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Supplementary Methods 

Animals, experimental procedure and tissue dissection 

A subset of samples derived from a previous experiment involving genome-wide mRNA expression profiling 
after a brief period of enriched environment (EE) in the rat barrel cortex was used in this study.1 Briefly, young 
adult male Long Evans rats (Harlan) were housed 2 per cage under standard conditions and divided 
in 2 experimental groups: control (n = 4) and EE (n = 8). On the test day, control animals remained in their 
home-cages and EE animals were allowed to explore a cage enriched with several tools and textures for 30 
minutes. The rats were decapitated immediately after the end of the control or EE session, followed by brain 
extraction and barrel cortex dissection by micropunch.1 Tissue samples were stored at –80 °C. 

Neuronal cell cultures and transfections 

Primary cultures of cortical neurons were prepared from embryonic day 18 rats2 and maintained in a neurobasal 
medium supplemented with B27 (Invitrogen) and 2 mmol/L glutamine. Locked nucleic acid miR-137 inhibitor 
(anti-miR-137), as well as nontargeting control (NT) were obtained from Exiqon and were transfected into 
primary neurons at 6 DIV using lipofectamine 2000 (Invitrogen).  

RNA Isolation 

RNA from tissue samples was isolated with TRIzol reagent (Invitrogen) after homogenization of the tissue with a 
TissueLyser (Retsch GmbH).  RNA from cell suspensions of primary cortical neurons was isolated using the 
NucleoSpin RNA II RNA isolation kit (Machery-Nagel), 24 hours after transfection with NTC or anti-miR-137. 
RNA concentration and quality was determined with a NanodropTM ND-1000 spectrophotometer (Thermo 
Fisher Scientific Inc.), and 1% agarose gel electrophoresis, respectively. The samples were kept at –80 °C until 
further analysis.  

Quantitative Polymerase Chain Reaction (qPCR) 

Two μg of DNAse-treated, total RNA from each sample was used for cDNA synthesis, using the RevertAid H 
Minus First Strand cDNA Synthesis kit (Fermentas Inc.) and the Qiagen miScript Reverse Transcription Kit II 
(Qiagen), for mRNAs and for precursor (pre-) and mature (mat-) miR-137, respectively.  Prior to qPCR analysis, 
each cDNA sample was diluted 1:10 with MilliQ water. QPCR was performed according to previously described 
protocols3,4 using standard cycling conditions, and performing a melting protocol to control for product 
specificity. The miscript miRNA expression analysis assay (Qiagen) was used for the quantification of mRNAs, 
pre- and mat-miR-137 levels. While mRNA and pre-miR-137 primers were designed by the investigators, using 
standard qPCR primer design strategies, we purchased pre-designed mat-miR-137 primers to assess mature 
miR-137 levels. All Ct values used for analyses were averaged from 2 to 3 replicates and those with high standard 
deviation (>1) were not included in the analyses. For pre- and mat-miR-137, relative expression was calculated 

using the comparative Ct method,3  normalized to the expression of U6 snRNA. For all mRNAs, Ppia, Ywhaz or β-
actin were measured as housekeeping genes and the 2 most constant (Ppia and Ywhaz) were selected with GNorm5 
for normalization. 
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Supplementary Results 

Effect of endogenous miR-137 silencing on the expression of EE-regulated putative miR-137 targets 
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Fig. S1: Relative expression of mature miR-137 levels in primary cortical neurons, after transfection 

with non-targeting anti-miR control (NT) or specific anti-miR137 probes. The treatment with anti-

miR137 significantly reduced mature miR-137 levels (two-tailed t-test, *p < 0.05) 

Neuronal miR-137-regulated protein network 

In this section, all proteins that were implicated in schizophrenia etiology through direct genetic evidence and/or 
expression data are indicated in bold. The confirmed miR-137 targets are underlined. The network is shown 
within a pyramidal neuron, the typical (post)synaptic neocortical neuron. 

Glucocorticoids, secreted by the adrenal glands in response to stress, profoundly affect the structure and 
plasticity of neurons. Glucocorticoid action in neurons is mediated by the glucocorticoid receptor (GR) which, 
upon glucocorticoid binding, migrates from the cytoplasm to the nucleus where it functions as a transcription 
factor regulating the expression of a wide diversity of genes, including genes that are important for neuronal 
structure and plasticity.6,7 Furthermore, the GR localizes to dendritic spines — including those from pyramidal 
neurons in the rat barrel cortex, the model of neuronal plasticity that was used in this study8 — which implies 
that the GR mediates local glucocorticoid effects on synaptic/neuronal development and plasticity.9,10      

In this respect, signalling in the network that is shown in Figure 2 of the main article centres around the nucleus 
where the GR acts as a transcription factor that upregulates the expression of DUSP1,11 EGR112 and SGK113 and 
downregulates the expression of BDNF14 and COX2.15 COX2, DUSP1 and SGK1 are cytoplasmic proteins that are 
involved in regulating multiple cellular functions, including the modulation of synaptic plasticity.16–19 DUSP1 
expression increases upon COX2 activation,20 whereas COX2 expression is downregulated by DUSP1.21 
Moreover, BDNF, an extracellular growth factor that plays a key role in modulating synaptic plasticity,22,23 is 
involved in activating SGK124 and upregulating DUSP1 expression.25 In addition, BDNF is involved in 
upregulating the expression of GRIN1,26 the most important subunit of the NMDA glutamate receptor that has a 
crucial function in regulating synaptic plasticity.27,28 Furthermore, after being activated through binding 
glutamate, the NMDA receptor composed of GRIN1 and other subunits inhibits the entry of calcium ions into the 
neuron through the voltage-dependent L-type calcium channel CACNA1C,29 which itself has been linked to the 
modulation of synaptic plasticity through NMDA receptor–independent signaling.30 An increase in intracellular 
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calcium concentration directly activates SGK131 and strongly inhibits the activity of TCF4,32 a transcription factor 
that upregulates BDNF expression33 and is itself upregulated by EGR1,34 another transcription factor that has 
been implicated in regulating synaptic plasticity.35,36 EGR1 also downregulates SGK1 expression37 while it 
upregulates the expression of DUSP4,38 a protein that belongs to the same family of phosphatases as DUSP1 and 
is found in both the nucleus and cytoplasm, where it directly binds and interacts with GRIN1 in NMDA receptor 
protein complexes.39 Furthermore, EGR2, another synaptic plasticity-linked transcription factor,35,36 upregulates 
EGR1 expression,40 and the expression of both EGR1 and EGR2 is positively regulated through BDNF 
signalling.25  

Finally, TCF4 is directly bound and functionally inhibited by DDIT3,41 a transcription factor that negatively 
regulates synaptic plasticity42 and is upregulated by the ZNF804A transcription factor.43 Intriguingly, apart from 

within BDNF (see above), binding sites for TCF4 have also been identified within or in close vicinity of DUSP4, 
GRIN1 and ZNF804A,44 which suggests that TCF4 may regulate the expression of these three network genes as 
well.  

Genetic evidence and/or mRNA/protein expression data implicating the genes encoding 12 proteins from the 
molecular network discussed above in schizophrenia etiology (BDNF; CACNA1C; DUSP1; DUSP4; EGR1; EGR2; 
GRIN1; NR3C1, which encodes the GR protein; PTGS2, which encodes the COX2 protein; SGK1; TCF4; and 
ZNF804A) is shown in Table S1. 

Table S1: Genetic evidence and/or mRNA/protein expression data (part 1 of 2) 

Gene Genetic evidence Expression data 

BDNF Ample evidence of genetic association with schizophrenia and altered BDNF expression in patients with schizophrenia  
(see recent reviews

45,46
) 

CACNA1C Genome-wide significant association with schizophrenia
47
 — 

DUSP1 — DUSP1 expression is increased in peripheral blood mono-

nuclear cells of treatment-naive patients with schizophrenia
48
 

DUSP4 — DUSP4 expression is decreased in the postmortem 

cerebellum of patients with schizophrenia
49
 

EGR1 — EGR1  expression is decreased in the postmortem 

prefrontal cortex of patients with schizophrenia
50,51

; EGR1 

expression is increased in whole blood of patients with 

schizophrenia in a highly delusional state
52
  

EGR2 Genetic association with schizophrenia in female patients
53
 EGR2 expression is decreased in the postmortem prefrontal 

cortex of patients with schizophrenia
50
; EGR2 expression is 

increased in lymphoblastoid cell lines of female patients with 

schizophrenia
53
  

GRIN1 Genetic association with schizophrenia
54,55

; Grin1 knockdown 

mice constitute a validated animal model of schizophrenia
56
 

— 

NR3C1 — NR3C1 expression is decreased in several postmortem 

brain regions of  patients with schizophrenia
57–59

  

PTGS2 Genetic association with schizophrenia
60
  — 

SGK1 — Sgk1 expression is increased in rat brain after 

administration of the commonly used antipsychotic drug 

clozapine
61
  

TCF4 Genome-wide significant association with schizophrenia
62
; 

genetic association with a number of schizophrenia 

endophenotypes
63
 

TCF4 expression is increased in  patients with 

schizophrenia and correlates with positive and negative 

schizophrenia symptom levels
63
  

ZNF804A Genome-wide significant association with schizophrenia in 

multiple studies (see a recent review
43
) 

— 
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