all	23	33	2.434	5.853	-9.037	13.905	0.678	0.219	172.910	15.75%
	HC vs DEP-Mix	<u>12</u>	<u>13</u>	8.375	6.116	<u>-3.612</u>	20.361	0.171	0.183	0.000	0.00%
	EXC Andreescu (2008)	11	12	12.942	8.033	-2.803	28.686	0.107	0.171	129.310	17.40%
	EXC Stratmann (2014)	11	12	12.813	8.366	-3.585	29.211	0.126	0.156	176.982	22.44%
	EXC all	10	11	16.934	9.861	-2.394	36.262	0.086	0.167	261.362	25.68%
ICV	HC vs DEP	42	<u>59</u>	5.806	4.516	-3.045	14.658	0.199	0.069	220.756	21.38%
	EXC Meisenzahl (2010) DEP-ME	42	58	3.693	4.050	-4.245	11.631	0.362	0.175	62.912	7.06%

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.

						Leave	e-one-out m	eta-analys	is results		
Region	Analysis	Studies	k	MD	SE	95%	CI	р	Qp	$ au^2$	\mathbf{I}^2
	EXC Taylor (2007)	41	58	6.658	4.678	-2.510	15.827	0.155	0.073	236.425	21.50%
	EXC Vythilingam (2002) DEP-Mix	42	58	5.395	4.790	-3.994	14.784	0.260	0.063	273.071	23.41%
ICV	EXC Vythilingam (2002) DEP-Abu	42	58	6.582	4.749	-2.727	15.891	0.166	0.073	253.428	21.76%
	EXC all	39	55	5.087	4.961	-4.636	14.810	0.305	0.167	171.862	13.14%
	DEP-Mix	25	<u>25</u>	<u>11.731</u>	5.838	0.288	23.173	<u>0.045</u>	0.278	<u>121.417</u>	15.50%
	EXC Meisenzahl (2010) DEP-Mix	24	24	8.345	5.264	-1.972	18.662	0.113	0.447	0.000	0.00%
	EXC Taylor (2007)	24	24	15.295	5.403	4.706	25.884	0.005	0.381	0.000	0.00%
	EXC Vithilingnam (2002) DEP-Mix	24	24	11.480	6.654	-1.562	24.521	0.085	0.232	201.785	20.42%
	EXC all	22	22	11.384	6.696	-1.741	24.509	0.089	0.464	0.000	0.00%
	HC vs DEP no ANX	23	30	13.802	6.204	1.642	<u>25.962</u>	0.026	0.274	<u>191.157</u>	<u>17.78%</u>
	EXC Meisenzahl (2010) DEP-Mix	23	29	10.110	5.800	-1.258	21.478	0.081	0.511	45.443	4.69%
	EXC Taylor (2007)	22	29	17.282	6.157	5.214	29.350	0.005	0.395	79.675	7.35%
	EXC all	21	28	13.928	6.106	1.959	25.896	0.023	0.607	0.000	0.00%
	HC vs DEP-Mix no ANX	<u>16</u>	<u>16</u>	12.765	<u>7.932</u>	<u>-2.782</u>	28.312	0.108	<u>0.192</u>	230.603	24.89%
	EXC Meisenzahl (2010) DEP-Mix	15	15	7.488	7.542	-7.293	22.269	0.321	0.375	72.444	8.52%
	EXC Taylor (2007)	15	15	18.089	7.884	2.637	33.541	0.022	0.330	91.377	9.90%
	EXC all	14	14	12.993	8.163	-3.006	28.991	0.111	0.462	0.000	0.00%
GMV	DEP	<u>15</u>	<u>19</u>	5.541	2.437	0.765	10.318	0.023	0.276	0.000	0.00%
	EXC Yang (2017) DEP-FE	15	18	5.955	3.004	0.068	11.843	0.047	0.227	19.229	12.18%

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.

						Leave	e-one-out	meta-analys	is results		
Region	Analysis	Studies	k	MD	SE	95%	CI	р	Qp	$ au^2$	I^2
RHcV	DEP no ANX	<u>20</u>	<u>25</u>	0.134	<u>0.030</u>	0.075	<u>0.193</u>	<u><0.0001</u>	<u><0.0001</u>	<u>0.015</u>	<u>69.53%</u>
	EXC Maller (2012)	19	24	0.118	0.027	0.065	0.171	<0.0001	0.0003	0.009	58.35%
LHcV	<u>DEP</u>	34	<u>50</u>	0.105	0.023	0.060	0.150	<0.0001	<0.0001	0.017	77.01%
	EXC Vithilingnam (2002) DEP-Abu	34	49	0.094	0.021	0.053	0.135	<0.0001	<0.0001	0.012	69.79%
LHeV	DEP no ANX	<u>20</u>	<u>25</u>	0.124	<u>0.029</u>	<u>0.067</u>	<u>0.180</u>	<u><0.0001</u>	<u><0.0001</u>	0.013	<u>67.74%</u>
	EXC Maller (2012)	19	24	0.108	0.026	0.058	0.158	<0.0001	0.001	0.008	55.00%
TAV	<u>DEP</u>	<u>15</u>	<u>25</u>	0.091	0.061	-0.029	0.211	0.139	<.0001	0.081	90.25%
	EXC Burke (2011) DEP-LO	15	24	0.050	0.048	-0.045	0.145	0.300	<0.0001	0.044	83.53%
RAV	<u>DEP</u>	13	<u>23</u>	0.044	0.029	<u>-0.014</u>	<u>0.101</u>	0.136	<u><0.0001</u>	0.014	<u>77.75%</u>
	EXC Burke (2011) DEP-LO	13	22	0.022	0.020	-0.016	0.061	0.253	0.004	0.004	48.50%
LAV	HC vs DEP	13	<u>23</u>	0.026	0.035	<u>-0.042</u>	0.095	0.453	<u><0.0001</u>	0.022	84.24%
	EXC Burke (2011) DEP-LO	13	22	0.005	0.028	-0.051	0.060	0.867	<0.0001	0.012	74.75%

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Supplemental Table S9. Assessment of bias

Evidence of publication bias with Egger regression test and trim-and-fill method. t: t-statistic, df: degrees of freedom, k: number of samples or subsamples, HC: healthy controls, DEP: depressed participants, MD: mean difference, SE: standard error, CI: confidence interval, Qp: Q-statistic p-value, τ^2 : variance of true effects, I^2 : proportion real differences between studies, TBV: total brain, GMV: grey matter, WMV: white matter, ICV: intracranial, THcV: total hippocampus, RHcV: right hippocampus, LHcV: left hippocampus, TAV: total amygdala, RAV: right amygdala, LAV: left amygdala, TPuV: total putamen, RPuV: right putamen, LPuV: left putamen, TCV: total caudate, RCV: right caudate, LCV: left caudate, TPaV: total pallidum, RPaV: right pallidum, LPaV: left pallidum, TAcV: total accumbens volumes, Mix: heterogeneous group of depressed, EO: early-onset depression, LO: late-onset depression, FE: first episode, ME: multiple episodes, noMed: not taking antidepressants, TR: treatment-resistant depression, Rem: depression in remission, Cur: currently in depression, no ANX: analysis excluding anxiety comorbidity, ANX: analysis comorbid with anxiety. Bold font indicates significance at p \leq 0.05 (p \leq 0.1 for Egger test) and I $^2>$ 50%.

		E	gger te	est					Trim-aı	nd-fill				
Region	Analysis	t	df	р	Missing studies	k	MD	SE	95%	CI	р	Qp	$ au^2$	I ²
TBV	HC vs DEP	0.764	35	0.450	7	44	-8.563	5.306	-18.962	1.836	0.107	0.012	393.460	36.47%
					left side									
	HC vs DEP-Mix	1.179	11	0.263	2	15	6.394	7.302	-7.917	20.705	0.381	0.091	162.326	22.18%
					left side									
	HC vs DEP-LO*	-2.037	5	0.097	3	10	39.086	14.962	9.762	68.411	0.009	< 0.0001	1701.546	86.96%
					right side									

^{*}Change of significance once corrected for publication bias.

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.

		E	gger te	est					Trim-ar	ıd-fill				
Region	Analysis	t	df	р	Missing studies	k	MD	SE	95%	CI	р	Qp	τ^2	I^2
	HC vs DEP no ANX*	0.281	11	0.784	4 left side	17	-15.170	6.622	-28.149	-2.191	0.022	0.279	42.399	5.65%
	HC vs DEP-Mix no ANX	-3.553	2	0.071	1 right side	5	4.502	10.078	-15.252	24.255	0.655	0.832	0.000	0.00%
	HC vs DEP-EO no ANX	0.526	1	0.692	2 left side	5	-5.200	12.970	-30.621	20.221	0.689	0.470	0.000	0.00%
GMV	DEP-TR	-0.333	1	0.795	1 right side	4	16.127	9.181	-1.866	34.121	0.079	0.056	205.714	63.64%
WMV	HC vs DEP-Mix	17.716	1	0.036	2 left side	5	-4.080	4.723	-13.337	5.177	0.388	0.665	0.000	0.00%
	HC vs DEP-FE	14.989	1	0.042	2 left side	5	-5.660	10.749	-26.728	15.408	0.599	0.054	331.782	59.09%
	HC vs DEP no ANX	0.194	6	0.853	1 left side	9	2.391	4.043	-5.533	10.315	0.554	0.355	0.000	0.00%
ICV	HC vs DEP	-0.032	57	0.975	3 right side	62	7.879	4.654	-1.242	16.999	0.091	0.019	290.557	25.67%
	HC vs DEP-Mix	-0.519	23	0.609	4 right side	29	17.426	6.151	5.369	29.482	0.005	0.073	245.109	25.51%
	HC vs DEP-LO	3.496	1	0.177	2 left side	5	-6.600	15.464	-36.909	23.709	0.670	0.311	53.750	4.45%
	HC vs DEP-FE	-1.288	2	0.327	l right side	5	16.984	16.571	-15.496	49.463	0.305	0.212	293.425	20.65%
	HC vs DEP-ME	-0.279	2	0.806	1 right side	5	30.373	19.002	-6.870	67.615	0.110	0.058	925.159	54.04%

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.

		E	gger te	est					Trim-aı	nd-fill				
Region	Analysis	t	df	р	Missing studies	k	MD	SE	95%	CI	р	Qp	$ au^2$	I^2
	HC vs DEP-noMed	-2.153	4	0.098	2	8	-10.196	15.157	-39.904	19.511	0.501	0.618	0.000	0.00%
					right side									
	HC vs DEP-Rem	1.403	3	0.255	2	7	-28.269	15.197	-58.054	1.515	0.063	0.117	375.580	23.61%
					left side									
	DEP no ANX	-0.658	28	0.516	4	34	18.398	6.212	6.223	30.573	0.003	0.112	251.639	20.95%
					right side									
	HC vs DEP-Mix no ANX*	-0.397	14	0.697	3	19	19.117	8.018	3.403	34.831	0.017	0.071	331.321	30.24%
					right side									
THeV	HC vs DEP	0.685	59	0.496	2	63	0.219	0.041	0.139	0.299	< 0.0001	< 0.0001	0.078	87.23%
					right side									
	HC vs DEP-Mix	1.781	24	0.088	4	30	0.195	0.065	0.068	0.323	0.003	< 0.0001	0.102	86.87%
					left side									
	HC vs DEP-LO	2.147	5	0.085	1	8	0.313	0.101	0.114	0.511	0.002	< 0.0001	0.053	77.16%
					left side									
	HC vs DEP-noMed	-0.612	1	0.651	1	4	0.195	0.152	-0.104	0.493	0.201	0.085	0.046	52.86%
					right side									
	HC vs DEP-Cur	-0.184	5	0.861	1	8	0.153	0.085	-0.014	0.320	0.073	0.002	0.038	72.66%
					right side									
	HC vs DEP-Mix no ANX	0.696	15	0.497	3	20	0.180	0.084	0.015	0.345	0.033	< 0.0001	0.118	88.53%
					left side									
	HC vs DEP-EO no ANX*	-9.174	1	0.069	2	5	0.270	0.126	0.023	0.517	0.032	0.002	0.063	81.21%
					right side									
	HC vs DEP-Rem no ANX	1.293	2	0.325	2	6	-0.061	0.062	-0.182	0.060	0.325	0.540	0.000	0.00%
					left side									

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.

		E	gger te	est					Trim-aı	nd-fill				
Region	Analysis	t	df	р	Missing studies	k	MD	SE	95%	CI	р	Qp	$ au^2$	I^2
	HC vs DEP ANX*	-0.101	19	0.921	3	24	0.170	0.080	0.013	0.326	0.033	<0.0001	0.116	90.39%
					right side									
	HC vs DEP-Mix ANX	2.898	2	0.101	1	5	0.157	0.221	-0.277	0.591	0.478	<0.0001	0.223	93.21%
					left side									
RHcV	HC vs DEP	1.025	48	0.310	2	52	0.123	0.023	0.077	0.169	< 0.0001	< 0.0001	0.018	77.37%
					right side									
	HC vs DEP-Mix	2.151	19	0.045	4	25	0.099	0.034	0.032	0.165	0.004	<0.0001	0.021	75.51%
					left side									
	HC vs DEP-LO	1.159	4	0.311	1	7	0.189	0.060	0.073	0.306	0.002	0.045	0.011	50.43%
					left side									
RHcV	HC vs DEP-Cur*	-0.945	3	0.414	3	8	0.133	0.057	0.021	0.245	0.020	0.001	0.017	75.97%
		ļ			right side									
	HC vs DEP-Mix no ANX	0.835	13	0.419	2	17	0.101	0.039	0.025	0.178	0.009	< 0.0001	0.018	73.22%
					left side									
	HC vs DEP-EO no ANX*	-1.069	1	0.479	2	5	0.160	0.058	0.046	0.275	0.006	0.027	0.011	64.56%
	,				right side									
	HC vs DEP ANX	0.097	18	0.924	2	22	0.080	0.043	-0.004	0.163	0.063	<0.0001	0.026	82.08%
					right side									
	HC vs DEP-Mix ANX	3.627	2	0.068	0	NA	NA	NA	NA	NA	NA	NA	NA	NA
					left side									
LHcV	HC vs DEP	0.606	48	0.547	5	55	0.127	0.023	0.081	0.173	<0.0001	<0.0001	0.020	79.39%
					right side									
	HC vs DEP-Mix	2.795	19	0.012	5	26	0.085	0.035	0.017	0.153	0.014	<0.0001	0.022	76.34%
					left side									

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.

		E	gger te	est					Trim-ar	nd-fill				
Region	Analysis	t	df	р	Missing studies	k	MD	SE	95%	CI	р	Qp	$ au^2$	I^2
	HC vs DEP-LO	1.070	4	0.345	2	8	0.141	0.047	0.049	0.233	0.003	0.102	0.006	39.19%
					left side									
	HC vs DEP-Rem	-0.558	6	0.597	1	9	0.005	0.033	-0.060	0.070	0.882	0.759	0.000	0.00%
					right side									
	HC vs DEP-EO no ANX	-3.498	1	0.177	2	5	0.110	0.062	-0.011	0.231	0.075	0.020	0.013	69.97%
					right side									
	HC vs DEP-LO no ANX	0.595	3	0.594	1	6	0.141	0.048	0.047	0.235	0.003	0.102	0.006	45.86%
					left side									
	HC vs DEP-Rem no ANX	3.409	2	0.076	2	6	-0.045	0.037	-0.117	0.028	0.226	0.294	0.000	0.04%
					left side									
	HC vs DEP ANX*	0.018	18	0.986	4	24	0.114	0.042	0.032	0.197	0.007	< 0.0001	0.029	84.51%
					right side									
TAV	HC vs DEP-Rem	1.720	5	0.146	1	8	-0.059	0.060	-0.176	0.059	0.326	0.019	0.017	62.68%
					left side									
	HC vs DEP-Cur	0.147	2	0.896	1	5	-0.001	0.082	-0.163	0.160	0.989	0.146	0.014	43.05%
					right side									
	HC vs DEP no ANX*	0.204	10	0.843	3	15	0.334	0.115	0.109	0.559	0.004	< 0.0001	0.184	94.91%
					right side									
RAV	HC vs DEP-Mix	-0.971	3	0.403	1	6	0.022	0.038	-0.053	0.096	0.574	0.081	0.004	49.62%
					right side									
	HC vs DEP-FE	-2.294	1	0.262	2	5	-0.020	0.035	-0.088	0.048	0.563	0.919	0.000	0.00%
					right side									
	HC vs DEP-Rem	0.445	5	0.675	2	9	-0.028	0.023	-0.073	0.018	0.233	0.542	0.000	0.08%
					left side									

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.

		E	gger te	est					Trim-ar	nd-fill				
Region	Analysis	t	df	р	Missing studies	k	MD	SE	95%	CI	р	Qp	$ au^2$	I^2
	HC vs DEP-Cur	-2.137	1	0.279	2	5	-0.020	0.035	-0.088	0.048	0.563	0.919	0.000	0.00%
	,				right side									
	HC vs DEP no ANX*	0.308	10	0.765	3	15	0.153	0.054	0.046	0.259	0.005	< 0.0001	0.037	87.81%
					right side									
LAV	HC vs DEP-Rem	3.261	5	0.022	2	9	-0.058	0.040	-0.136	0.021	0.151	0.016	0.008	60.82%
					left side									
	HC vs DEP-Cur	-5.962	1	0.106	2	5	-0.050	0.034	-0.116	0.016	0.138	0.958	0.000	0.00%
					right side									
TPuV	HC vs DEP	0.927	18	0.366	1	21	0.196	0.076	0.047	0.345	0.010	< 0.0001	0.062	60.02%
					left side									
	HC vs DEP-Mix no ANX	0.315	2	0.783	1	5	0.079	0.108	-0.132	0.291	0.462	0.223	0.016	28.06%
					left side									
RPuV	HC vs DEP no ANX	-0.636	4	0.560	2	8	0.234	0.059	0.118	0.350	< 0.0001	0.118	0.010	38.41%
					right side									
RPuV	HC vs DEP-Mix no ANX	-0.042	2	0.970	1	5	0.105	0.065	-0.022	0.232	0.106	0.768	0.000	0.00%
					right side									
LPuV	HC vs DEP-Mix	0.793	3	0.486	2	7	0.038	0.053	-0.066	0.143	0.472	0.713	0.000	0.00%
					left side									
	HC vs DEP no ANX*	0.687	4	0.530	1	7	0.127	0.077	-0.024	0.279	0.100	0.048	0.022	54.17%
					left side									
	HC vs DEP-Mix no ANX	0.641	2	0.587	2	6	0.010	0.058	-0.104	0.124	0.858	0.496	0.000	0.00%
					left side									
TCV	HC vs DEP-Mix*	-0.911	6	0.398	2	10	0.207	0.094	0.023	0.391	0.028	0.088	0.033	42.16%
					right side									

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.

		E	gger te	est					Trim-aı	ıd-fill				
Region	Analysis	t	df	р	Missing studies	k	MD	SE	95%	CI	р	Qp	$ au^2$	I ²
	HC vs DEP no ANX	-1.487	4	0.211	1 right side	7	0.160	0.090	-0.017	0.336	0.076	0.056	0.026	47.68%
RCV	HC vs DEP	-1.578	13	0.139	3 right side	18	0.051	0.038	-0.023	0.126	0.174	0.014	0.010	44.80%
	HC vs DEP no ANX	-0.630	4	0.563	1 right side	7	0.057	0.041	-0.023	0.137	0.163	0.436	0.000	0.00%
	HC vs DEP-Mix no ANX	-0.375	2	0.744	1 right side	5	0.071	0.064	-0.055	0.197	0.266	0.213	0.005	23.97%
LCV	HC vs DEP	-2.201	13	0.046	4	19	0.057	0.035	-0.011	0.125	0.099	0.016	0.008	40.67%
	HC vs DEP no ANX*	-1.043	4	0.356	1 right side	7	0.093	0.047	0.002	0.184	0.046	0.275	0.002	12.94%
	HC vs DEP-Mix no ANX	-0.730	2	0.542	1 right side	5	0.126	0.073	-0.018	0.269	0.086	0.101	0.011	44.17%
TPaV	HC vs DEP	0.662	14	0.519	2 left side	18	0.029	0.031	-0.031	0.089	0.344	<0.0001	0.012	74.72%
TPaV	HC vs DEP-Mix	0.917	3	0.427	1 left side	6	0.035	0.036	-0.035	0.105	0.330	0.215	0.002	33.04%
	HC vs DEP no ANX	0.099	2	0.930	1 left side	5	0.070	0.042	-0.011	0.152	0.092	0.357	0.002	22.26%
RPaV	HC vs DEP	0.376	11	0.714	1 left side	14	0.022	0.020	-0.018	0.062	0.279	0.0004	0.003	65.28%
	HC vs DEP-Mix*	-3.594	1	0.173	2 right side	5	0.060	0.028	0.006	0.115	0.031	0.997	0.000	0.00%

DOI: 10.1503/jpn.190156

		E	gger te	est					Trim-ar	ıd-fill				
Region	Analysis	t	df	р	Missing studies	k	MD	SE	95%	CI	р	Qp	$ au^2$	I ²
	HC vs DEP no ANX	-0.269	2	0.813	2	6	0.064	0.020	0.025	0.104	0.002	0.892	0.000	0.00%
					right side									
LPaV	HC vs DEP	0.525	11	0.610	2	15	0.019	0.015	-0.009	0.048	0.185	0.129	0.001	18.86%
					left side									
	HC vs DEP-Mix	0.763	1	0.585	1	4	0.002	0.036	-0.068	0.072	0.958	0.211	0.001	23.40%
					left side									
	HC vs DEP no ANX	0.472	2	0.683	1	5	0.015	0.035	-0.053	0.084	0.659	0.155	0.002	39.03%
					left side									
RTV	HC vs DEP no ANX	0.491	1	0.710	1	4	0.191	0.086	0.022	0.359	0.027	0.821	0.000	0.00%
					left side									
TAcV	HC vs DEP	0.747	7	0.480	2	11	-0.037	0.025	-0.086	0.013	0.149	<0.0001	0.005	72.45%
					left side									

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Supplemental Table S10. Meta-regression results

k: number of samples or subsamples, mod: moderator, HC: healthy controls, DEP: depressed participants, %F: percent female, diff: difference, %Med: percent medicated, mod: moderator, Seg: segmentation, Man/Auto: manual/automated segmentation, HDS-17: 17-item Hamilton Depression Score, MD: mean difference, SE: standard error, CI: confidence interval, QEp: test for residual heterogeneity p-value, QMp: test of moderators p-value, τ²: variance of true effects, I²: residual heterogeneity unaccounted by model, R²: heterogeneity accounted by model, TBV: total brain, THcV: total hippocampus, RHcV: right hippocampus, LHcV: left hippocampus, ICV: intracranial volumes. Model A: combined demographics of HC and DEP, Model B: combined age and %F diff of HC and DEP. Bold font indicates significance at p≤0.05 and I²/R²>50%.

								Mixed-	Effects Mo	del				
Region	Analysis	Moderator	k		MD	SE	95%	CI	р	QEp	QMp	$ au^2$	I^2	\mathbb{R}^2
TBV	Gender	Total %F	37	intercept	-9.435	18.568	-45.827	26.958	0.611	0.248	0.661	0.000	0.00%	0.00%
				mod	0.120	0.273	-0.416	0.655	0.661					
		HC %F	37	intercept	-6.403	17.802	-41.293	28.487	0.719	0.244	0.777	0.000	0.00%	74.27%
				mod	0.076	0.269	-0.451	0.603	0.777					
		DEP %F	37	intercept	-11.083	17.258	-44.908	22.743	0.521	0.252	0.568	0.000	0.00%	0.00%
				mod	0.141	0.247	-0.342	0.624	0.568					
		HC/DEP %F	37	intercept	-8.833	18.216	-44.536	26.870	0.628	0.221	0.788	0.000	0.00%	16.08%
				HC %F	-0.197	0.511	-1.199	0.805	0.700					
				DEP %F	0.295	0.469	-0.624	1.213	0.529					
		%F diff	37	intercept	-2.487	4.451	-11.210	6.236	0.576	0.253	0.556	0.000	0.00%	14.28%
				mod	-0.274	0.465	-1.185	0.638	0.556					
	Age	Total Age	37	intercept	-4.010	7.782	-19.262	11.242	0.606	0.246	0.693	8.992	1.34%	0.00%

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.

								Mixed	-Effects Mo	odel				
Region	Analysis	Moderator	k		MD	SE	95%	CI	р	QEp	QMp	$ au^2$	I^2	\mathbb{R}^2
				mod	0.102	0.258	-0.403	0.606	0.693					
		HC Age	37	intercept	-4.153	7.596	-19.041	10.735	0.585	0.247	0.664	10.566	1.57%	0.009
				mod	0.111	0.255	-0.388	0.609	0.664					
		DEP Age	37	intercept	-3.982	7.936	-19.537	11.573	0.616	0.246	0.705	7.586	1.14%	0.00%
				mod	0.098	0.259	-0.410	0.606	0.705					
TBV	Age	HC/DEP Age	37	intercept	-2.853	8.600	-19.708	14.001	0.740	0.215	0.847	45.043	6.34%	0.00%
				HC age	0.733	1.764	-2.724	4.191	0.678					
				DEP age	-0.633	1.802	-4.166	2.900	0.726					
	Model	Model A	37	intercept	-9.872	19.252	-47.605	27.860	0.608	0.215	0.873	16.499	2.41%	0.00%
				%F	0.094	0.282	-0.459	0.648	0.738					
				age total	0.089	0.264	-0.429	0.606	0.738					
		Model B	37	intercept	-4.118	7.938	-19.676	11.441	0.604	0.219	0.821	28.136	4.00%	0.00%
				%F diff	-0.236	0.493	-1.202	0.730	0.632					
				age total	0.080	0.270	-0.449	0.609	0.767					
THcV	Gender	Total %F	61	intercept	0.108	0.110	-0.108	0.323	0.327	< 0.0001	0.354	0.073	86.56%	0.00%
				mod	0.002	0.002	-0.002	0.005	0.354					
		HC %F	61	intercept	0.113	0.106	-0.095	0.321	0.288	<0.0001	0.366	0.073	86.53%	0.00%
				mod	0.001	0.002	-0.002	0.004	0.366					
		DEP %F	61	intercept	0.122	0.111	-0.095	0.338	0.272	< 0.0001	0.434	0.073	86.63%	0.00%
				mod	0.001	0.002	-0.002	0.004	0.434					
		HC/DEP %F	61	intercept	0.119	0.111	-0.099	0.337	0.286	< 0.0001	0.654	0.075	86.66%	0.00%
				HC %F	0.002	0.005	-0.007	0.011	0.623					
				DEP %F	-0.001	0.005	-0.010	0.008	0.844					
		%F diff	61	intercept	0.207	0.043	0.123	0.291	< 0.0001	< 0.0001	0.736	0.074	86.63%	0.00%

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.

								Mixed-	-Effects Mo	odel				
Region	Analysis	Moderator	k		MD	SE	95%	CI	р	QEp	QMp	$ au^2$	I^2	\mathbb{R}^2
				mod	0.002	0.005	-0.007	0.010	0.736					
	Age	Total Age	61	intercept	0.197	0.059	0.081	0.312	0.001	< 0.0001	0.902	0.074	86.67%	0.00%
				mod	0.000	0.003	0.123	-0.005	0.006					
		HC Age	61	intercept	0.209	0.057	0.098	0.320	0.0002	< 0.0001	0.856	0.074	86.64%	0.00%
				mod	-0.001	0.003	-0.006	0.005	0.856					
		DEP Age	61	intercept	0.185	0.062	0.063	0.306	0.003	< 0.0001	0.710	0.074	86.66%	0.00%
				mod	0.001	0.003	-0.005	0.007	0.710					
THcV	Age	HC/DEP Age	61	intercept	0.148	0.064	0.023	0.274	0.020	< 0.0001	0.146	0.071	85.48%	1.86%
				HC age	-0.019	0.010	-0.037	0.000	0.054					
				DEP age	0.020	0.010	0.000	0.040	0.051					
	Segmentation	Man/Auto	61	intercept	0.119	0.064	-0.008	0.245	0.065	< 0.0001	0.099	0.071	84.92%	2.45%
				mod	0.135	0.082	-0.025	0.296	0.099					
	Medication	%Med	33	intercept	0.128	0.087	-0.042	0.298	0.140	< 0.0001	0.205	0.086	87.34%	0.00%
				%med	0.002	0.002	-0.001	0.005	0.205					
	Symptoms	HDS-17	22	intercept	0.240	0.268	-0.285	0.766	0.370	<0.0001	0.850	0.087	84.76%	0.00%
				HDS-17	0.003	0.014	-0.024	0.029	0.850					
	Model	Model A	61	intercept	0.107	0.115	-0.119	0.332	0.354	<0.0001	0.654	0.075	86.65%	0.00%
				%F	0.002	0.002	-0.002	0.005	0.361					
				age total	0.000	0.003	-0.006	0.006	0.986					
		Model B	61	intercept	0.199	0.060	0.082	0.317	0.001	< 0.0001	0.930	0.075	86.70%	0.00%
				%F diff	0.002	0.005	-0.007	0.011	0.718					
				age total	0.001	0.003	-0.005	0.006	0.854					
	Model + Seg	Model A + Seg	Ì	ĺ	0.069		-0.160			<0.0001	0.379	0.073	84.96%	0.00%

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.

								Mixed	-Effects Mo	del				
Region	Analysis	Moderator	k		MD	SE	95%	CI	р	QEp	QMp	$ au^2$	\mathbf{I}^2	\mathbb{R}^2
				%F	0.001	0.002	-0.002	0.004	0.539					
				age total	-0.001	0.003	-0.006	0.005	0.797					
				seg	0.129	0.087	-0.040	0.299	0.136					
		Model B + Seg	61	intercept	0.124	0.073	-0.019	0.267	0.090	< 0.0001	0.360	0.073	84.75%	0.00%
				%F diff	0.003	0.005	-0.006	0.012	0.479					
				age total	0.000	0.003	-0.006	0.005	0.909					
				seg	0.151	0.087	-0.018	0.321	0.080					
RHcV	Gender	Total %F	50	intercept	0.065	0.066	-0.065	0.195	0.327	<0.0001	0.427	0.017	77.00%	0.00%
				mod	0.001	0.001	-0.001	0.003	0.427					
RHcV	Gender	HC %F	50	intercept	0.063	0.064	-0.062	0.188	0.320	< 0.0001	0.393	0.017	76.92%	0.00%
				mod	0.001	0.001	-0.001	0.003	0.393					
		DEP %F	50	intercept	0.072	0.068	-0.061	0.205	0.289	<0.0001	0.509	0.017	77.11%	0.00%
				mod	0.001	0.001	-0.001	0.003	0.509					
		HC/DEP %F	50	intercept	0.074	0.068	-0.060	0.208	0.280	< 0.0001	0.625	0.017	77.20%	0.00%
				HC mod	0.002	0.003	-0.004	0.008	0.479					
				DEP mod	-0.001	0.003	-0.007	0.004	0.645					
		%F diff	50	intercept	0.121	0.025	0.071	0.170	< 0.0001	< 0.0001	0.526	0.017	76.73%	0.00%
				mod	0.002	0.003	-0.004	0.007	0.526					
	Age	Total Age	50	intercept	0.090	0.033	0.025	0.155	0.007	< 0.0001	0.317	0.017	76.69%	0.00%
				mod	0.002	0.002	-0.002	0.005	0.317					
		HC Age	50	intercept	0.101	0.032	0.038	0.163	0.002	<0.0001	0.534	0.017	76.88%	0.00%
				mod	0.001	0.002	-0.002	0.004	0.534					
		DEP Age	50	intercept	0.080	0.035	0.011	0.149	0.022	<0.0001	0.205	0.017	76.46%	0.17%
				mod	0.002	0.002	-0.001	0.005	0.205					

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020. DOI: 10.1503/jpn.190156

								Mixed-	Effects Mo	odel				
Region	Analysis	Moderator	k		MD	SE	95%	CI	р	QEp	QMp	$ au^2$	I^2	\mathbb{R}^2
		HC/DEP Age	37	intercept	0.054	0.037	-0.019	0.126	0.146	<0.0001	0.056	0.015	73.86%	7.22%
				HC mod	-0.010	0.005	-0.020	0.000	0.043					
				DEP mod	0.013	0.006	0.002	0.024	0.020					
	Segmentation	Man/Auto	50	intercept	0.056	0.040	-0.023	0.135	0.165	<0.0001	0.077	0.016	73.14%	3.49%
				mod	0.086	0.049	-0.009	0.182	0.077					
	Medication	%Med	28	intercept	0.106	0.050	0.008	0.204	0.035	<0.0001	0.602	0.019	76.68%	0.00%
				%med	0.000	0.001	-0.001	0.002	0.602					
	Symptoms	HDS-17	19	intercept	0.162	0.143	-0.118	0.442	0.258	<0.0001	0.914	0.016	70.54%	0.00%
				HDS-17	-0.001	0.007	-0.015	0.013	0.914					

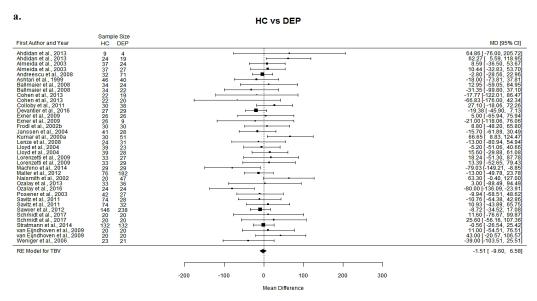
Model	Model A	50	intercept	0.044	0.070	-0.093	0.181	0.527	<0.0001	0.460	0.017	77.07%	0.00%
			%F	0.001	0.001	-0.001	0.003	0.454					
			age total	0.002	0.002	-0.002	0.005	0.337					
	Model B	50	intercept	0.094	0.034	0.028	0.160	0.005	<0.0001	0.402	0.017	76.55%	0.00%
			%F diff	0.003	0.003	-0.003	0.009	0.364					
			age total	0.002	0.002	-0.001	0.005	0.234					
Model + Seg	Model A + Seg	50	intercept	0.011	0.073	-0.131	0.154	0.878	<0.0001	0.265	0.017	73.67%	0.00%
			%F	0.001	0.001	-0.001	0.002	0.628					
			age total	0.001	0.002	-0.002	0.005	0.421					
			seg	0.078	0.051	-0.021	0.177	0.121					
	Model B + Seg	50	intercept	0.035	0.045	-0.053	0.124	0.434	<0.0001	0.133	0.016	72.40%	2.82%
			%F diff	0.004	0.003	-0.002	0.010	0.179					
			age total	0.002	0.002	-0.001	0.005	0.268					

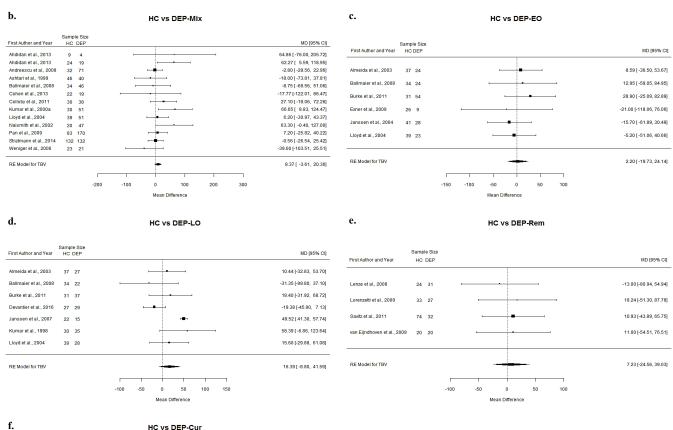
Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.

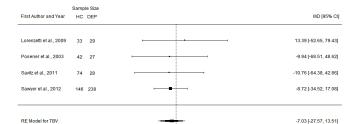
								Mixed	-Effects Mo	odel				
Region	Analysis	Moderator	k		MD	SE	95%	CI	р	QEp	QMp	$ au^2$	I ²	\mathbb{R}^2
				seg	0.098	0.051	-0.001	0.197	0.053					
LHcV	Gender	Total %F	50	intercept	0.082	0.064	-0.044	0.208	0.203	<0.0001	0.709	0.017	77.40%	0.00%
				mod	0.000	0.001	-0.002	0.002	0.709					
		HC %F	50	intercept	0.080	0.062	-0.042	0.202	0.197	<0.0001	0.673	0.017	77.34%	0.00%
				mod	0.000	0.001	-0.001	0.002	0.673					
		DEP %F	50	intercept	0.090	0.066	-0.039	0.219	0.173	<0.0001	0.812	0.017	77.44%	0.00%
				mod	0.000	0.001	-0.002	0.002	0.812					
		HC/DEP %F	50	intercept	0.091	0.066	-0.039	0.221	0.168	< 0.0001	0.800	0.018	77.41%	0.00%
				HC mod	0.002	0.003	-0.004	0.008	0.533					
				DEP mod	-0.002	0.003	-0.007	0.004	0.606					
LHcV	Gender	%F diff	50	intercept	0.111	0.025	0.061	0.160	<0.0001	<0.0001	0.548	0.017	76.97%	0.00%
				mod	0.002	0.003	-0.004	0.007	0.548					
	Age	Total Age	50	intercept	0.104	0.034	0.038	0.169	0.002	< 0.0001	0.975	0.017	77.35%	0.00%
				mod	0.000	0.002	-0.003	0.003	0.975					
LHcV	Age	HC Age	50	intercept	0.108	0.032	0.046	0.171	0.001	< 0.0001	0.855	0.017	77.23%	0.00%
				mod	0.000	0.002	-0.003	0.003	0.855					
		DEP Age	50	intercept	0.101	0.036	0.031	0.170	0.005	< 0.0001	0.884	0.017	77.39%	0.00%
				mod	0.000	0.002	-0.003	0.004	0.884					
		HC/DEP Age	50	intercept	0.086	0.038	0.012	0.161	0.024	< 0.0001	0.547	0.018	76.35%	0.00%
				HC mod	-0.006	0.005	-0.016	0.005	0.276					
				DEP mod	0.006	0.006	-0.005	0.017	0.279					
	Segmentation	Man/Auto	50	intercept	0.053	0.041	-0.027	0.132	0.195	<0.0001	0.119	0.017	74.29%	1.80%
				mod	0.076	0.049	-0.020	0.172	0.119					
	Medication	%Med	28	intercept	0.097	0.052	-0.005	0.198	0.061	<0.0001	0.720	0.022	80.44%	0.00%

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020. DOI: 10.1503/jpn.190156

								Mixed-	Effects M	odel				
Region	Analysis	Moderator	k		MD	SE	95%	CI	р	QEp	QMp	$ au^2$	I^2	\mathbb{R}^2
				%med	0.000	0.001	-0.001	0.002	0.720					
	Symptoms	HDS-17	19	intercept	0.136	0.154	-0.166	0.437	0.378	< 0.0001	0.940	0.026	80.36%	0.00%
				HDS-17	0.001	0.008	-0.015	0.016	0.940					
	Model	Model A	50	intercept	0.081	0.069	-0.053	0.215	0.237	<0.0001	0.931	0.018	77.75%	0.00%
				%F	0.000	0.001	-0.002	0.002	0.707					
				age total	0.000	0.002	-0.003	0.003	0.987					
		Model B	50	intercept	0.106	0.034	0.040	0.173	0.002	< 0.0001	0.826	0.018	77.27%	0.00%
				%F diff	0.002	0.003	-0.004	0.008	0.536					
				age total	0.000	0.002	-0.003	0.004	0.855					
	Model + Seg	Model A + Seg	50	intercept	0.046	0.072	-0.096	0.187	0.529	< 0.0001	0.493	0.018	74.87%	0.00%
				%F	0.000	0.001	-0.002	0.002	0.870					
				age total	0.000	0.002	-0.003	0.003	0.902					
				seg	0.076	0.051	-0.023	0.175	0.132					

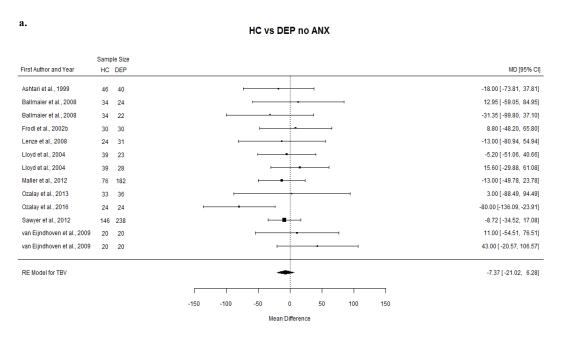

LHeV	Model + Seg	Model B + Seg	50	intercept	0.052	0.046	-0.038	0.142	0.260	<0.0001	0.330	0.017	73.91%	0.00%
				%F diff	0.003	0.003	-0.003	0.009	0.312					
				age total	0.000	0.002	-0.003	0.004	0.910					
				seg	0.089	0.051	-0.011	0.189	0.082					
ICV	Gender	Total %F	59	intercept	21.086	14.643	-7.613	49.785	0.150	0.078	0.273	197.521	19.01%	10.53%
				mod	-0.218	0.199	-0.608	0.172	0.273					
		HC %F	59	intercept	24.749	13.922	-2.539	52.036	0.076	0.090	0.151	184.124	17.94%	16.59%
				mod	-0.275	0.192	-0.651	0.101	0.151					
		DEP %F	59	intercept	13.820	15.074	-15.725	43.364	0.359	0.066	0.577	221.715	20.93%	0.00%

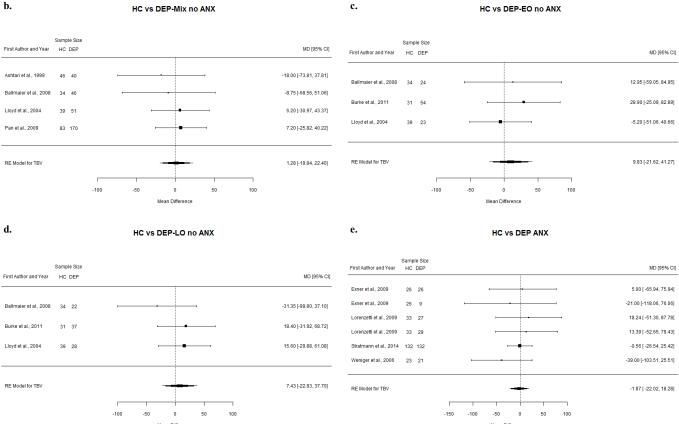

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.


								Mixed-	Effects Mo	del				
Region	Analysis	Moderator	k		MD	SE	95%	CI	р	QEp	QMp	$ au^2$	I^2	\mathbb{R}^2
				mod	-0.112	0.201	-0.505	0.281	0.577					
		HC/DEP %F	59	intercept	15.668	14.692	-13.127	44.463	0.286	0.131	0.066	171.708	16.92%	22.22%
				HC %F	-1.087	0.483	-2.033	-0.141	0.024					
				DEP %F	0.903	0.494	-0.065	1.870	0.067					
		%F diff	59	intercept	2.606	4.619	-6.447	11.658	0.573	0.130	0.033	171.398	17.38%	22.36%
				mod	-1.020	0.477	-1.956	-0.085	0.033					
	Age	Total Age	59	intercept	2.939	6.992	-10.766	16.644	0.674	0.058	0.583	271.704	24.42%	0.00%
				mod	0.163	0.297	-0.419	0.745	0.583					
		HC Age	59	intercept	3.802	6.554	-9.042	16.647	0.562	0.058	0.665	268.213	24.12%	0.00%
				mod	0.121	0.281	-0.429	0.672	0.665					
		DEP Age	59	intercept	0.799	7.562	-14.022	15.620	0.916	0.061	0.401	273.527	24.57%	0.00%
				mod	0.264	0.314	-0.352	0.880	0.401					
		HC/DEP Age	59	intercept	-4.594	8.447	-21.149	11.961	0.587	0.079	0.271	244.846	22.40%	0.00%
				HC age	-1.417	1.019	-3.414	0.580	0.164					
				DEP age	1.778	1.138	-0.454	4.009	0.118					
	Model	Model A	59	intercept	17.827	16.393	-14.302	49.957	0.277	0.066	0.530	253.142	22.67%	0.00%
				%F	-0.206	0.207	-0.611	0.200	0.321					
			\perp	age total	0.131	0.295	-0.446	0.709	0.321					
ICV	Model	Model B	59	intercept	1.894	6.726	-11.289	15.077	0.778	0.112	0.107	208.772	19.81%	5.43%
				%F diff	-1.011	0.492	-1.976	-0.047	0.040					
				age total	0.042	0.289	-0.525	0.609	0.885					

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

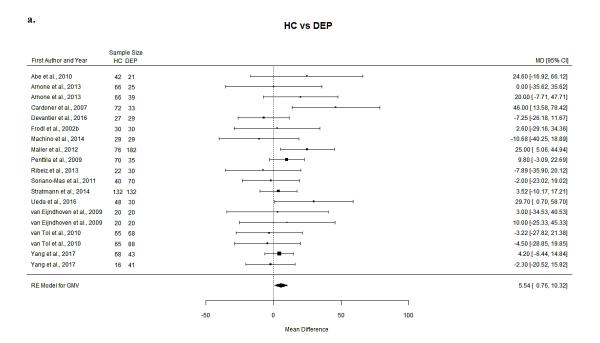



Supplemental Figure S1. TBV forest plots

Forest plots of main analysis (a) and subgroup analyses for heterogeneous depression (Mix) (b), early onset depression (EO) (c), late-onset depression (LO) (d), depression in remission (Rem) (e), and current depression (Cur) (f).

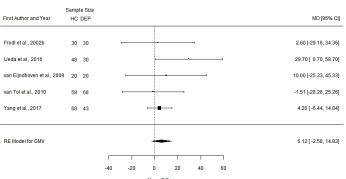
DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

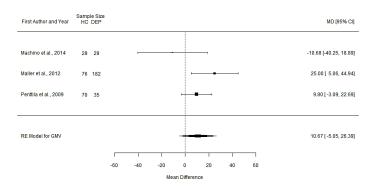


Supplemental Figure S2. TBV assessment of anxiety comorbidity forest plots

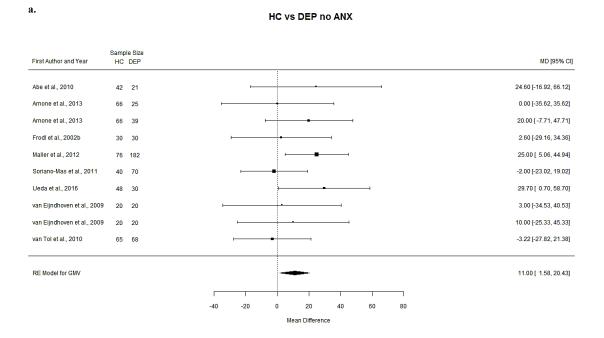

Forest plots of main analysis (a) and subgroup analyses for heterogeneous depression (Mix) (b), early-onset depression (EO) (c), and late-onset depression (LO) (d) excluding anxiety disorders (no ANX). Forest plot of main analysis comorbid with anxiety disorders (ANX) (e).

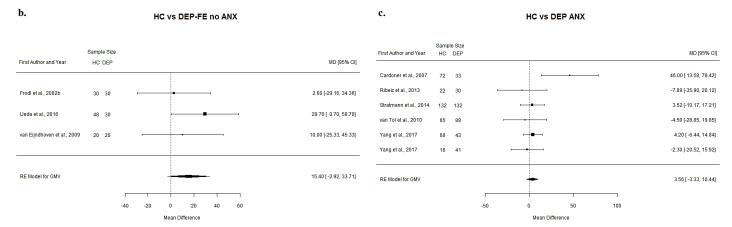

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.


c.

HC vs DEP-FE

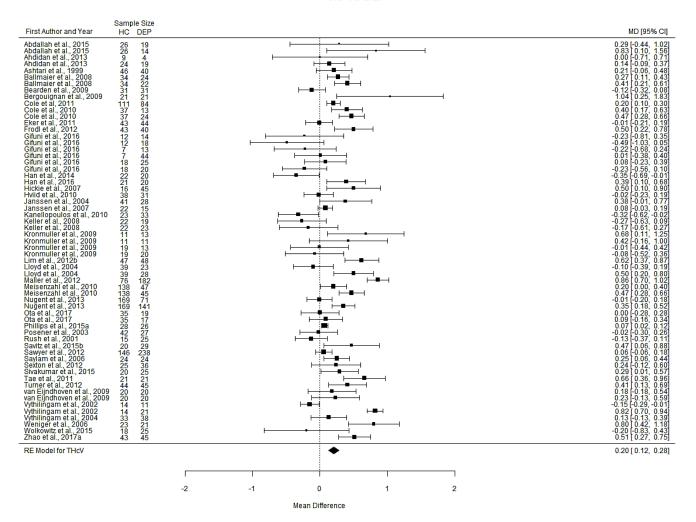


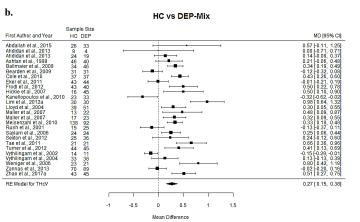

Supplemental Figure S3. GMV forest plots

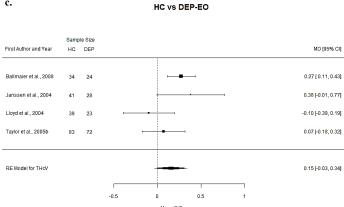
Forest plots of main analysis (a) and subgroup analyses for heterogeneous depression (Mix) (b), first-episode of depression (FE) (c), and treatment-resistant depression (TR) (d).

DOI: 10.1503/jpn.190156

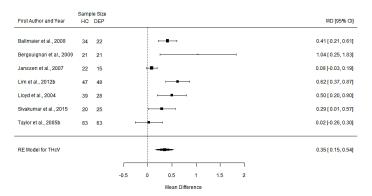
Online appendices are unedited and posted as supplied by the authors.



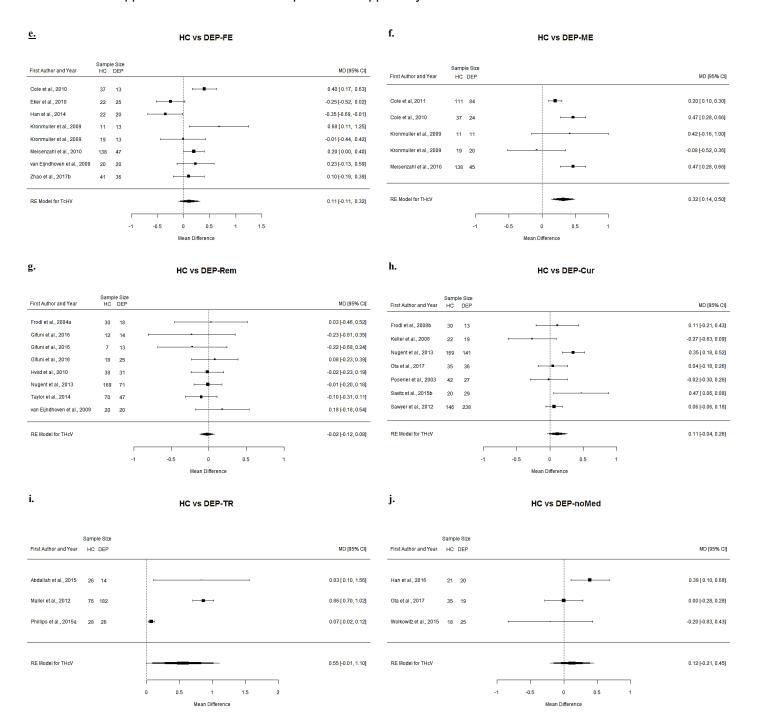

Supplemental Figure S4. GMV assessment of anxiety comorbidity forest plots


Forest plots of main analysis (a) and subgroup analysis for first-episode of depression (FE) (b) excluding anxiety disorders (no ANX). Forest plot of main analysis comorbid with anxiety disorders (ANX) (c).

Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.


a.
HC vs DEP

d. HC vs DEP-LO

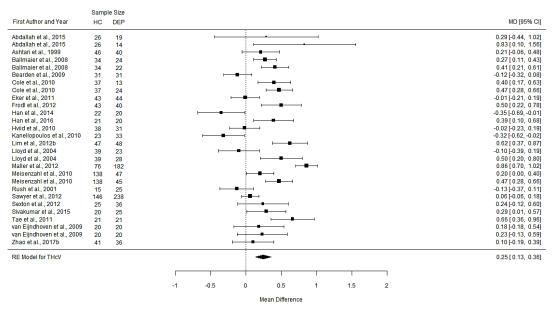


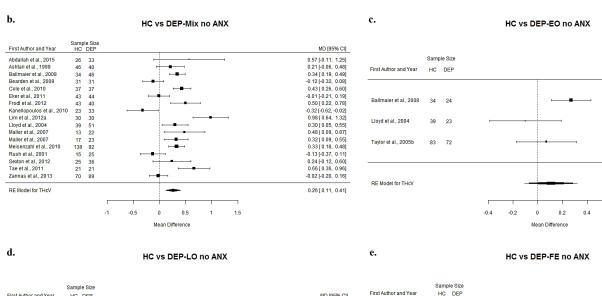
Supplemental Figure S5. THcV forest plots

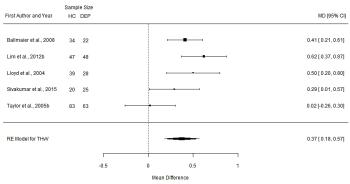
Forest plots of main analysis (a) and subgroup analyses for heterogeneous depression (Mix) (b), early-onset depression (EO) (c), and late-onset depression (LO) (d).

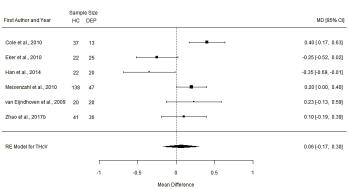
DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.


Supplemental Figure S5. THcV forest plots (continued)


Forest plots of subgroup analyses for first-episode of depression (FE) (e), multiple-episodes of depression (ME) (f), depression in remission (Rem) (g), current depression (Cur) (h), treatment-resistant depression (TR) (i), and non-medicated depression (noMED) (j).


THcV: total hippocampus volume, HC: healthy controls, DEP: depressed individuals, DEP-FE: first episode, RE: random-effects model, MD: mean difference, CI: confidence interval.


Appendix 1 to Espinoza Oyarce DA, Shaw ME, Alateeq K, et al. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. *J Psychiatry Neurosci* 2020.

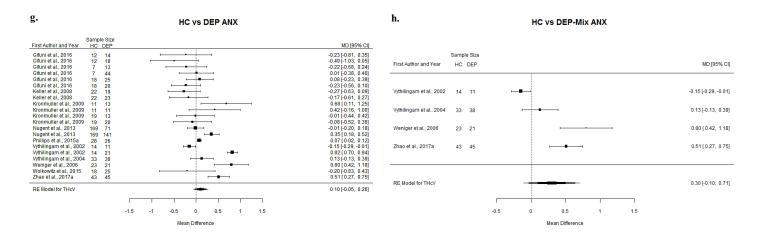
HC vs DEP no ANX

MD (95% CII

-0.10 [-0.39, 0.19]

0.07 [-0.18, 0.32]

f. HC vs DEP-Rem no ANX

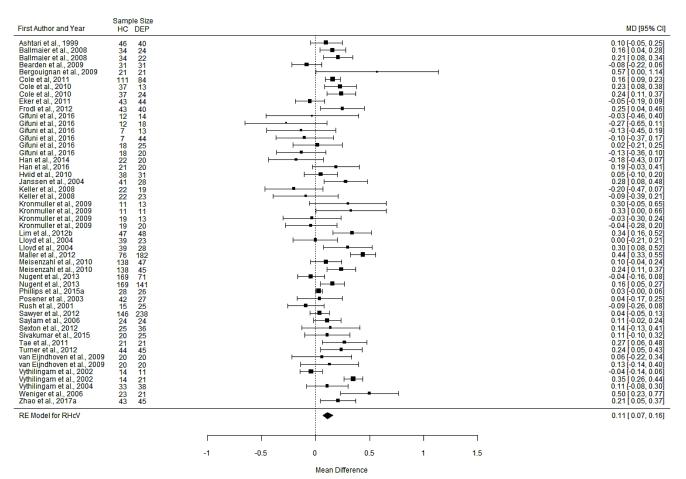

	Samp	le Size									
First Author and Year	HC	DEP									MD [95% CI]
Frodl et al., 2004a	30	18		-		-			-		0.03 [-0.46, 0.52]
Hviid et al., 2010	38	31			-	-					-0.02 [-0.23, 0.19]
Taylor et al., 2014	70	47					-				-0.10 [-0.31, 0.11]
van Eijndhoven et al., 2009	20	20			-				-		0.18 [-0.18, 0.54]
RE Model for THcV					-	_	-				-0.02 [-0.15, 0.11]
				-	-	-	- 1	-	_		
			-0.6	-0.4	-0.2	0	0.2	0.4	0.6		
					Mea	n Differ	ence				

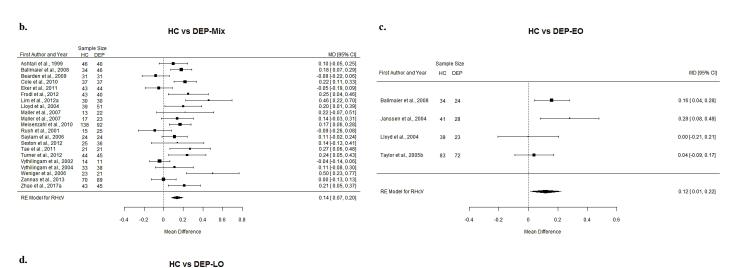
Supplemental Figure S6. THcV assessment of anxiety comorbidity forest plots

Forest plots of main analysis (a) and subgroup analyses for heterogeneous depression (Mix) (b), early-onset depression (EO) (c), late-onset depression (LO) (d), first-episode of depression (FE) (e), and depression in remission (Rem) (f) excluding anxiety disorders (no ANX).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.




Supplemental Figure S6. THcV assessment of anxiety comorbidity forest plots (continued)

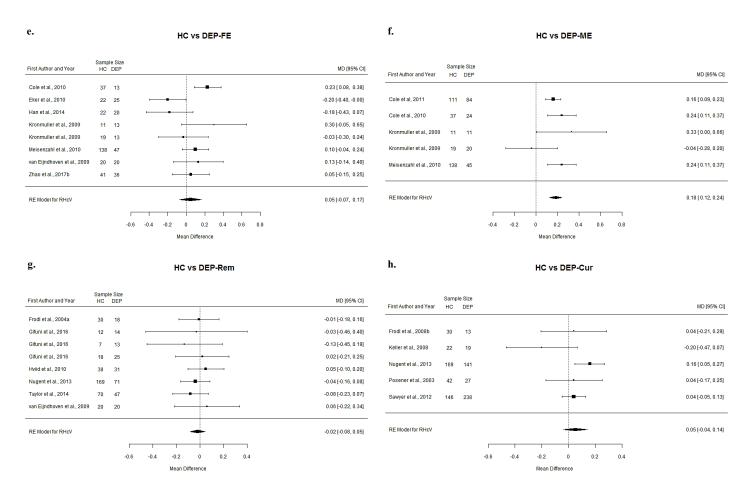
Forest plots of main analysis (g), and subgroup analysis for heterogeneous depression (Mix) (h) comorbid with anxiety disorders (ANX).

DOI: 10.1503/jpn.190156

HC vs DEP

First Author and Yea MD [95% CI] Ballmaier et al., 2008 34 0.21 [0.08, 0.34] Bergouignan et al. 2009 21 0.57 [0.00, 1.14] Lim et al., 2012b 0.34 [0.16, 0.52] Lloyd et al., 2004 0.30 [0.08, 0.52] Sivakumar et al., 2015 0.11 [-0.10, 0.32] 0.02 [-0.13, 0.17] Taylor et al., 2005b 63 RE Model for RHcV 0.20 [0.08, 0.32]

> 0.5 Mean Difference


-0.5

Supplemental Figure S7. RHcV forest plots

Forest plots of main analysis (a) and subgroup analyses for heterogeneous depression (Mix) (b), early-onset depression (EO) (c), and late-onset depression (LO) (d).

DOI: 10.1503/jpn.190156

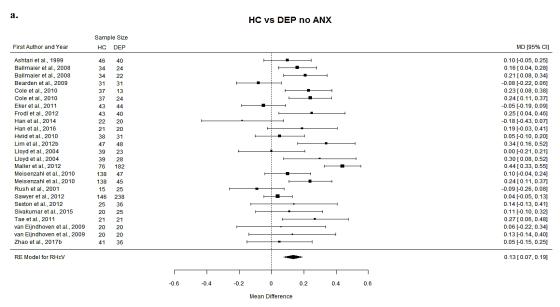
Online appendices are unedited and posted as supplied by the authors.

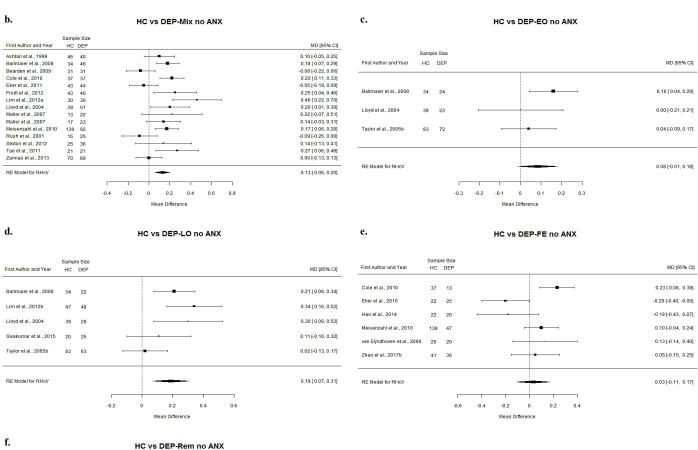
Supplemental Figure S7. RHcV forest plots (continued)

Forest plots of subgroup analyses for first-episode of depression (FE) (e), multiple-episodes of depression (ME) (f), depression in remission (Rem) (g), and current depression (Cur) (h).

DOI: 10.1503/jpn.190156

Hviid et al., 2010


van Eijndhoven et al., 2009


RE Model for RHcV

31

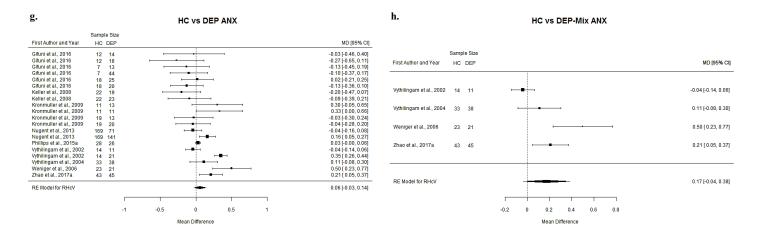
20

Online appendices are unedited and posted as supplied by the authors.

Sample Size HC DEP MD [85% CI] Supplemental Figure S8. RHcV assessment of anxiety comorbidity forest plots Forest plots of main analysis (a) and subgroup analysis for

0.05 [-0.10, 0.20]

-0.08 [-0.23, 0.07]

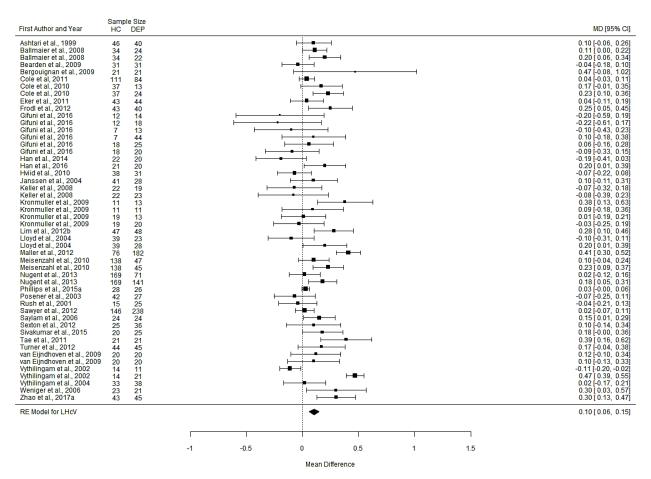

0.06 [-0.22, 0.34]

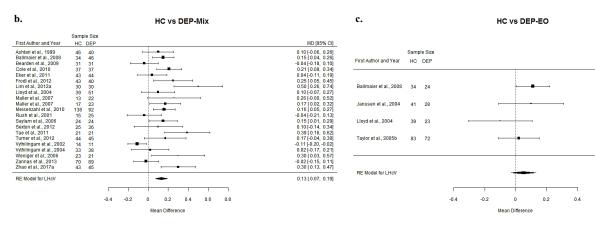
-0.01 [-0.09, 0.08]

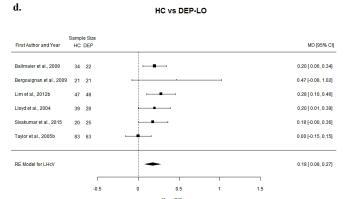
Forest plots of main analysis (a) and subgroup analyses for heterogeneous depression (Mix) (b), early-onset depression (EO) (c), late-onset depression (LO) (d), first-episode of depression (FE) (e), and depression in remission (Rem) (f) excluding anxiety disorders (no ANX).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.


Supplemental Figure S8. RHcV assessment of anxiety comorbidity forest plots (continued)


Forest plots of main analysis (g), and subgroup analysis for heterogeneous depression (Mix) (h) comorbid with anxiety disorders (ANX).

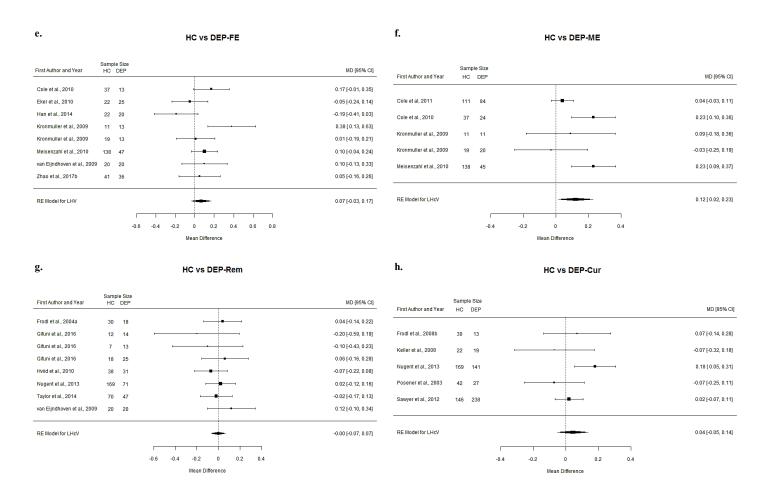

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

a. HC vs DEP

Supplemental Figure S9. LHcV forest plots

Forest plots of main analysis (a) and subgroup analyses for heterogeneous depression (Mix) (b), early-onset depression (EO) (c), and late-onset depression (LO) (d).


0.11 [0.00, 0.22]

0.02 (-0.11, 0.15)

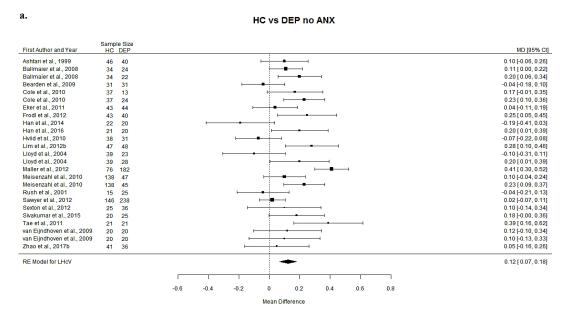
0.05 [-0.03, 0.13]

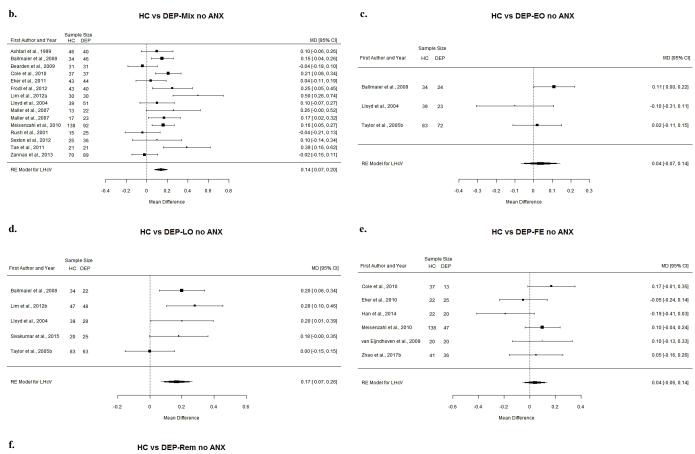
DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Supplemental Figure S9. LHcV forest plots (continued)

Forest plots of subgroup analyses for first-episode depression (FE) (e), multiple-episodes of depression (ME) (f), depression in remission (Rem) (g), and current depression (Cur) (h).


DOI: 10.1503/jpn.190156


Hviid et al., 2010

Taylor et al., 2014

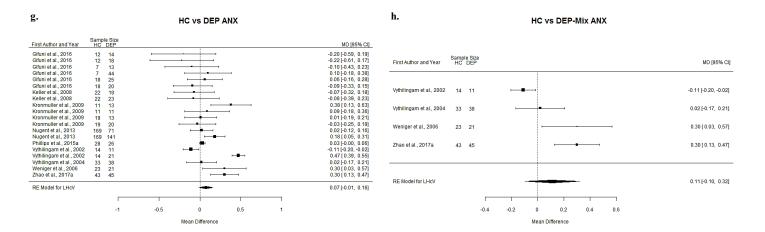
RE Model for LHcV

Online appendices are unedited and posted as supplied by the authors.

First Author and Year HC DEP MD [95% C] Supplemental Figure S10. LHcV assessment of anxiety comorbidity forest plots Frod let al., 2004a 30 18 Out [0.14, 0.22] Supplemental Figure S10. LHcV assessment of anxiety comorbidity forest plots Forest plots of main analysis (a) and subgroup analyses for

-0.07 [-0.22, 0.08]

-0.02 [-0.17, 0.13]

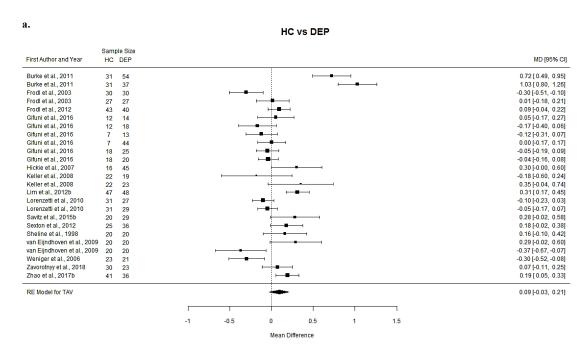

0.12 [-0.10, 0.34]

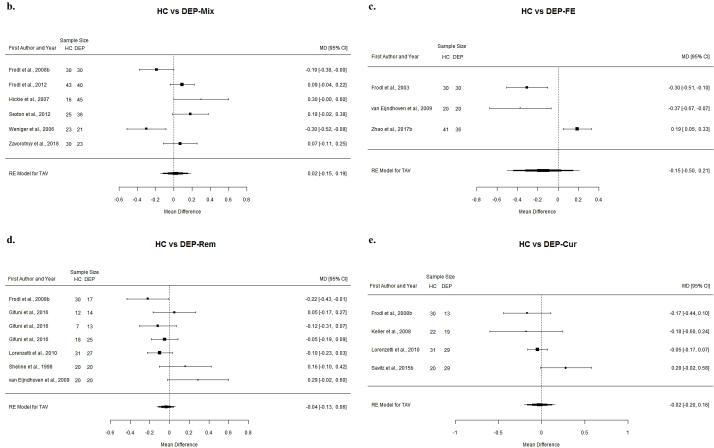
-0.00 [-0.09, 0.08]

heterogeneous depression (Mix) (b), early-onset depression (EO) (c), late-onset depression (LO) (d), first-episode of depression (FE) (e), and depression in remission (Rem) (f) excluding anxiety disorders (no ANX).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

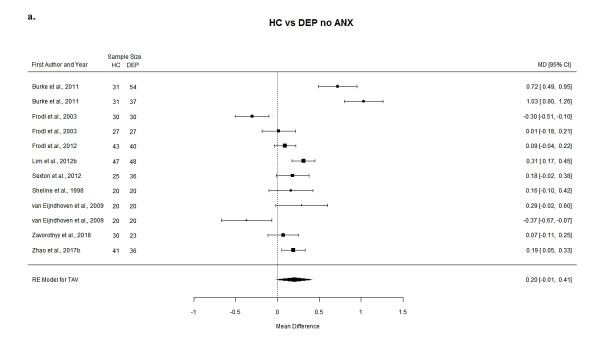


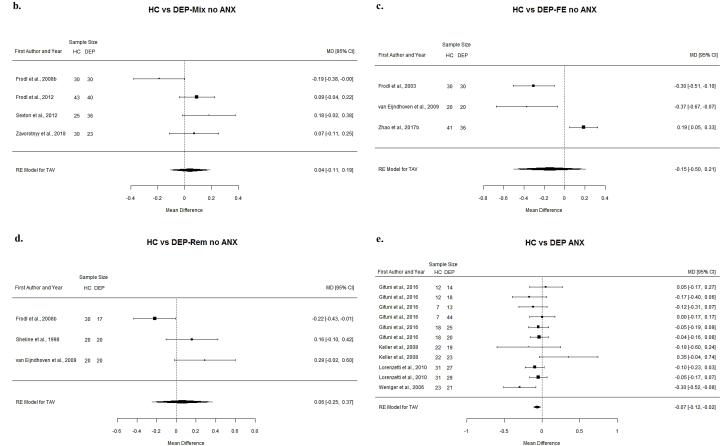

Supplemental Figure S10. LHcV assessment of anxiety comorbidity forest plots (continued)

Forest plots of main analysis (g), and subgroup analysis for heterogeneous depression (Mix) (h) comorbid with anxiety disorders (ANX).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

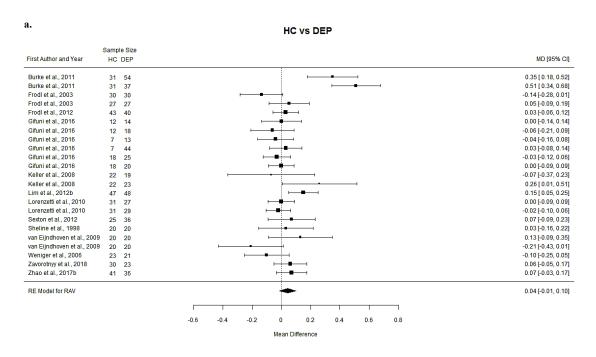



Supplemental Figure S11. TAV forest plots

Forest plots of main analysis (a) and subgroup analyses for heterogeneous depression (Mix) (b), first-episode of depression (FE) (c), depression in remission (Rem) (d), and current depression (Cur) (e).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

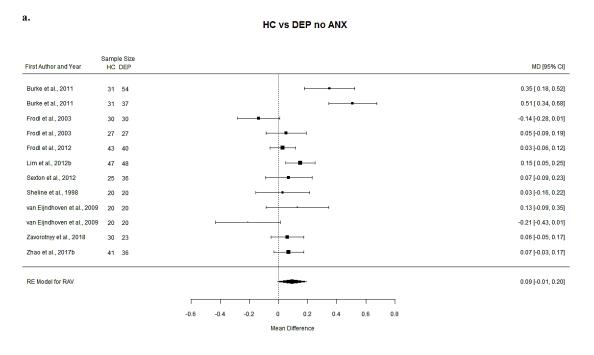


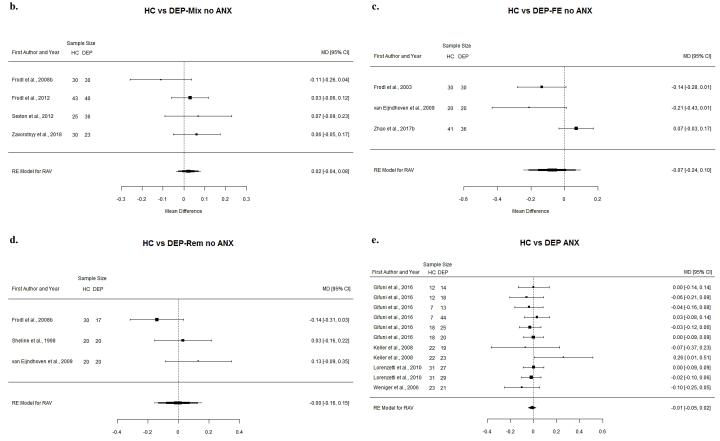

Supplemental Figure S12. TAV assessment of anxiety comorbidity forest plots

Forest plots of main analysis (a) and subgroup analyses for heterogeneous depression (Mix) (b), first-episode of depression (FE) (c), and depression in remission (Rem) (d) excluding anxiety disorders (no ANX). Forest plot of main analysis (e) comorbid with anxiety disorders (ANX).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

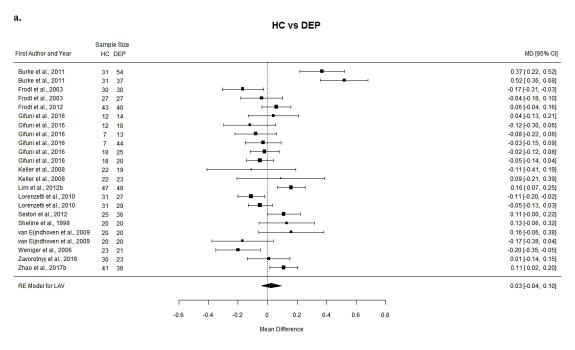


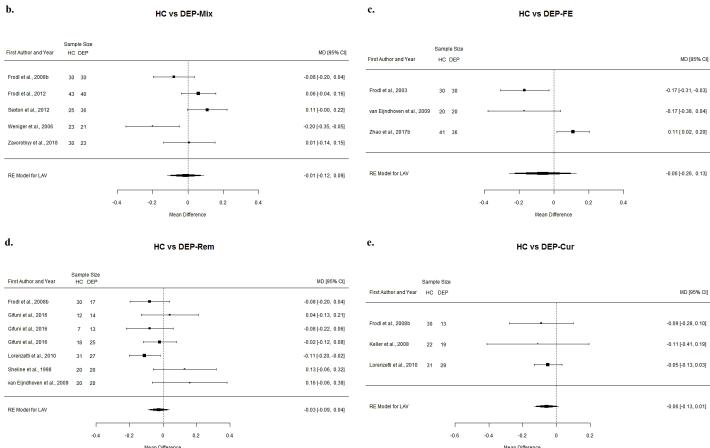

Supplemental Figure S13. RAV forest plots

Forest plots of main analysis (a) and subgroup analyses for heterogeneous depression (Mix) (b), first-episode of depression (FE) (c), depression in remission (Rem) (d), and current depression (Cur) (e).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

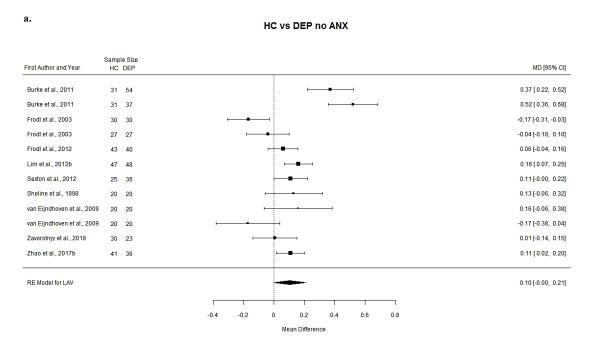


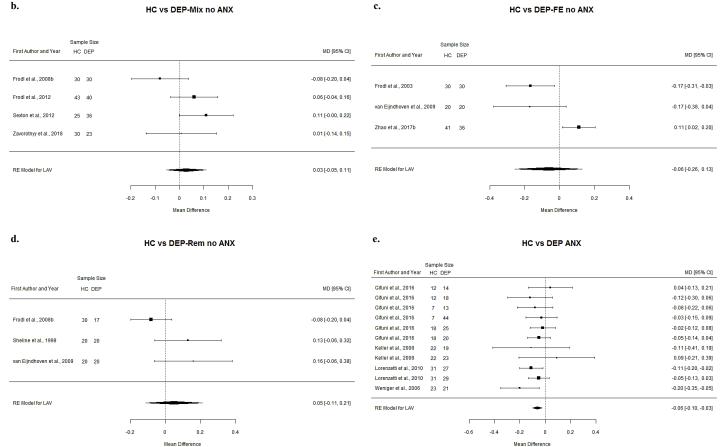

Supplemental Figure S14. RAV assessment of anxiety comorbidity forest plots

Forest plots of main analysis (a) and subgroup analyses for heterogeneous depression (Mix) (b), first-episode depression (FE) (c), and depression in remission (Rem) (d) excluding anxiety disorders (no ANX). Forest plot of main analysis (e) comorbid with anxiety disorders (ANX).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

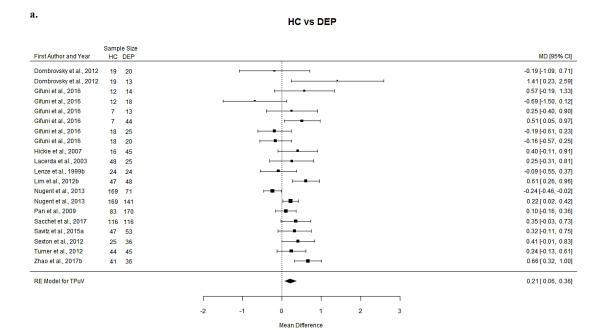



Supplemental Figure S15. LAV forest plots

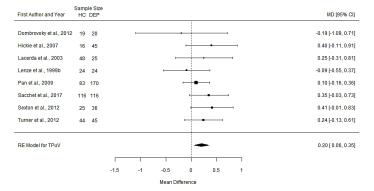
Forest plots of main analysis (a) and subgroup analyses for heterogeneous depression (Mix) (b), first-episode depression (FE) (c), depression in remission (Rem) (d), and current depression (Cur) (e).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.



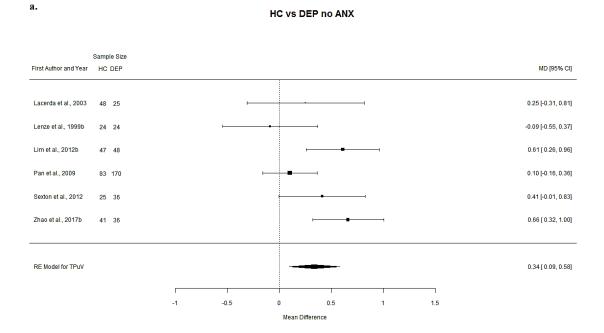
Supplemental Figure S16. LAV assessment of anxiety comorbidity forest plots

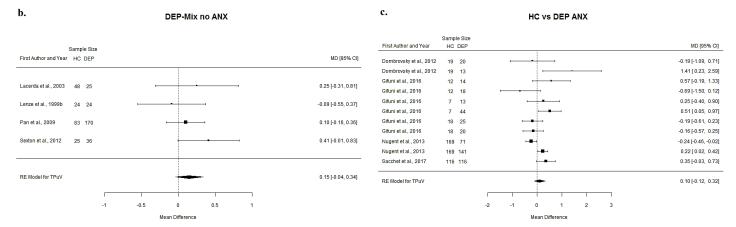

Forest plots of main analysis (a) and subgroup analyses for heterogeneous depression (Mix) (b), first-episode depression (FE) (c), and depression in remission (Rem) (d) excluding anxiety disorders (no ANX). Forest plot of main analysis (e) comorbid with anxiety disorders (ANX).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

b. HC vs DEP-Mix




Supplemental Figure S17. TPuV forest plots

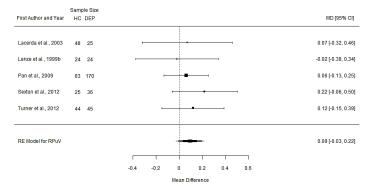
Forest plots of main analysis (a), and subgroup analysis for heterogeneous depression (Mix) (b).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Supplemental Figure S18. TPuV assessment of anxiety comorbidity forest plots

Forest plots of main analysis (a), and subgroup analysis for heterogeneous depression (Mix) (b) excluding anxiety disorders (no ANX). Forest plot of main analysis (c) comorbid with anxiety disorders ANX).

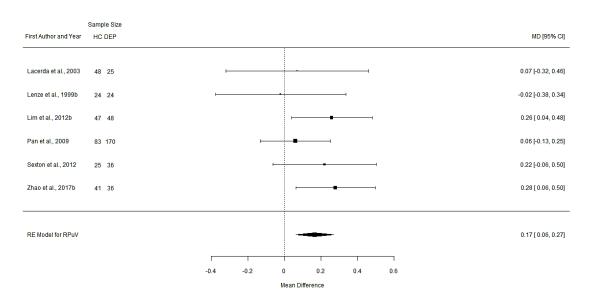

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

a. HC vs DEP Sample Size First Author and Year MD [95% CI] Gifuni et al., 2016 0.27 [-0.23, 0.77] Gifuni et al., 2016 12 18 -0.33 [-0.87, 0.21] Gifuni et al. 2016 7 13 0.18 [-0.25, 0.61] Gifuni et al., 2016 0.28 [-0.02, 0.58] Gifuni et al., 2016 -0.10 [-0.40, 0.20] 18 25 Gifuni et al., 2016 -0.09 [-0.39, 0.21] Lacerda et al., 2003 0.07 [-0.32, 0.46] Lenze et al., 1999b -0.02 [-0.38, 0.34] 24 24 Lim et al., 2012b 0.26 [0.04, 0.48] -0.13 [-0.29, 0.03] Nugent et al., 2013 169 71 Nugent et al., 2013 169 141 0.12 [-0.02, 0.26] Sexton et al., 2012 0.22 [-0.06, 0.50] 25 36 Turner et al., 2012 44 45 0.12 [-0.15, 0.39] Zhao et al., 2017b 0.28 [0.06, 0.50] 41 36 RE Model for RPuV 0.09 [0.00, 0.18]

Mean Difference

b. HC vs DEP-Mix


Supplemental Figure S19. RPuV forest plots

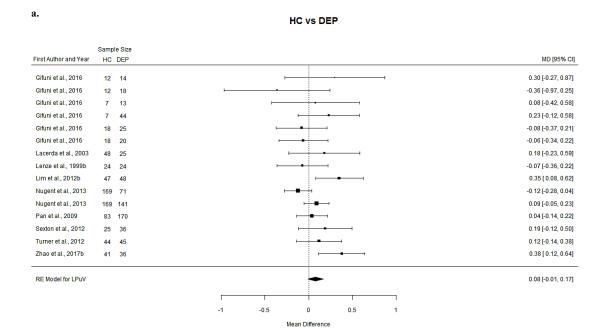
Forest plots of main analysis (a), and subgroup analysis for heterogeneous depression (Mix) (b).


DOI: 10.1503/jpn.190156

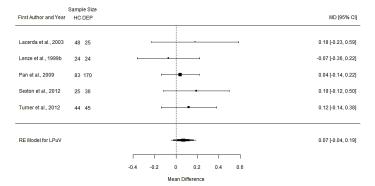
Online appendices are unedited and posted as supplied by the authors.

a. HC vs DEP no ANX

b. HC vs DEP-Mix no ANX



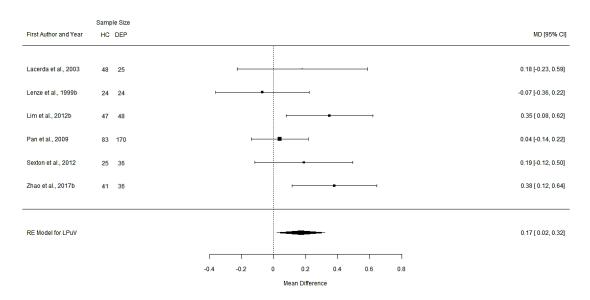
Supplemental Figure S20. RPuV assessment of anxiety comorbidity forest plots


Forest plots of main analysis (a), and subgroup analysis for heterogeneous depression (Mix) (b) excluding anxiety disorders (no ANX).

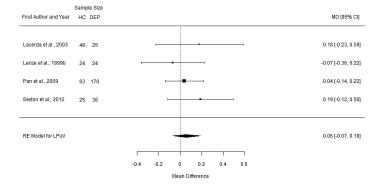
DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

b. HC vs DEP-Mix


Supplemental Figure S21. LPuV forest plots

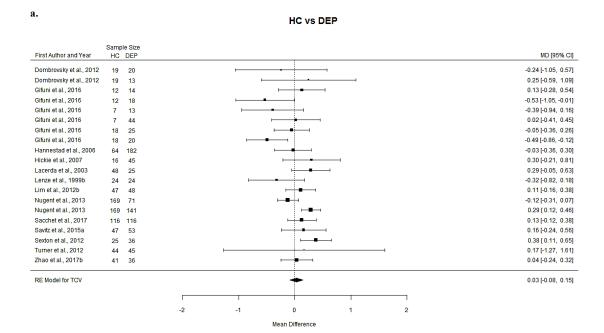
Forest plots of main analysis (a), and subgroup analysis for heterogeneous depression (Mix) (b).


DOI: 10.1503/jpn.190156

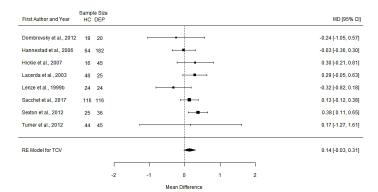
Online appendices are unedited and posted as supplied by the authors.

a. HC vs DEP no ANX

b. HC vs DEP-Mix no ANX



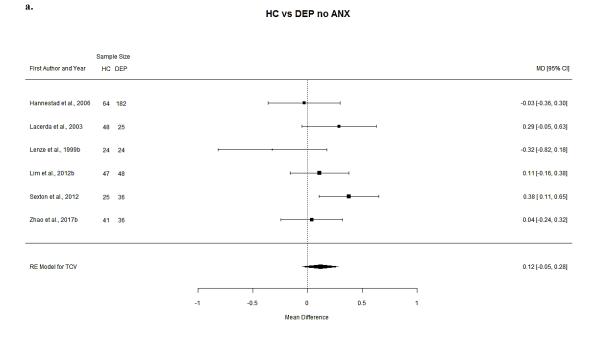
Supplemental Figure S22. LPuV assessment of anxiety comorbidity forest plots

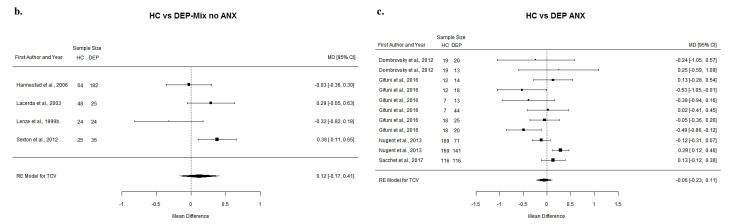

Forest plots of main analysis (a), and subgroup analysis for heterogeneous depression (Mix) (b) excluding anxiety disorders (no ANX).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

b. HC vs DEP-Mix

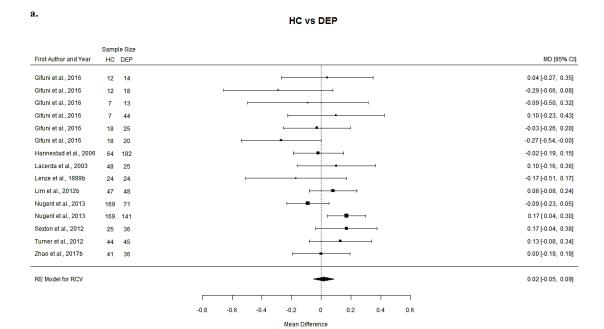



Supplemental Figure S23. TCV forest plots

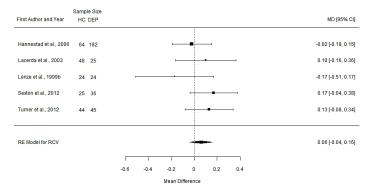
Forest plots of main analysis (a), and subgroup analysis for heterogeneous depression (Mix) (b).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.



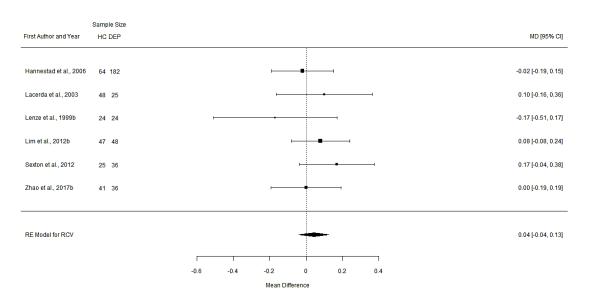
Supplemental Figure S24. TCV assessment of anxiety comorbidity forest plots


Forest plots of main analysis (a), and subgroup analysis for heterogeneous depression (Mix) (b) excluding anxiety disorders (no ANX). Forest plot of main analysis (c) comorbid with anxiety disorders (ANX).

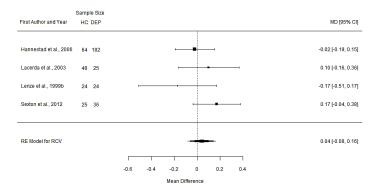
DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

b. HC vs DEP-Mix

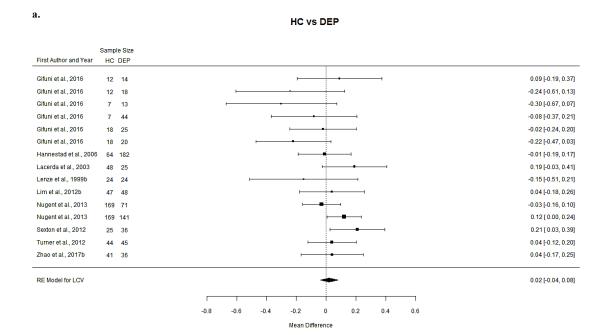

Supplemental Figure S25. RCV forest plots

Forest plots of main analysis (a), and subgroup analysis for heterogeneous depression (Mix) (b).

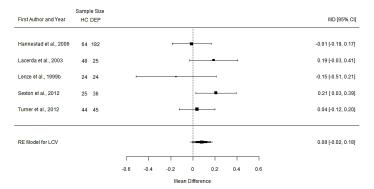

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

b. HC vs DEP-Mix no ANX

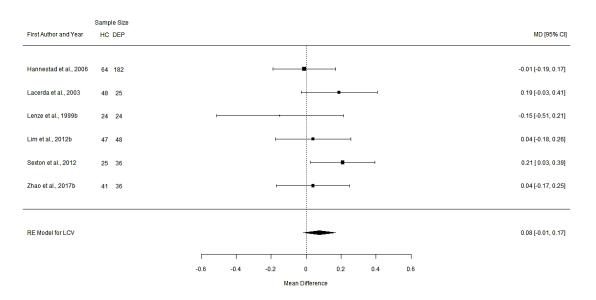


Supplemental Figure S26. RCV assessment of anxiety comorbidity forest plots

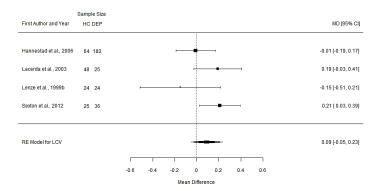

Forest plots of main analysis (a), and subgroup analysis for heterogeneous depression (Mix) (b) excluding anxiety disorders (no ANX).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.


Supplemental Figure S27. LCV forest plots

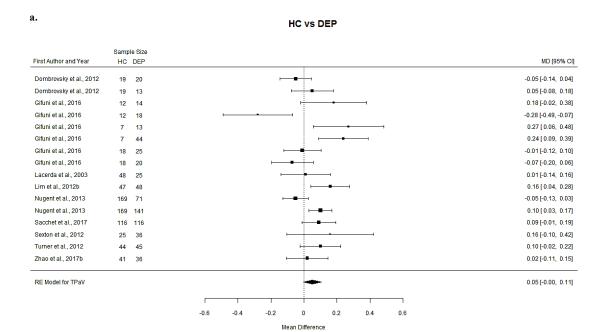
Forest plots of main analysis (a), and subgroup analysis for heterogeneous depression (Mix) (b).


DOI: 10.1503/jpn.190156

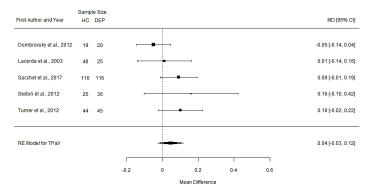
Online appendices are unedited and posted as supplied by the authors.

a. HC vs DEP no ANX

b. HC vs DEP-Mix no ANX



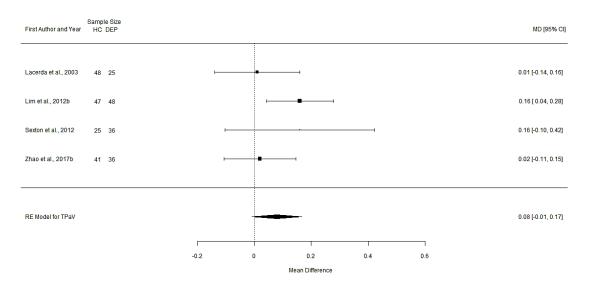
Supplemental Figure S28. LCV assessment of anxiety comorbidity forest plots


Forest plots of main analysis (a), and subgroup analysis for heterogeneous depression (Mix) (b) excluding anxiety disorders (no ANX).

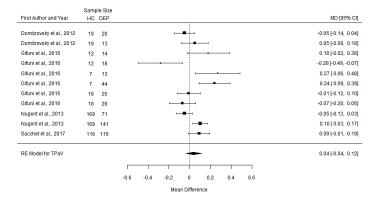
DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

b. HC vs DEP-Mix


Supplemental Figure S29. TPaV forest plots

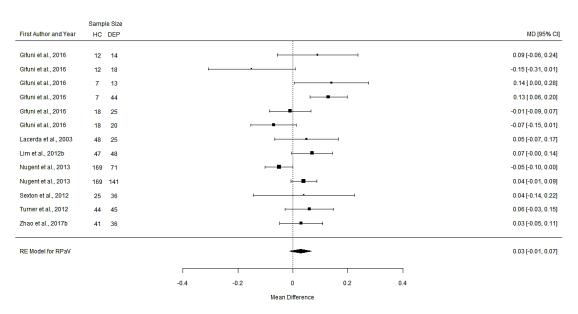
Forest plots of main analysis (a), and subgroup analysis for heterogeneous depression (Mix) (b).


DOI: 10.1503/jpn.190156

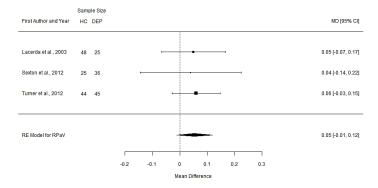
Online appendices are unedited and posted as supplied by the authors.

a. HC vs DEP no ANX

b. HC vs DEP ANX

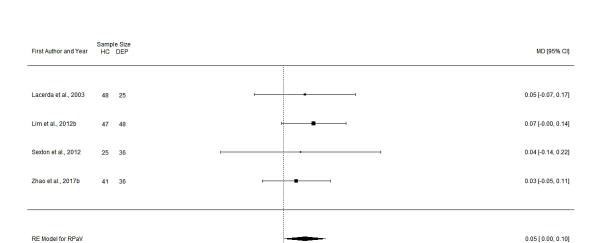

Supplemental Figure S30. TPaV assessment of anxiety comorbidity forest plots

Forest plot of main analysis (a) excluding anxiety disorders (no ANX). Forest plot of main analysis (b) comorbid with anxiety disorders (ANX).


DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

b. HC vs DEP-Mix


Supplemental Figure S31. RPaV forest plots

Forest plots of main analysis (a), and subgroup analysis for heterogeneous depression (Mix) (b).

DOI: 10.1503/jpn.190156

a.

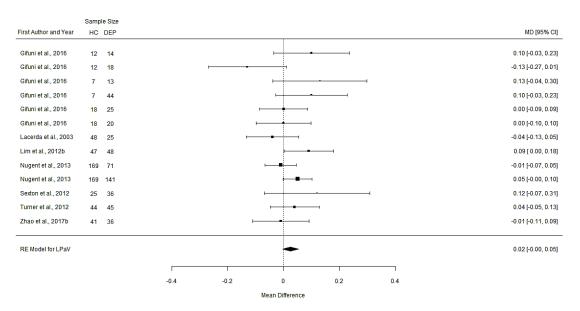
Online appendices are unedited and posted as supplied by the authors.

HC vs DEP no ANX

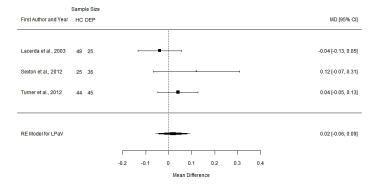
Supplemental Figure S32. RPaV assessment of anxiety comorbidity forest plot

Forest plot of main analysis (a) excluding anxiety disorders (no ANX).

RPaV: right pallidum volume, HC: healthy controls, DEP: depressed individuals, RE: random-effects model, MD: mean difference, CI: confidence interval.

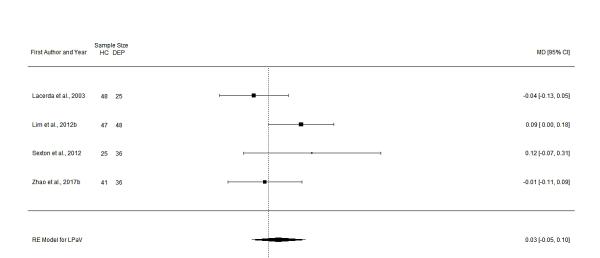

Mean Difference

0.3


DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

b. HC vs DEP-Mix


Supplemental Figure S33. LPaV forest plots

Forest plots of main analysis (a), and subgroup analysis for heterogeneous depression (Mix) (b).

DOI: 10.1503/jpn.190156

a.

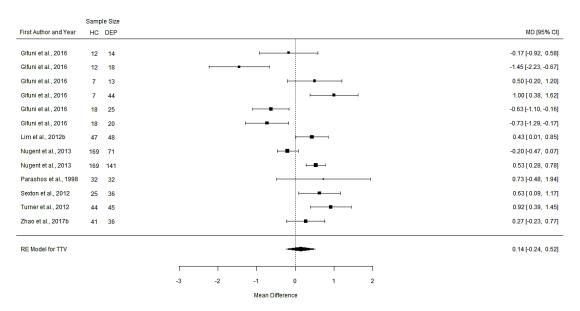
Online appendices are unedited and posted as supplied by the authors.

0.2

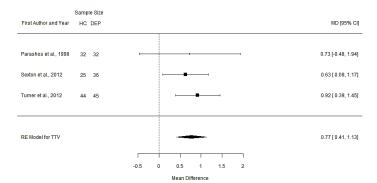
HC vs DEP no ANX

Supplemental Figure S34. LPaV assessment of anxiety comorbidity forest plot

Forest plot of main analysis (a) excluding anxiety disorders (no ANX).

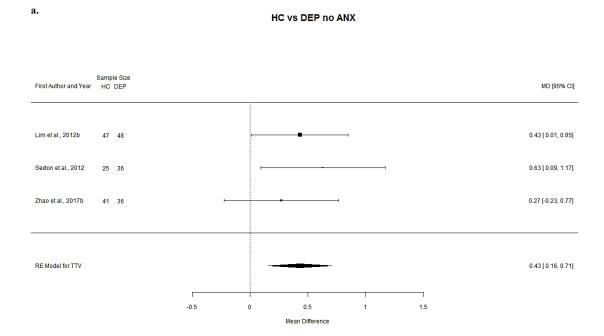

LPaV: left pallidum volume, HC: healthy controls, DEP: depressed individuals, RE: random-effects model, MD: mean difference, CI: confidence interval.

Mean Difference


DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

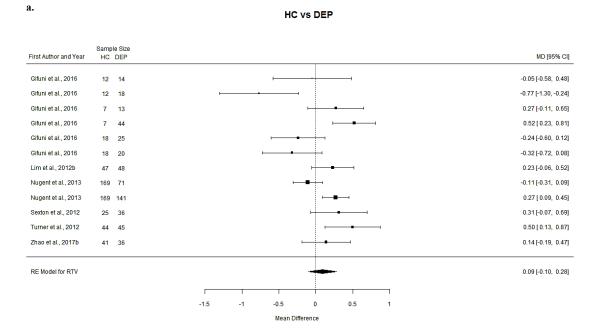
b. HC vs DEP-Mix



Supplemental Figure S35. TTV forest plots

Forest plots of main analysis (a), and subgroup analysis for heterogeneous depression (Mix) (b).

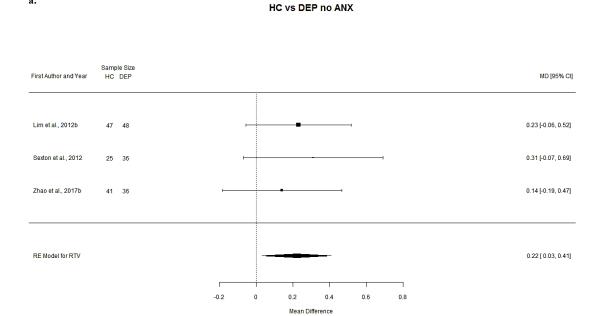
DOI: 10.1503/jpn.190156


Online appendices are unedited and posted as supplied by the authors.

Supplemental Figure S36. TTV assessment of anxiety comorbidity forest plot Forest plot of main analysis (a) excluding anxiety disorders (no ANX).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

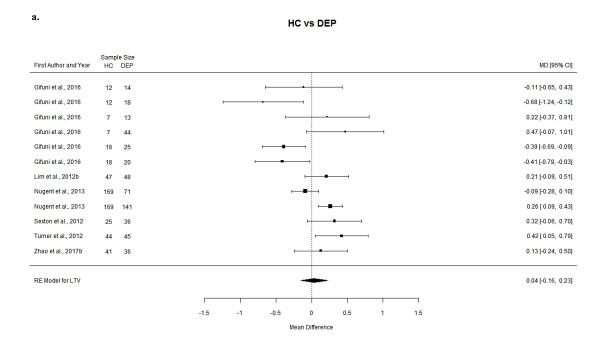

Supplemental Figure S37. RTV forest plot

Forest plot of main analysis (a).

DOI: 10.1503/jpn.190156

a.

Online appendices are unedited and posted as supplied by the authors.

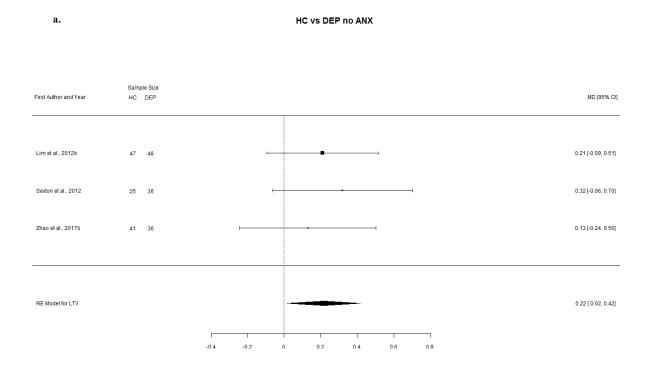


Supplemental Figure S38. RTV assessment of anxiety comorbidity forest plot

Forest plot of main analysis (a) excluding anxiety disorders (no ANX).

DOI: 10.1503/jpn.190156

© Joule Inc. Online appendices are unedited and posted as supplied by the authors.

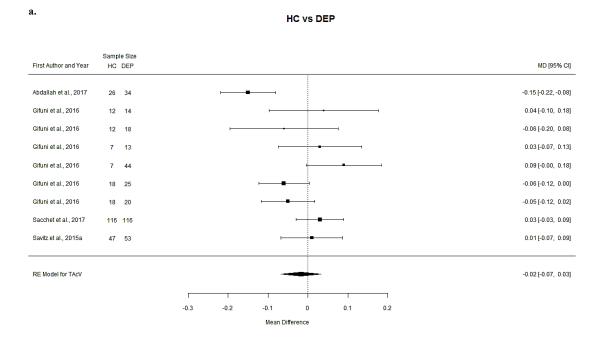


Supplemental Figure S39. LTV forest plot

Forest plot of main analysis (a).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

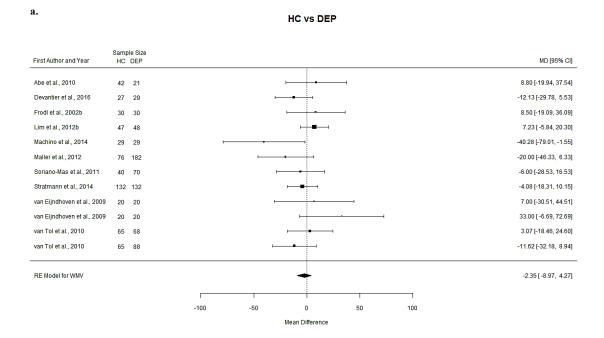


Supplemental Figure S40. LTV assessment of anxiety comorbidity forest plot

Forest plot of main analysis (a) excluding anxiety disorders (no ANX).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

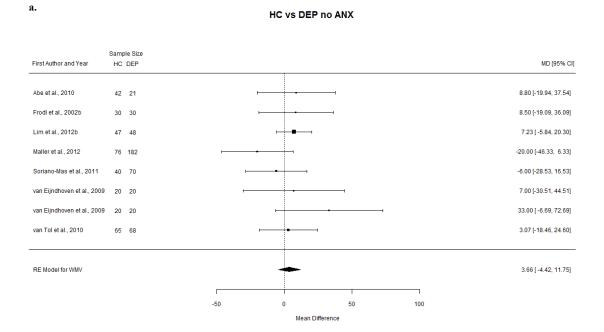


Supplemental Figure S41. TAcV forest plot

Forest plot of main analysis (a).

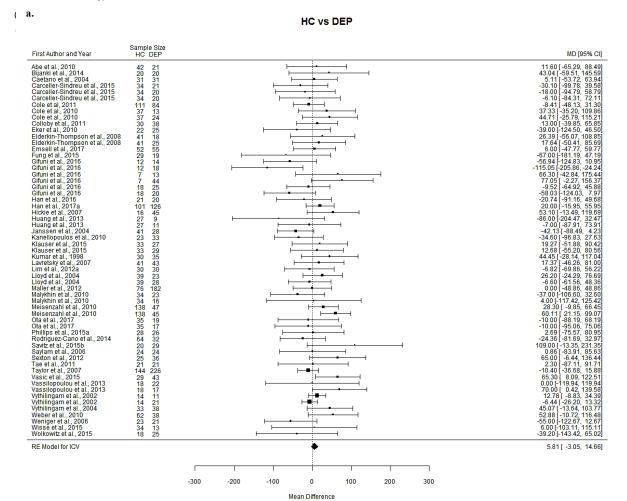
DOI: 10.1503/jpn.190156

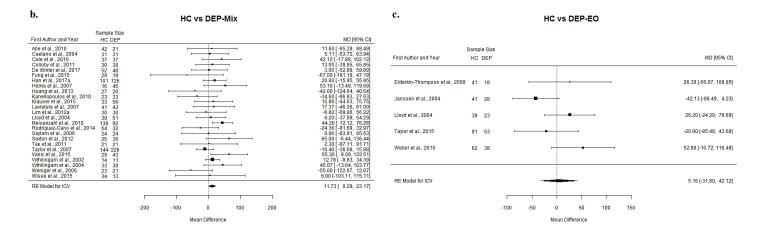
Online appendices are unedited and posted as supplied by the authors.



Supplemental Figure S42. WMV forest plots

Forest plots of main analysis (a), and subgroup analyses for heterogeneous depression (Mix) (b) and first-episode depression (FE) (c).


DOI: 10.1503/jpn.190156


Online appendices are unedited and posted as supplied by the authors.

Supplemental Figure S43. WMV assessment of anxiety comorbidity forest plot Forest plot of main analysis (a) excluding anxiety disorders (no ANX).

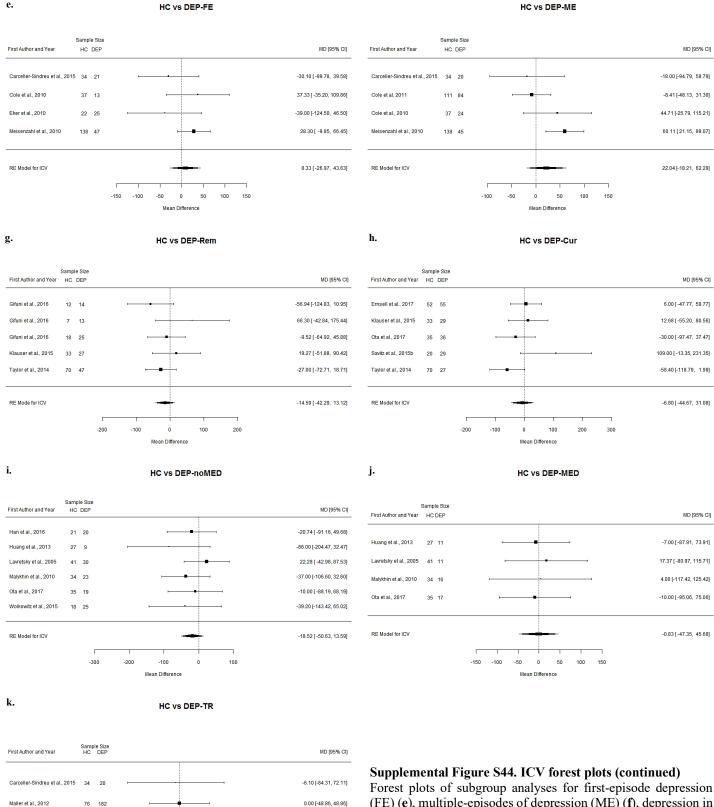
DOI: 10.1503/jpn.190156

Mean Difference

HC vs DEP-LO

Supplemental Figure S44. ICV forest plots

Forest plots of main analysis (a), and subgroup analyses for heterogeneous depression (Mix) (b), early-onset depression (EO) (c), and late-onset depression (LO) (d).

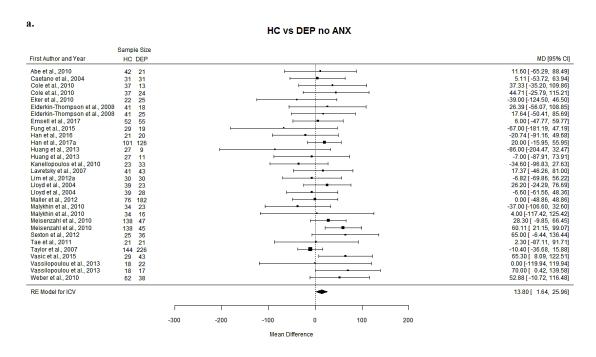

DOI: 10.1503/jpn.190156

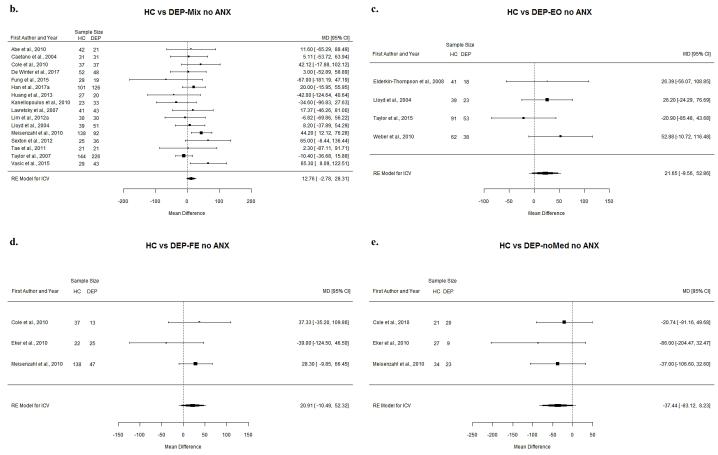
Phillips et al., 2015a

RE Model for ICV

-100

Online appendices are unedited and posted as supplied by the authors.

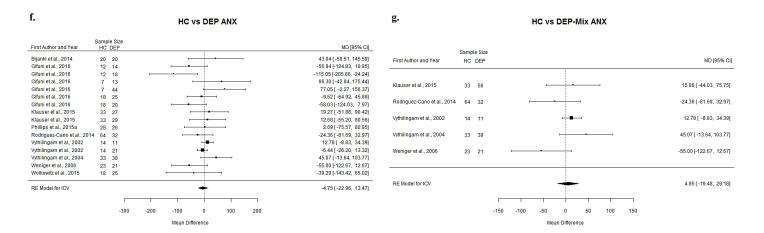

2.69 [-75.57, 80.95]


-0.75 [-37.37, 35.87]

Forest plots of subgroup analyses for first-episode depression (FE) (e), multiple-episodes of depression (ME) (f), depression in remission (Rem) (g), current depression (Cur) (h), non-medicated depression (noMed) (i), medicated depression (Med) (j), and treatment-resistant depression (TR) (k).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.



Supplemental Figure S45. ICV assessment of anxiety comorbidity forest plots

Forest plots of main analysis (a) and subgroup analyses for heterogeneous depression (Mix) (b), early-onset depression (EO) (c), first-episode of depression (FE) (d), and non-medicated depression (noMed) (e) excluding anxiety disorders (no ANX).

DOI: 10.1503/jpn.190156

Online appendices are unedited and posted as supplied by the authors.

Supplemental Figure S45. ICV assessment of anxiety comorbidity forest plots (continued)

Forest plots for main analysis (f), and subgroup analysis for heterogeneous depression (Mix) (g) comorbid with anxiety disorders (no ANX).