DOI: 10.1503/jpn.160219

Copyright © 2017 The Author(s) or their employer(s). To receive this resource in an accessible format, please contact us at cmajgroup@cmaj.ca.

Online appendices are unedited and posted as supplied by the authors.

Table S1

Imaging Methodology Quality Assessment Checklist

Category 1: Subjects

- 1. Patients were evaluated prospectively, specific diagnostic criteria were applied, and demographic data was reported
- 2. Healthy comparison subjects were evaluated prospectively, psychiatric and medical illnesses were excluded, and demographic data was reported
- 3. Important variables (e.g. illness duration, severity of illness, drug status, non-drug therapy status) were checked either by stratification or statistically
- 4. Sample size per group > 10, and no significant difference in age and sex existed

Category 2: Methods for image acquisition and analysis

- 5. Magnet strength at least 1.5T
- 6. Whole brain analysis was automated with no a-priori regional selection

Appendix 1 to Gao X, Zhang W, Yao L, et al. Association between structural and functional brain alterations in drug-free patients with schizophrenia: a multimodal meta-analysis. <i>J Psychiatry Neurosci</i> 2017. DOI: 10.1503/jpn.160219
Online appendices are unedited and posted as supplied by the authors.
7. Coordinates reported in a standard space
8. The imaging technique used was clearly described so as it could be reproduced
9. Measurements were clearly described so that they could be reproduced
10. Results have been corrected for multiple comparison
Category 3: Results and conclusions
11. Statistical parameters for significant and important non-significant differences were provided
12. Conclusions were consistent with the results obtained and the limitations were discussed

DOI: 10.1503/jpn.160219

Table S2Meta-analysis results of structural MRI

	MNI	SDM-Z	P	Voxels	Cluster breakdown (number of voxels)
Cluster of decreased gray matter volume (patien	nts <controls)< td=""><td></td><td></td><td></td><td></td></controls)<>				
Left fusiform gyrus	-26,-54,-16	-2.584	0.000154853	771	Left fusiform gyrus (382)
					Left cerebellum, hemispheric lobule VI (182)
					Left parahippocampal gyrus (21)
					Left hippocampus (15)
Left inferior frontal gyrus	-46,16,0	-2.497	0.00023222	649	Left inferior frontal gyrus (314)
					Left insula (166)

DOI: 10.1503/jpn.160219

					Left temporal pole, superior temporal gyrus (106)
Right superior temporal gyrus	52,-6,-6	-2.098	0.002043664	330	Right superior temporal gyrus (124)
					Right insula (97)
					Right rolandic operculum (12)
					Right middle temporal gyrus (11)
					Right temporal pole, superior temporal gyrus (10)
Left supramarginal gyrus	-56,-40,36	-2.387	0.000490248	293	Left supramarginal gyrus (117)
					Left inferior parietal gyrus (104)
					Left superior temporal gyrus (64)
Cluster of increased gray matter volume (patients>co	ntrols)				
Right lingual gyrus	6,-34,-6	1.895	0.000005186	466	Right lingual gyrus (62)
					Cerebellum, vermic lobule III (36)

DOI: 10.1503/jpn.160219

Online appendices are unedited and posted as supplied by the authors.

Left cerebellum, hemispheric lobule IV/V (31)

Left lingual gyrus (18)

Right superior frontal gyrus, orbital part 6,60,-22 1.617 0.000805080 155 Right gyrus rectus (79)

Right superior frontal gyrus (38)

(a) Voxel probability threshold: *P*=0.005

(b) Peak height threshold: z=1

(c) Cluster extent threshold: 100 voxels. Regions with less than 10 voxels are not reported in the cluster breakdown.

DOI: 10.1503/jpn.160219

Table S3Analyses of subgroups and sensitivity analyses of structural studies

	Increased g	ray matter volume	Decreased gray matter volume			
Subgroup analysis	Right lingual	Right superior frontal	Left fusiform	Left inferior	Right superior	Left supramarginal
	gyrus	gyrus	gyrus	frontal gyrus	temporal gyrus	gyrus
Studies with slice thickness ≤ 1.5 mm at acquisition (n=13)	YES	YES	NO	NO	YES	YES
Studies using $\leq 8 \text{ mm smoothing kernel (n=10)}$	YES	YES	YES	NO	NO	YES
Studies using 1.5T MRI (n=10)	NO	NO	YES	YES	YES	NO
Studies with an additional correction step (n=9)	YES	YES	YES	YES	YES	YES
Studies of drug-naive patients (n=14)	YES	YES	YES	YES	YES	YES

DOI: 10.1503/jpn.160219

Online appendices are unedited and posted as supplied by the authors.

Jackknife sensitivity analysis, discarded study

Jackkinie sensitivity analysis, discarded study						
2003Salgado-Pineda	YES	YES	YES	YES	YES	YES
2005Jayakumar	YES	YES	YES	YES	YES	YES
2007Prasad	YES	YES	YES	YES	YES	YES
2007Chua	YES	YES	YES	YES	YES	YES
2008Meda	YES	YES	YES	YES	YES	YES
2008Witthaus	YES	YES	YES	YES	YES	YES
2010Venkatasubramanian	YES	YES	YES	YES	YES	YES
2011Berge	YES	YES	YES	YES	YES	YES
2013Suazo	YES	YES	YES	YES	YES	YES
2013WentingRen	YES	YES	YES	YES	YES	YES

DOI: 10.1503/jpn.160219

2013XiaofengGuo(S)	YES	YES	YES	YES	YES	YES
2013XiaofengGuo(L)	YES	YES	YES	YES	YES	YES
2014WenbinGuo	YES	YES	YES	YES	YES	YES
2014JunLi	YES	YES	YES	YES	YES	YES
2014Nenadic	YES	YES	YES	YES	YES	YES
2016Yue	YES	YES	YES	YES	YES	YES

DOI: 10.1503/jpn.160219

Table S4Meta-analysis results of functional MRI

	MNI	SDM-Z	P	Voxels	Cluster breakdown (number of voxels)
Cluster of hypoactivation (patients <controls)< th=""><th></th><th></th><th></th><th></th><th></th></controls)<>					
Right inferior frontal gyrus, opercular part	46,10,30	-3.221	0.000006437	893	Right inferior frontal gyrus, opercular part (432)
					Right inferior frontal gyrus, triangular part (152)
					Right precentral gyrus (98)
					Right middle frontal gyrus (17)
Right angular gyrus	40,-60,52	-2.719	0.000062704	331	Right angular gyrus (166)
					Right inferior parietal (excluding supramarginal and angular) gyrus (140)

DOI: 10.1503/jpn.160219

Unline appendices are unedited	and posted as supplied	i by the au	lnors.		
					Right superior parietal gyrus (25)
Right insula	38,14,-14	-2.439	0.000266016	339	Right insula (197)
					Right inferior frontal gyrus, orbital part (44)
					Right temporal pole, superior temporal gyrus (30)
Cluster of hyperactivation (patients:	>controls)				
Left striatum	-28,-2,4	3.273	~0	2761	Left superior temporal gyrus (685)
					Left insula (564)
					Left rolandic operculum (335)
					Left lenticular nucleus, putamen (296)
					Left striatum (189)
					Left heschl gyrus (164)
					Left postcentral gyrus (69)

DOI: 10.1503/jpn.160219

Online appendices are unedited and posted as supplied by the authors.

						Left supramarginal gyrus (44)
						Left pons (17)
	Right striatum	26,-2,8	1.919	0.000929713	212	Right insula (71)
						Right striatum (48)
						Right lenticular nucleus, putamen (34)
L	eft inferior occipital gyrus	-34,-76,-12	2.178	0.000299335	168	Left fusiform gyrus (83)
						Left inferior occipital gyrus (42)

(a) Voxel probability threshold: P=0.005

(b) Peak height threshold: z=1

(c) Cluster extent threshold: 100 voxels. Regions with less than 10 voxels are not reported in the cluster breakdown.

DOI: 10.1503/jpn.160219

Table S5Analyses of subgroups and sensitivity analyses of functional studies

		Hyperactivation		Hypoactivation			
Subgroup analysis	Left striatum	Right striatum	Left inferior Right inferior frontal Right angul		Right angular	Right	
			occipital gyrus	gyrus, opercular part	gyrus	insula	
Studies with slice thickness <5 mm at acquisition (n=13)	YES	NO	NO	YES	NO	YES	
Studies using $\leq 8 \text{ mm}$ smoothing kernel (n=15)	YES	YES	YES	YES	YES	YES	
Studies using 1.5T MRI (n=8)	YES	NO	NO	YES	NO	NO	
Studies with an additional correction step (n=16)	YES	YES	YES	YES	YES	YES	
Studies performing task (n=11)	YES	NO	NO	YES	NO	YES	

DOI: 10.1503/jpn.160219

Studies of drug-naive patients (n=8)	YES	YES	YES	YES	YES	NO
Jackknife sensitivity analysis, discarded study						
1997Andreason	YES	YES	YES	YES	YES	YES
2010Scheef	YES	YES	YES	YES	YES	YES
2013Ren	YES	NO	NO	YES	NO	YES
2015Guo	YES	YES	YES	YES	YES	YES
2014 Hadley	YES	YES	YES	YES	YES	YES
2003Hofer	YES	YES	YES	YES	YES	YES
2004Jones	YES	YES	YES	YES	YES	YES
2005Weiss	YES	YES	YES	YES	YES	YES
2005Boksman	YES	YES	YES	YES	YES	YES

DOI: 10.1503/jpn.160219

2008Scheuerecker	YES	YES	YES	YES	YES	YES
2010Comilo	YES	YES	YES	YES	YES	YES
2011Nejad	YES	YES	YES	YES	YES	YES
2013Bin	YES	YES	YES	YES	YES	YES
2014Schlagenhauf	YES	YES	YES	YES	YES	YES
2015Lesh	YES	YES	YES	YES	YES	YES
2016Zheng	YES	YES	YES	YES	YES	YES
2016Cui (1) ⁱ	YES	YES	YES	YES	YES	YES
2016Cui (2)	YES	YES	YES	YES	YES	YES

DOI: 10.1503/jpn.160219

Table S7

Table S6

Regions with altered gray matter volume showing significant statistical heterogeneity between studies (voxelwise p<0.005)

Description	MNI coordinate	SDM-Z	P	Voxels
Right insula	38,-16,-2	4.039	~0	1372
Left fusiform gyrus	-36,-60,-16	2.414	0.00026	264

Regions with altered regional metabolism showing significant statistical heterogeneity between studies (voxelwise p<0.005)

Description	MNI coordinate	SDM-Z	P	Voxels
Left insula	-36,-6,10	2.209	0.00155	184

DOI: 10.1503/jpn.160219

Table S8Results of the funnel plots and Eager test

DOI: 10.1503/jpn.160219

DOI: 10.1503/jpn.160219

Online appendices are unedited and posted as supplied by the authors.

References of the inclusion studies¹⁻²⁹:

- 1. Salgado-Pineda P, Baeza I, Pérez-Gómez M, et al. Sustained attention impairment correlates to gray matter decreases in first episode neuroleptic-naive schizophrenic patients[J]. *NeuroImage* 2003,19(2):365-375.
- 2. Jayakumar PN, Venkatasubramanian G, Gangadhar BN, et al. Optimized voxel-based morphometry of gray matter volume in first-episode, antipsychotic-naive schizophrenia[J]. *Progress in neuro-psychopharmacology & biological psychiatry* 2005,29(4):587-591.
- 3. Chua SE, Cheung C, Cheung V, et al. Cerebral grey, white matter and csf in never-medicated, first-episode schizophrenia[J]. *Schizophrenia research* 2007,89(1-3):12-21.
- 4. Prasad KM, Shirts BH, Yolken RH, et al. Brain morphological changes associated with exposure to HSV1 in first-episode schizophrenia[J]. *Molecular psychiatry* 2007,12(1):105-113, 101.
- 5. Meda SA, Giuliani NR, Calhoun VD, et al. A large scale (N=400) investigation of gray matter differences in schizophrenia using optimized voxel-based morphometry[J]. *Schizophrenia research* 2008,101(1-3):95-105.
- 6. Witthaus H, Kaufmann C Fau Bohner G, Bohner G Fau Ozgurdal S, et al. Gray matter abnormalities in subjects at ultra-high risk for schizophrenia and first-episode schizophrenic patients compared to healthy controls[J]. (0165-1781 (Print)).
- 7. Venkatasubramanian G. Neuroanatomical correlates of psychopathology in antipsychotic-naive schizophrenia[J]. *Indian journal of psychiatry* 2010,52(1):28-36.
- 8. Berge D, Carmona S, Rovira M, et al. Gray matter volume deficits and correlation with insight and negative symptoms in first-psychotic-episode subjects[J]. *Acta psychiatrica Scandinavica* 2011,123(6):431-439.
- 9. Suazo V, Diez A, Montes C, et al. Structural correlates of cognitive deficit and elevated gamma noise power in schizophrenia[J]. *Psychiatry and clinical neurosciences* 2014,68(3):206-215.
- 10. Ren W, Lui S, Deng W, et al. Anatomical and functional brain abnormalities in drug-naive first-episode schizophrenia[J]. *The American journal of psychiatry* 2013,170(11):1308-1316.
- 11. Guo X, Li J, Wei Q, et al. Duration of untreated psychosis is associated with temporal and occipitotemporal gray matter volume decrease in treatment naive

DOI: 10.1503/jpn.160219

- schizophrenia[J]. PloS one 2013,8(12):e83679.
- 12. Guo W, Liu F, Xiao C, et al. Dissociation of anatomical and functional alterations of the default-mode network in first-episode, drug-naive schizophrenia[J]. *Clin Neurophysiol* 2015.
- 13. Guo X, Li J, Wang J, et al. Hippocampal and orbital inferior frontal gray matter volume abnormalities and cognitive deficit in treatment-naive, first-episode patients with schizophrenia[J]. *Schizophrenia research* 2014,152(2-3):339-343.
- 14. Nenadic I, Dietzek M, Schonfeld N, et al. Brain structure in people at ultra-high risk of psychosis, patients with first-episode schizophrenia, and healthy controls: a VBM study[J]. *Schizophrenia research* 2015,161(2-3):169-176.
- 15. Scheef L, Manka C, Daamen M, et al. Resting-state perfusion in nonmedicated schizophrenic patients: a continuous arterial spin-labeling 3.0-T MR study[J]. Radiology 2010,256(1):253-260.
- 16. Hadley JA, Nenert R, Kraguljac NV, et al. Ventral tegmental area/midbrain functional connectivity and response to antipsychotic medication in schizophrenia[J]. *Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology* 2014,39(4):1020-1030.
- 17. Hofer A, Weiss EM, Golaszewski SM, et al. Neural correlates of episodic encoding and recognition of words in unmedicated patients during an acute episode of schizophrenia: a functional MRI study[J]. *The American journal of psychiatry* 2003,160(10):1802-1808.
- 18. Jones HM, Brammer MJ, O'Toole M, et al. Cortical effects of quetiapine in first-episode schizophrenia: a preliminary functional magnetic resonance imaging study[J]. Biological psychiatry 2004,56(12):938-942.
- 19. Boksman K, Theberge J, Williamson P, et al. A 4.0-T fMRI study of brain connectivity during word fluency in first-episode schizophrenia[J]. *Schizophrenia research* 2005,75(2-3):247-263.
- 20. Weiss EM, Siedentopf C, Golaszewski S, et al. Brain activation patterns during a selective attention test--a functional MRI study in healthy volunteers and unmedicated patients during an acute episode of schizophrenia[J]. *Psychiatry research* 2007,154(1):31-40.
- 21. Scheuerecker J, Ufer S, Zipse M, et al. Cerebral changes and cognitive dysfunctions in medication-free schizophrenia an fMRI study[J]. *Journal of psychiatric research* 2008,42(6):469-476.
- 22. De la Fuente-Sandoval C, Favila R, Gomez-Martin D, et al. Functional magnetic resonance imaging response to experimental pain in drug-free patients with schizophrenia[J]. *Psychiatry research* 2010,183(2):99-104.
- 23. Nejad AB, Ebdrup BH, Siebner HR, et al. Impaired temporoparietal deactivation with working memory load in antipsychotic-naive patients with first-episode

DOI: 10.1503/jpn.160219

- schizophrenia[J]. The world journal of biological psychiatry: the official journal of the World Federation of Societies of Biological Psychiatry 2011,12(4):271-281.
- 24. Ji B, Mei W, Zhang JX, et al. Abnormal auditory sensory gating-out in first-episode and never-medicated paranoid schizophrenia patients: an fMRI study[J]. Experimental brain research 2013,229(2):139-147.
- 25. Schlagenhauf F, Huys QJ, Deserno L, et al. Striatal dysfunction during reversal learning in unmedicated schizophrenia patients[J]. *Neuroimage* 2014,89:171-180.
- 26. Lesh TA, Tanase C, Geib BR, et al. A multimodal analysis of antipsychotic effects on brain structure and function in first-episode schizophrenia[J]. *JAMA psychiatry* 2015,72(3):226-234.
- 27. Yue Y, Kong L, Wang J, et al. Regional Abnormality of Grey Matter in Schizophrenia: Effect from the Illness or Treatment?[J]. *PloS one* 2016,11(1):e0147204.
- 28. Cui LB, Liu K, Li C, et al. Putamen-related regional and network functional deficits in first-episode schizophrenia with auditory verbal hallucinations[J]. *Schizophrenia research* 2016,173(1-2):13-22.
- 29. Zheng J, Zhang Y, Guo X, et al. Disrupted amplitude of low-frequency fluctuations in antipsychotic-naive adolescents with early-onset schizophrenia[J]. *Psychiatry research* 2016,249:20-26.

DOI: 10.1503/jpn.160219

DOI: 10.1503/jpn.160219

