Skip to main content

The TRPA1 Channel in Inflammatory and Neuropathic Pain and Migraine

  • Chapter
  • First Online:

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 167))

Abstract

The transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily of channels, is primarily localized to a subpopulation of primary sensory neurons of the trigeminal, vagal, and dorsal root ganglia. This subset of nociceptors produces and releases the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP), which mediate neurogenic inflammatory responses. TRPA1 is activated by a number of exogenous compounds, including molecules of botanical origin, environmental irritants, and medicines. However, the most prominent feature of TRPA1 resides in its unique sensitivity for large series of reactive byproducts of oxidative and nitrative stress. Here, the role of TRPA1 in models of different types of pain, including inflammatory and neuropathic pain and migraine, is summarized. Specific attention is paid to TRPA1 as the main contributing mechanism to the transition of mechanical and cold hypersensitivity from an acute to a chronic condition and as the primary transducing pathway by which oxidative/nitrative stress produces acute nociception, allodynia, and hyperalgesia. A series of migraine triggers or medicines have been reported to modulate TRPA1 activity and the ensuing CGRP release. Thus, TRPA1 antagonists may be beneficial in the treatment of inflammatory and neuropathic pain and migraine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrahamsen B, Zhao J, Asante CO, Cendan CM, Marsh S, Martinez-Barbera JP, Nassar MA, Dickenson AH, Wood JN (2008) The cell and molecular basis of mechanical, cold, and inflammatory pain. Science 321:702–705

    CAS  PubMed  Google Scholar 

  • Ahluwalia A, Maggi CA, Santicioli P, Lecci A, Giuliani S (1994) Characterization of the capsaicin-sensitive component of cyclophosphamide-induced inflammation in the rat urinary bladder. Br J Pharmacol 111:1017–1022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Akiyama T, Carstens E (2013) Neural processing of itch. Neuroscience 250:697–714

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alemi F, Kwon E, Poole DP, Lieu T, Lyo V, Cattaruzza F, Cevikbas F, Steinhoff M, Nassini R, Materazzi S, Guerrero-Alba R, Valdez-Morales E, Cottrell GS, Schoonjans K, Geppetti P, Vanner SJ, Bunnett NW, Corvera CU (2013) The TGR5 receptor mediates bile acid-induced itch and analgesia. J Clin Invest 123:1513–1530

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alessandri-Haber N, Dina OA, Joseph EK, Reichling DB, Levine JD (2008) Interaction of transient receptor potential vanilloid 4, integrin, and SRC tyrosine kinase in mechanical hyperalgesia. J Neurosci 28:1046–1057

    CAS  PubMed  Google Scholar 

  • Amin FM, Asghar MS, Ravneberg JW, de Koning PJ, Larsson HB, Olesen J, Ashina M (2013) The effect of sumatriptan on cephalic arteries: A 3T MR-angiography study in healthy volunteers. Cephalalgia 33:1009–1016

    PubMed  Google Scholar 

  • Anderson PJ, Lau GS, Taylor WR, Critchley JA (1996) Acute effects of the potent lacrimator o-chlorobenzylidene malononitrile (CS) tear gas. Hum Exp Toxicol 15:461–465

    CAS  PubMed  Google Scholar 

  • Andersson DA, Gentry C, Moss S, Bevan S (2008) Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci 28:2485–2494

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andersson DA, Gentry C, Alenmyr L, Killander D, Lewis SE, Andersson A, Bucher B, Galzi JL, Sterner O, Bevan S, Hogestatt ED, Zygmunt PM (2011) TRPA1 mediates spinal antinociception induced by acetaminophen and the cannabinoid Delta(9)-tetrahydrocannabiorcol. Nat Commun 2:551

    PubMed  Google Scholar 

  • Andrade EL, Ferreira J, Andre E, Calixto JB (2006) Contractile mechanisms coupled to TRPA1 receptor activation in rat urinary bladder. Biochem Pharmacol 72:104–114

    CAS  PubMed  Google Scholar 

  • Andrade EL, Forner S, Bento AF, Leite DF, Dias MA, Leal PC, Koepp J, Calixto JB (2011) TRPA1 receptor modulation attenuates bladder overactivity induced by spinal cord injury. Am J Physiol Renal Physiol 300:F1223–F1234

    CAS  PubMed  Google Scholar 

  • Andrade EL, Meotti FC, Calixto JB (2012) TRPA1 antagonists as potential analgesic drugs. Pharmacol Ther 133:189–204

    CAS  PubMed  Google Scholar 

  • Andre E, Campi B, Materazzi S, Trevisani M, Amadesi S, Massi D, Creminon C, Vaksman N, Nassini R, Civelli M, Baraldi PG, Poole DP, Bunnett NW, Geppetti P, Patacchini R (2008) Cigarette smoke-induced neurogenic inflammation is mediated by alpha, beta-unsaturated aldehydes and the TRPA1 receptor in rodents. J Clin Invest 118:2574–2582

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andre E, Gatti R, Trevisani M, Preti D, Baraldi PG, Patacchini R, Geppetti P (2009) Transient receptor potential ankyrin receptor 1 is a novel target for pro-tussive agents. Br J Pharmacol 158:1621–1628

    CAS  PubMed Central  PubMed  Google Scholar 

  • Asghar MS, Hansen AE, Amin FM, van der Geest RJ, Koning P, Larsson HB, Olesen J, Ashina M (2011) Evidence for a vascular factor in migraine. Ann Neurol 69:635–645

    PubMed  Google Scholar 

  • Atoyan R, Shander D, Botchkareva NV (2009) Non-neuronal expression of transient receptor potential type A1 (TRPA1) in human skin. J Invest Dermatol 129:2312–2315

    CAS  PubMed  Google Scholar 

  • Averbeck B, Rucker F, Laubender RP, Carr RW (2013) Thermal grill-evoked sensations of heat correlate with cold pain threshold and are enhanced by menthol and cinnamaldehyde. Eur J Pain 17:724–734

    CAS  PubMed  Google Scholar 

  • Babes A, Fischer MJ, Filipovic M, Engel MA, Flonta ML, Reeh PW (2013) The anti-diabetic drug glibenclamide is an agonist of the transient receptor potential Ankyrin 1 (TRPA1) ion channel. Eur J Pharmacol 704:15–22

    CAS  PubMed  Google Scholar 

  • Backonja M, Wallace MS, Blonsky ER, Cutler BJ, Malan P Jr, Rauck R, Tobias J (2008) NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia: a randomised, double-blind study. Lancet Neurol 7:1106–1112

    CAS  PubMed  Google Scholar 

  • Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857

    CAS  PubMed  Google Scholar 

  • Bang S, Kim KY, Yoo S, Kim YG, Hwang SW (2007) Transient receptor potential A1 mediates acetaldehyde-evoked pain sensation. Eur J Neurosci 26:2516–2523

    PubMed  Google Scholar 

  • Barabas ME, Kossyreva EA, Stucky CL (2012) TRPA1 is functionally expressed primarily by IB4-binding, non-peptidergic mouse and rat sensory neurons. PLoS One 7:e47988

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baraldi PG, Romagnoli R, Saponaro G, Aghazadeh Tabrizi M, Baraldi S, Pedretti P, Fusi C, Nassini R, Materazzi S, Geppetti P, Preti D (2012) 7-Substituted-pyrrolo[3,2-d]pyrimidine-2,4-dione derivatives as antagonists of the transient receptor potential ankyrin 1 (TRPA1) channel: a promising approach for treating pain and inflammation. Bioorg Med Chem 20:1690–1698

    CAS  PubMed  Google Scholar 

  • Barriere DA, Rieusset J, Chanteranne D, Busserolles J, Chauvin MA, Chapuis L, Salles J, Dubray C, Morio B (2012) Paclitaxel therapy potentiates cold hyperalgesia in streptozotocin-induced diabetic rats through enhanced mitochondrial reactive oxygen species production and TRPA1 sensitization. Pain 153:553–561

    CAS  PubMed  Google Scholar 

  • Bautista DM, Movahed P, Hinman A, Axelsson HE, Sterner O, Hogestatt ED, Julius D, Jordt SE, Zygmunt PM (2005) Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci U S A 102:12248–12252

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–1282

    CAS  PubMed  Google Scholar 

  • Bautista DM, Pellegrino M, Tsunozaki M (2013) TRPA1: A gatekeeper for inflammation. Annu Rev Physiol 75:181–200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bayliss WM (1901) On the origin from the spinal cord of the vaso-dilator fibres of the hind-limb, and on the nature of these fibres. J Physiol 26:173–209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beasley R, Clayton T, Crane J, von Mutius E, Lai CK, Montefort S, Stewart A (2008) Association between paracetamol use in infancy and childhood, and risk of asthma, rhinoconjunctivitis, and eczema in children aged 6–7 years: analysis from Phase Three of the ISAAC programme. Lancet 372:1039–1048

    CAS  PubMed  Google Scholar 

  • Belvisi MG, Dubuis E, Birrell MA (2011) Transient receptor potential A1 channels: insights into cough and airway inflammatory disease. Chest 140:1040–1047

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benemei S, Appendino G, Geppetti P (2009) Pleasant natural scent with unpleasant effects: cluster headache-like attacks triggered by Umbellularia californica. Cephalalgia 3:3

    Google Scholar 

  • Bessac BF, Jordt SE (2010) Sensory detection and responses to toxic gases: mechanisms, health effects, and countermeasures. Proc Am Thorac Soc 7:269–277

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bessac BF, Sivula M, von Hehn CA, Escalera J, Cohn L, Jordt SE (2008) TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest 118:1899–1910

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bessac BF, Sivula M, von Hehn CA, Caceres AI, Escalera J, Jordt SE (2009) Transient receptor potential ankyrin 1 antagonists block the noxious effects of toxic industrial isocyanates and tear gases. Faseb J 23:1102–1114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bevan S, Szolcsanyi J (1990) Sensory neuron-specific actions of capsaicin: mechanisms and applications. Trends Pharmacol Sci 11:330–333

    CAS  PubMed  Google Scholar 

  • Bhattacharya MR, Bautista DM, Wu K, Haeberle H, Lumpkin EA, Julius D (2008) Radial stretch reveals distinct populations of mechanosensitive mammalian somatosensory neurons. Proc Natl Acad Sci U S A 105:20015–20020

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bianchi BR, Zhang XF, Reilly RM, Kym PR, Yao BB, Chen J (2012) Species comparison and pharmacological characterization of human, monkey, rat, and mouse TRPA1 channels. J Pharmacol Exp Ther 341:360–368

    CAS  PubMed  Google Scholar 

  • Binder A, May D, Baron R, Maier C, Tolle TR, Treede RD, Berthele A, Faltraco F, Flor H, Gierthmuhlen J, Haenisch S, Huge V, Magerl W, Maihofner C, Richter H, Rolke R, Scherens A, Uceyler N, Ufer M, Wasner G, Zhu J, Cascorbi I (2011) Transient receptor potential channel polymorphisms are associated with the somatosensory function in neuropathic pain patients. PLoS One 6:e17387

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bolcskei K, Helyes Z, Szabo A, Sandor K, Elekes K, Nemeth J, Almasi R, Pinter E, Petho G, Szolcsanyi J (2005) Investigation of the role of TRPV1 receptors in acute and chronic nociceptive processes using gene-deficient mice. Pain 117:368–376

    PubMed  Google Scholar 

  • Bonet IJ, Fischer L, Parada CA, Tambeli CH (2013) The role of transient receptor potential A 1 (TRPA1) in the development and maintenance of carrageenan-induced hyperalgesia. Neuropharmacology 65:206–212

    CAS  PubMed  Google Scholar 

  • Boot JD, de Haas S, Tarasevych S, Roy C, Wang L, Amin D, Cohen J, Sterk PJ, Miller B, Paccaly A, Burggraaf J, Cohen AF, Diamant Z (2007) Effect of an NK1/NK2 receptor antagonist on airway responses and inflammation to allergen in asthma. Am J Respir Crit Care Med 175:450–457

    CAS  PubMed  Google Scholar 

  • Brederson JD, Kym PR, Szallasi A (2013) Targeting TRP channels for pain relief. Eur J Pharmacol 2999:00173–00178

    Google Scholar 

  • Brierley SM, Hughes PA, Page AJ, Kwan KY, Martin CM, O'Donnell TA, Cooper NJ, Harrington AM, Adam B, Liebregts T, Holtmann G, Corey DP, Rychkov GY, Blackshaw LA (2009) The Ion Channel TRPA1 Is Required for Normal Mechanosensation and Is Modulated by Algesic Stimuli. Gastroenterology 24:24

    Google Scholar 

  • Brone B, Peeters PJ, Marrannes R, Mercken M, Nuydens R, Meert T, Gijsen HJ (2008) Tear gasses CN, CR, and CS are potent activators of the human TRPA1 receptor. Toxicol Appl Pharmacol 231:150–156

    CAS  PubMed  Google Scholar 

  • Brooks SM (2011) Perspective on the human cough reflex. Cough 7:10

    PubMed Central  PubMed  Google Scholar 

  • Brooks SM, Bernstein IL (2011) Irritant-induced airway disorders. Immunol Allergy Clin North Am 31: 747–768, vi

    Google Scholar 

  • Brozmanova M, Ru F, Surdenikova L, Mazurova L, Taylor-Clark T, Kollarik M (2011) Preferential activation of the vagal nodose nociceptive subtype by TRPA1 agonists in the guinea pig esophagus. Neurogastroenterol Motil 23:e437–e445

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bubolz AH, Mendoza SA, Zheng X, Zinkevich NS, Li R, Gutterman DD, Zhang DX (2012) Activation of endothelial TRPV4 channels mediates flow-induced dilation in human coronary arterioles: role of Ca2+ entry and mitochondrial ROS signaling. Am J Physiol Heart Circ Physiol 302:H634–H642

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caceres AI, Brackmann M, Elia MD, Bessac BF, Del Camino D, D'Amours M, Witek JS, Fanger CM, Chong JA, Hayward NJ, Homer RJ, Cohn L, Huang X, Moran MM, Jordt SE (2009) A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc Natl Acad Sci U S A 19:19

    Google Scholar 

  • Cady RK, Goldstein J, Nett R, Mitchell R, Beach ME, Browning R (2011) A double-blind placebo-controlled pilot study of sublingual feverfew and ginger (LipiGesic M) in the treatment of migraine. Headache 51:1078–1086

    PubMed  Google Scholar 

  • Cao DS, Zhong L, Hsieh TH, Abooj M, Bishnoi M, Hughes L, Premkumar LS (2012) Expression of transient receptor potential ankyrin 1 (TRPA1) and its role in insulin release from rat pancreatic beta cells. PLoS One 7:e38005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caspani O, Zurborg S, Labuz D, Heppenstall PA (2009) The contribution of TRPM8 and TRPA1 channels to cold allodynia and neuropathic pain. PLoS One 4:e7383

    PubMed Central  PubMed  Google Scholar 

  • Cattaruzza F, Spreadbury I, Miranda-Morales M, Grady EF, Vanner S, Bunnett NW (2010) Transient receptor potential ankyrin-1 has a major role in mediating visceral pain in mice. Am J Physiol Gastrointest Liver Physiol 298:G81–G91

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cavaletti G, Marmiroli P (2010) Chemotherapy-induced peripheral neurotoxicity. Nat Rev Neurol 6:657–666

    PubMed  Google Scholar 

  • Cebi M, Koert U (2007) Reactivity recognition by TRPA1 channels. Chembiochem 8:979–980

    CAS  PubMed  Google Scholar 

  • Ceppa E, Cattaruzza F, Lyo V, Amadesi S, Pelayo JC, Poole DP, Vaksman N, Liedtke W, Cohen DM, Grady EF, Bunnett NW, Kirkwood KS (2010) Transient receptor potential ion channels V4 and A1 contribute to pancreatitis pain in mice. Am J Physiol Gastrointest Liver Physiol 299:G556–G571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, Zhang XF, Kort ME, Huth JR, Sun C, Miesbauer LJ, Cassar SC, Neelands T, Scott VE, Moreland RB, Reilly RM, Hajduk PJ, Kym PR, Hutchins CW, Faltynek CR (2008) Molecular determinants of species-specific activation or blockade of TRPA1 channels. J Neurosci 28:5063–5071

    CAS  PubMed  Google Scholar 

  • Chen J, Joshi SK, DiDomenico S, Perner RJ, Mikusa JP, Gauvin DM, Segreti JA, Han P, Zhang XF, Niforatos W, Bianchi BR, Baker SJ, Zhong C, Simler GH, McDonald HA, Schmidt RG, McGaraughty SP, Chu KL, Faltynek CR, Kort ME, Reilly RM, Kym PR (2011) Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation. Pain 152:1165–1172

    CAS  PubMed  Google Scholar 

  • Chen J, Kang D, Xu J, Lake M, Hogan JO, Sun C, Walter K, Yao B, Kim D (2013) Species differences and molecular determinant of TRPA1 cold sensitivity. Nat Commun 4:2501

    PubMed Central  PubMed  Google Scholar 

  • Corey DP, Garcia-Anoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, Amalfitano A, Cheung EL, Derfler BH, Duggan A, Geleoc GS, Gray PA, Hoffman MP, Rehm HL, Tamasauskas D, Zhang DS (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432:723–730

    CAS  PubMed  Google Scholar 

  • Courteau JP, Cushman R, Bouchard F, Quevillon M, Chartrand A, Bherer L (1994) Survey of construction workers repeatedly exposed to chlorine over a three to six month period in a pulpmill: I. Exposure and symptomatology. Occup Environ Med 51:219–224

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cover C, Mansouri A, Knight TR, Bajt ML, Lemasters JJ, Pessayre D, Jaeschke H (2005) Peroxynitrite-induced mitochondrial and endonuclease-mediated nuclear DNA damage in acetaminophen hepatotoxicity. J Pharmacol Exp Ther 315:879–887

    CAS  PubMed  Google Scholar 

  • da Costa DS, Meotti FC, Andrade EL, Leal PC, Motta EM, Calixto JB (2010) The involvement of the transient receptor potential A1 (TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation. Pain 148:431–437

    PubMed  Google Scholar 

  • De Petrocellis L, Di Marzo V (2005) Lipids as regulators of the activity of transient receptor potential type V1 (TRPV1) channels. Life Sci 77:1651–1666

    PubMed  Google Scholar 

  • De Petrocellis L, Vellani V, Schiano-Moriello A, Marini P, Magherini PC, Orlando P, Di Marzo V (2008) Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8. J Pharmacol Exp Ther 325:1007–1015

    PubMed  Google Scholar 

  • del Camino D, Murphy S, Heiry M, Barrett LB, Earley TJ, Cook CA, Petrus MJ, Zhao M, D’Amours M, Deering N, Brenner GJ, Costigan M, Hayward NJ, Chong JA, Fanger CM, Woolf CJ, Patapoutian A, Moran MM (2010) TRPA1 contributes to cold hypersensitivity. J Neurosci 30:15165–15174

    PubMed Central  PubMed  Google Scholar 

  • Diener HC, Pfaffenrath V, Schnitker J, Friede M, Henneicke-von Zepelin HH (2005) Efficacy and safety of 6.25 mg t.i.d. feverfew CO2-extract (MIG-99) in migraine prevention–a randomized, double-blind, multicentre, placebo-controlled study. Cephalalgia 25:1031–1041

    CAS  PubMed  Google Scholar 

  • Diener HC, Barbanti P, Dahlof C, Reuter U, Habeck J, Podhorna J (2011) BI 44370 TA, an oral CGRP antagonist for the treatment of acute migraine attacks: results from a phase II study. Cephalalgia 31:573–584

    PubMed  Google Scholar 

  • Doerner JF, Gisselmann G, Hatt H, Wetzel CH (2007) Transient receptor potential channel A1 is directly gated by calcium ions. J Biol Chem 282:13180–13189

    CAS  PubMed  Google Scholar 

  • Doihara H, Nozawa K, Kawabata-Shoda E, Kojima R, Yokoyama T, Ito H (2009) TRPA1 agonists delay gastric emptying in rats through serotonergic pathways. Naunyn Schmiedebergs Arch Pharmacol 380:353–357

    CAS  PubMed  Google Scholar 

  • Du S, Araki I, Yoshiyama M, Nomura T, Takeda M (2007) Transient receptor potential channel A1 involved in sensory transduction of rat urinary bladder through C-fiber pathway. Urology 70:826–831

    PubMed  Google Scholar 

  • Du S, Araki I, Kobayashi H, Zakoji H, Sawada N, Takeda M (2008) Differential expression profile of cold (TRPA1) and cool (TRPM8) receptors in human urogenital organs. Urology 72:450–455

    PubMed  Google Scholar 

  • Dunham JP, Kelly S, Donaldson LF (2008) Inflammation reduces mechanical thresholds in a population of transient receptor potential channel A1-expressing nociceptors in the rat. Eur J Neurosci 27:3151–3160

    PubMed Central  PubMed  Google Scholar 

  • Dunham JP, Leith JL, Lumb BM, Donaldson LF (2010) Transient receptor potential channel A1 and noxious cold responses in rat cutaneous nociceptors. Neuroscience 165:1412–1419

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dussor GO, Leong AS, Gracia NB, Kilo S, Price TJ, Hargreaves KM, Flores CM (2003) Potentiation of evoked calcitonin gene-related peptide release from oral mucosa: a potential basis for the pro-inflammatory effects of nicotine. Eur J Neurosci 18:2515–2526

    PubMed Central  PubMed  Google Scholar 

  • Earley S, Gonzales AL, Crnich R (2009) Endothelium-dependent cerebral artery dilation mediated by TRPA1 and Ca2+−Activated K+ channels. Circ Res 104:987–994

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eberhardt MJ, Filipovic MR, Leffler A, de la Roche J, Kistner K, Fischer MJ, Fleming T, Zimmermann K, Ivanovic-Burmazovic I, Nawroth PP, Bierhaus A, Reeh PW, Sauer SK (2012) Methylglyoxal activates nociceptors through transient receptor potential channel A1 (TRPA1): a possible mechanism of metabolic neuropathies. J Biol Chem 287:28291–28306

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eid SR, Crown ED, Moore EL, Liang HA, Choong KC, Dima S, Henze DA, Kane SA, Urban MO (2008) HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity. Mol Pain 4:48

    PubMed Central  PubMed  Google Scholar 

  • Eilers H, Cattaruzza F, Nassini R, Materazzi S, Andre E, Chu C, Cottrell G, Schumacher MA, Geppetti P, Bunnett NW (2009) Pungent General Anesthetics Activate Transient Receptor Potential-A1 to Produce Hyperalgesia and Neurogenic Bronchoconstriction. Anesthesiology, in press

    Google Scholar 

  • Eltorp CT, Jansen-Olesen I, Hansen AJ (2000) Release of calcitonin gene-related peptide (CGRP) from guinea pig dura mater in vitro is inhibited by sumatriptan but unaffected by nitric oxide. Cephalalgia 20:838–844

    CAS  PubMed  Google Scholar 

  • Engel MA, Leffler A, Niedermirtl F, Babes A, Zimmermann K, Filipovic MR, Izydorczyk I, Eberhardt M, Kichko TI, Mueller-Tribbensee SM, Khalil M, Siklosi N, Nau C, Ivanovic-Burmazovic I, Neuhuber WL, Becker C, Neurath MF, Reeh PW (2011) TRPA1 and substance P mediate colitis in mice. Gastroenterology 141:1346–1358

    CAS  PubMed  Google Scholar 

  • Fajardo O, Meseguer V, Belmonte C, Viana F (2008) TRPA1 channels: novel targets of 1,4-dihydropyridines. Channels (Austin) 2:429–438

    Google Scholar 

  • Fanciullacci M, Alessandri M, Figini M, Geppetti P, Michelacci S (1995) Increase in plasma calcitonin gene-related peptide from the extracerebral circulation during nitroglycerin-induced cluster headache attack. Pain 60:119–123

    CAS  PubMed  Google Scholar 

  • Fernandes ES, Russell FA, Spina D, McDougall JJ, Graepel R, Gentry C, Staniland AA, Mountford DM, Keeble JE, Malcangio M, Bevan S, Brain SD (2011) A distinct role for transient receptor potential ankyrin 1, in addition to transient receptor potential vanilloid 1, in tumor necrosis factor alpha-induced inflammatory hyperalgesia and Freund's complete adjuvant-induced monarthritis. Arthritis Rheum 63:819–829

    CAS  PubMed  Google Scholar 

  • Fernandes ES, Vong CT, Quek S, Cheong J, Awal S, Gentry C, Aubdool AA, Liang L, Bodkin JV, Bevan S, Heads R, Brain SD (2013) Superoxide generation and leukocyte accumulation: key elements in the mediation of leukotriene B(4)-induced itch by transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1. Faseb J 27:1664–1673

    CAS  PubMed  Google Scholar 

  • Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194:7–15

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fletcher C, Peto R (1977) The natural history of chronic airflow obstruction. Br Med J 1:1645–1648

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Anoveros J, Duggan A (2007) TRPA1 in auditory and nociceptive organs. In: Liedtke WB, Heller S (eds) TRP ion channel function in sensory transduction and cellular signaling cascades. CRC, Boca Raton

    Google Scholar 

  • Gauchan P, Andoh T, Kato A, Kuraishi Y (2009a) Involvement of increased expression of transient receptor potential melastatin 8 in oxaliplatin-induced cold allodynia in mice. Neurosci Lett 458:93–95

    CAS  PubMed  Google Scholar 

  • Gauchan P, Andoh T, Kato A, Sasaki A, Kuraishi Y (2009b) Effects of the prostaglandin E1 analog limaprost on mechanical allodynia caused by chemotherapeutic agents in mice. J Pharmacol Sci 109:469–472

    CAS  PubMed  Google Scholar 

  • Geppetti P, Holzer P (1996) Neurogenic inflammation. CRC, Boca Raton

    Google Scholar 

  • Geppetti P, Nassini R, Materazzi S, Benemei S (2008) The concept of neurogenic inflammation. BJU Int 101(Suppl 3):2–6

    CAS  PubMed  Google Scholar 

  • Geppetti P, Patacchini R, Nassini R, Materazzi S (2010) Cough: the emerging role of the TRPA1 channel. Lung 188(Suppl 1):S63–S68

    CAS  PubMed  Google Scholar 

  • Geppetti P, Patacchini R, Nassini R (2014) Transient receptor potential channels and occupational exposure. Curr Opin Allergy Clin Immunol, in press

    Google Scholar 

  • Goldstein DJ, Wang O, Saper JR, Stoltz R, Silberstein SD, Mathew NT (1997) Ineffectiveness of neurokinin-1 antagonist in acute migraine: a crossover study. Cephalalgia 17:785–790

    CAS  PubMed  Google Scholar 

  • Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22:6408–6414

    CAS  PubMed  Google Scholar 

  • Hatano N, Suzuki H, Muraki Y, Muraki K (2013) Stimulation of human TRPA1 channels by clinical concentrations of the antirheumatic drug auranofin. Am J Physiol Cell Physiol 304:C354–C361

    CAS  PubMed  Google Scholar 

  • Hewitt DJ, Aurora SK, Dodick DW, Goadsby PJ, Ge YJ, Bachman R, Taraborelli D, Fan X, Assaid C, Lines C, Ho TW (2011) Randomized controlled trial of the CGRP receptor antagonist MK-3207 in the acute treatment of migraine. Cephalalgia 31:712–722

    PubMed  Google Scholar 

  • Hill K, Schaefer M (2007) TRPA1 is differentially modulated by the amphipathic molecules trinitrophenol and chlorpromazine. J Biol Chem 282:7145–7153

    CAS  PubMed  Google Scholar 

  • Hinman A, Chuang HH, Bautista DM, Julius D (2006) TRP channel activation by reversible covalent modification. Proc Natl Acad Sci U S A 103:19564–19568

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ho TW, Ferrari MD, Dodick DW, Galet V, Kost J, Fan X, Leibensperger H, Froman S, Assaid C, Lines C, Koppen H, Winner PK (2008) Efficacy and tolerability of MK-0974 (telcagepant), a new oral antagonist of calcitonin gene-related peptide receptor, compared with zolmitriptan for acute migraine: a randomised, placebo-controlled, parallel-treatment trial. Lancet 372:2115–2123

    CAS  PubMed  Google Scholar 

  • Hu H, Tian J, Zhu Y, Wang C, Xiao R, Herz JM, Wood JD, Zhu MX (2009) Activation of TRPA1 channels by fenamate nonsteroidal anti-inflammatory drugs. Pflugers Arch 4:4

    Google Scholar 

  • Ibarra Y, Blair NT (2013) Benzoquinone reveals a cysteine-dependent desensitization mechanism of TRPA1. Mol Pharmacol 83:1120–1132

    CAS  PubMed Central  PubMed  Google Scholar 

  • Immel DL (2006) California Laurel. In. USDA Natural Resources Conservation Service

    Google Scholar 

  • Irlbacher K, Meyer BU (2002) Nasally triggered headache. Neurology 58:294

    PubMed  Google Scholar 

  • Iversen HK (1995) Experimental headache in humans. Cephalalgia 15:281–287

    CAS  PubMed  Google Scholar 

  • Iversen HK, Olesen J (1993) The effect of sumatriptan on nitroglycerin-(NTG)-induced headache and vascular responses. Cephalalgia 13:186

    Google Scholar 

  • Iversen HK, Olesen J (1996) Headache induced by a nitric oxide donor (nitroglycerin) responds to sumatriptan. A human model for development of migraine drugs. Cephalalgia 16:412–418

    CAS  PubMed  Google Scholar 

  • Jain A, Bronneke S, Kolbe L, Stab F, Wenck H, Neufang G (2011) TRP-channel-specific cutaneous eicosanoid release patterns. Pain 152:2765–2772

    CAS  PubMed  Google Scholar 

  • Jaquemar D, Schenker T, Trueb B (1999) An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J Biol Chem 274:7325–7333

    CAS  PubMed  Google Scholar 

  • Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    CAS  PubMed  Google Scholar 

  • Joseph EK, Levine JD (2009) Comparison of oxaliplatin- and cisplatin-induced painful peripheral neuropathy in the rat. J Pain 10:534–541

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joseph EK, Chen X, Bogen O, Levine JD (2008) Oxaliplatin acts on IB4-positive nociceptors to induce an oxidative stress-dependent acute painful peripheral neuropathy. J Pain 9:463–472

    CAS  PubMed  Google Scholar 

  • Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210

    CAS  PubMed  Google Scholar 

  • Kaji I, Yasuoka Y, Karaki S, Kuwahara A (2012) Activation of TRPA1 by luminal stimuli induces EP4-mediated anion secretion in human and rat colon. Am J Physiol Gastrointest Liver Physiol 302:G690–G701

    CAS  PubMed  Google Scholar 

  • Kaneko Y, Szallasi A (2013) Transient Receptor Potential (TRP) channels: a clinical perspective. Br J Pharmacol 2013:12414

    Google Scholar 

  • Kang K, Pulver SR, Panzano VC, Chang EC, Griffith LC, Theobald DL, Garrity PA (2010) Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature 464:597–600

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karashima Y, Damann N, Prenen J, Talavera K, Segal A, Voets T, Nilius B (2007) Bimodal action of menthol on the transient receptor potential channel TRPA1. J Neurosci 27:9874–9884

    CAS  PubMed  Google Scholar 

  • Karashima Y, Talavera K, Everaerts W, Janssens A, Kwan KY, Vennekens R, Nilius B, Voets T (2009) TRPA1 acts as a cold sensor in vitro and in vivo. Proc Natl Acad Sci U S A 106:1273–1278

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katsura H, Obata K, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, Fukuoka T, Tokunaga A, Sakagami M, Noguchi K (2006) Antisense knock down of TRPA1, but not TRPM8, alleviates cold hyperalgesia after spinal nerve ligation in rats. Exp Neurol 200:112–123

    CAS  PubMed  Google Scholar 

  • Kelman L (2007) The triggers or precipitants of the acute migraine attack. Cephalalgia 27:394–402

    CAS  PubMed  Google Scholar 

  • Kichko TI, Lennerz J, Eberhardt M, Babes RM, Neuhuber W, Kobal G, Reeh PW (2013) Bimodal concentration-response of nicotine involves the nicotinic acetylcholine receptor, transient receptor potential vanilloid type 1, and transient receptor potential ankyrin 1 channels in mouse trachea and sensory neurons. J Pharmacol Exp Ther 347:529–539

    CAS  PubMed  Google Scholar 

  • Kim YS, Son JY, Kim TH, Paik SK, Dai Y, Noguchi K, Ahn DK, Bae YC (2010) Expression of transient receptor potential ankyrin 1 (TRPA1) in the rat trigeminal sensory afferents and spinal dorsal horn. J Comp Neurol 518:687–698

    CAS  PubMed  Google Scholar 

  • Kim HY, Chung G, Jo HJ, Kim YS, Bae YC, Jung SJ, Kim JS, Oh SB (2011) Characterization of dental nociceptive neurons. J Dent Res 90:771–776

    CAS  PubMed  Google Scholar 

  • Kim YS, Jung HK, Kwon TK, Kim CS, Cho JH, Ahn DK, Bae YC (2012) Expression of transient receptor potential ankyrin 1 in human dental pulp. J Endod 38:1087–1092

    PubMed  Google Scholar 

  • Kindt KS, Viswanath V, Macpherson L, Quast K, Hu H, Patapoutian A, Schafer WR (2007) Caenorhabditis elegans TRPA-1 functions in mechanosensation. Nat Neurosci 10:568–577

    CAS  PubMed  Google Scholar 

  • Koch M, Kreutz S, Bottger C, Grabiec U, Ghadban C, Korf HW, Dehghani F (2010) The cannabinoid WIN 55,212-2-mediated protection of dentate gyrus granule cells is driven by CB1 receptors and modulated by TRPA1 and Cav 2.2 channels. Hippocampus 21:554–564

    Google Scholar 

  • Kohansal R, Martinez-Camblor P, Agusti A, Buist AS, Mannino DM, Soriano JB (2009) The natural history of chronic airflow obstruction revisited: an analysis of the Framingham offspring cohort. Am J Respir Crit Care Med 180:3–10

    PubMed  Google Scholar 

  • Koivisto A, Hukkanen M, Saarnilehto M, Chapman H, Kuokkanen K, Wei H, Viisanen H, Akerman KE, Lindstedt K, Pertovaara A (2012) Inhibiting TRPA1 ion channel reduces loss of cutaneous nerve fiber function in diabetic animals: sustained activation of the TRPA1 channel contributes to the pathogenesis of peripheral diabetic neuropathy. Pharmacol Res 65:149–158

    CAS  PubMed  Google Scholar 

  • Kondo T, Obata K, Miyoshi K, Sakurai J, Tanaka J, Miwa H, Noguchi K (2009) Transient receptor potential A1 mediates gastric distention-induced visceral pain in rats. Gut 58:1342–1352

    CAS  PubMed  Google Scholar 

  • Kono T, Kaneko A, Omiya Y, Ohbuchi K, Ohno N, Yamamoto M (2013) Epithelial transient receptor potential ankyrin 1 (TRPA1)-dependent adrenomedullin upregulates blood flow in rat small intestine. Am J Physiol Gastrointest Liver Physiol 304:G428–G436

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kremeyer B, Lopera F, Cox JJ, Momin A, Rugiero F, Marsh S, Woods CG, Jones NG, Paterson KJ, Fricker FR, Villegas A, Acosta N, Pineda-Trujillo NG, Ramirez JD, Zea J, Burley MW, Bedoya G, Bennett DL, Wood JN, Ruiz-Linares A (2010) A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron 66:671–680

    CAS  PubMed  Google Scholar 

  • Kunkler PE, Ballard CJ, Oxford GS, Hurley JH (2011) TRPA1 receptors mediate environmental irritant-induced meningeal vasodilatation. Pain 152:38–44

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ, Corey DP (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50:277–289

    CAS  PubMed  Google Scholar 

  • Kwan KY, Glazer JM, Corey DP, Rice FL, Stucky CL (2009) TRPA1 modulates mechanotransduction in cutaneous sensory neurons. J Neurosci 29:4808–4819

    CAS  PubMed Central  PubMed  Google Scholar 

  • La JH, Schwartz ES, Gebhart GF (2011) Differences in the expression of transient receptor potential channel V1, transient receptor potential channel A1 and mechanosensitive two pore-domain K+ channels between the lumbar splanchnic and pelvic nerve innervations of mouse urinary bladder and colon. Neuroscience 186:179–187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee AT, Shah JJ, Li L, Cheng Y, Moore PK, Khanna S (2008a) A nociceptive-intensity-dependent role for hydrogen sulphide in the formalin model of persistent inflammatory pain. Neuroscience 152:89–96

    CAS  PubMed  Google Scholar 

  • Lee SP, Buber MT, Yang Q, Cerne R, Cortes RY, Sprous DG, Bryant RW (2008b) Thymol and related alkyl phenols activate the hTRPA1 channel. Br J Pharmacol 153:1739–1749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SM, Cho YS, Kim TH, Jin MU, Ahn DK, Noguchi K, Bae YC (2012) An ultrastructural evidence for the expression of transient receptor potential ankyrin 1 (TRPA1) in astrocytes in the rat trigeminal caudal nucleus. J Chem Neuroanat 45:45–49

    CAS  PubMed  Google Scholar 

  • Leffler A, Lattrell A, Kronewald S, Niedermirtl F, Nau C (2011) Activation of TRPA1 by membrane permeable local anesthetics. Mol Pain 7:62

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lennertz RC, Kossyreva EA, Smith AK, Stucky CL (2012) TRPA1 mediates mechanical sensitization in nociceptors during inflammation. PLoS One 7:e43597

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis T (1937) The nocifensor system of nerves and its reactions. Br Medl J 431–435

    Google Scholar 

  • Lima AM, Sapienza GB, Giraud Vde O, Fragoso YD (2011) Odors as triggering and worsening factors for migraine in men. Arq Neuropsiquiatr 69:324–327

    PubMed  Google Scholar 

  • Liu Q, Tang Z, Surdenikova L, Kim S, Patel KN, Kim A, Ru F, Guan Y, Weng HJ, Geng Y, Undem BJ, Kollarik M, Chen ZF, Anderson DJ, Dong X (2009) Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell 139:1353–1365

    PubMed Central  PubMed  Google Scholar 

  • Lundberg JM, Saria A (1983) Capsaicin-induced desensitization of airway mucosa to cigarette smoke, mechanical and chemical irritants. Nature 302:251–253

    CAS  PubMed  Google Scholar 

  • Macpherson LJ, Xiao B, Kwan KY, Petrus MJ, Dubin AE, Hwang S, Cravatt B, Corey DP, Patapoutian A (2007) An ion channel essential for sensing chemical damage. J Neurosci 27:11412–11415

    CAS  PubMed  Google Scholar 

  • Materazzi S, Nassini R, Andre E, Campi B, Amadesi S, Trevisani M, Bunnett NW, Patacchini R, Geppetti P (2008) Cox-dependent fatty acid metabolites cause pain through activation of the irritant receptor TRPA1. Proc Natl Acad Sci U S A 105:12045–12050

    CAS  PubMed Central  PubMed  Google Scholar 

  • Materazzi S, Fusi C, Benemei S, Pedretti P, Patacchini R, Nilius B, Prenen J, Creminon C, Geppetti P, Nassini R (2012) TRPA1 and TRPV4 mediate paclitaxel-induced peripheral neuropathy in mice via a glutathione-sensitive mechanism. Pflugers Arch 463:561–569

    CAS  PubMed  Google Scholar 

  • Materazzi S, Benemei S, Fusi C, Gualdani R, De Siena G, Vastani N, Andersson DA, Trevisan G, Moncelli MR, Wei X, Dussor G, Pollastro F, Patacchini R, Appendino G, Geppetti P, Nassini R (2013) Parthenolide inhibits nociception and neurogenic vasodilatation in the trigeminovascular system by targeting TRPA1 channel. Pain 154:2750–2758

    CAS  PubMed  Google Scholar 

  • Matta JA, Cornett PM, Miyares RL, Abe K, Sahibzada N, Ahern GP (2008) General anesthetics activate a nociceptive ion channel to enhance pain and inflammation. Proc Natl Acad Sci U S A 105:8784–8789

    CAS  PubMed Central  PubMed  Google Scholar 

  • May D, Baastrup J, Nientit MR, Binder A, Schunke M, Baron R, Cascorbi I (2012) Differential expression and functionality of TRPA1 protein genetic variants in conditions of thermal stimulation. J Biol Chem 287:27087–27094

    CAS  PubMed Central  PubMed  Google Scholar 

  • McGaraughty S, Chu KL, Perner RJ, Didomenico S, Kort ME, Kym PR (2010) TRPA1 modulation of spontaneous and mechanically evoked firing of spinal neurons in uninjured, osteoarthritic, and inflamed rats. Mol Pain 6:14

    PubMed Central  PubMed  Google Scholar 

  • McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    CAS  PubMed  Google Scholar 

  • McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, Hayward NJ, Chong JA, Julius D, Moran MM, Fanger CM (2007) TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci U S A 104:13525–13530

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meseguer V, Karashima Y, Talavera K, D'Hoedt D, Donovan-Rodriguez T, Viana F, Nilius B, Voets T (2008) Transient receptor potential channels in sensory neurons are targets of the antimycotic agent clotrimazole. J Neurosci 28:576–586

    CAS  PubMed  Google Scholar 

  • Mitchell JA, Warner TD (1999) Cyclo-oxygenase-2: pharmacology, physiology, biochemistry and relevance to NSAID therapy. Br J Pharmacol 128:1121–1132

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyamoto T, Dubin AE, Petrus MJ, Patapoutian A (2009) TRPV1 and TRPA1 mediate peripheral nitric oxide-induced nociception in mice. PLoS One 4:e7596

    PubMed Central  PubMed  Google Scholar 

  • Moilanen LJ, Laavola M, Kukkonen M, Korhonen R, Leppanen T, Hogestatt ED, Zygmunt PM, Nieminen RM, Moilanen E (2012) TRPA1 contributes to the acute inflammatory response and mediates carrageenan-induced paw edema in the mouse. Sci Rep 2:380

    PubMed Central  PubMed  Google Scholar 

  • Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2:1313–1323

    CAS  PubMed  Google Scholar 

  • Moqrich A, Hwang SW, Earley TJ, Petrus MJ, Murray AN, Spencer KS, Andahazy M, Story GM, Patapoutian A (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307:1468–1472

    CAS  PubMed  Google Scholar 

  • Morera E, De Petrocellis L, Morera L, Moriello AS, Nalli M, Di Marzo V, Ortar G (2012) Synthesis and biological evaluation of [6]-gingerol analogues as transient receptor potential channel TRPV1 and TRPA1 modulators. Bioorg Med Chem Lett 22:1674–1677

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay I, Gomes P, Aranake S, Shetty M, Karnik P, Damle M, Kuruganti S, Thorat S, Khairatkar-Joshi N (2011) Expression of functional TRPA1 receptor on human lung fibroblast and epithelial cells. J Recept Signal Transduct Res 31:350–358

    CAS  PubMed  Google Scholar 

  • Nassenstein C, Kwong K, Taylor-Clark T, Kollarik M, Macglashan DM, Braun A, Undem BJ (2008) Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. J Physiol 586:1595–1604

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nassini R, Materazzi S, Andre E, Sartiani L, Aldini G, Trevisani M, Carnini C, Massi D, Pedretti P, Carini M, Cerbai E, Preti D, Villetti G, Civelli M, Trevisan G, Azzari C, Stokesberry S, Sadofsky L, McGarvey L, Patacchini R, Geppetti P (2010) Acetaminophen, via its reactive metabolite N-acetyl-p-benzo-quinoneimine and transient receptor potential ankyrin-1 stimulation, causes neurogenic inflammation in the airways and other tissues in rodents. Faseb J 24:4904–4916

    CAS  PubMed  Google Scholar 

  • Nassini R, Gees M, Harrison S, De Siena G, Materazzi S, Moretto N, Failli P, Preti D, Marchetti N, Cavazzini A, Mancini F, Pedretti P, Nilius B, Patacchini R, Geppetti P (2011) Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation. Pain 152:1621–1631

    CAS  PubMed  Google Scholar 

  • Nassini R, Materazzi S, Vriens J, Prenen J, Benemei S, De Siena G, la Marca G, Andre E, Preti D, Avonto C, Sadofsky L, Di Marzo V, De Petrocellis L, Dussor G, Porreca F, Taglialatela-Scafati O, Appendino G, Nilius B, Geppetti P (2012a) The ‘headache tree’ via umbellulone and TRPA1 activates the trigeminovascular system. Brain 135:376–390

    PubMed  Google Scholar 

  • Nassini R, Pedretti P, Moretto N, Fusi C, Carnini C, Facchinetti F, Viscomi AR, Pisano AR, Stokesberry S, Brunmark C, Svitacheva N, McGarvey L, Patacchini R, Damholt AB, Geppetti P, Materazzi S (2012b) Transient receptor potential ankyrin 1 channel localized to non-neuronal airway cells promotes non-neurogenic inflammation. PLoS One 7:e42454

    CAS  PubMed Central  PubMed  Google Scholar 

  • Naziroglu M, Cig B, Ozgul C (2013) Neuroprotection induced by N-acetylcysteine against cytosolic glutathione depletion-induced Ca2+ influx in dorsal root ganglion neurons of mice: role of TRPV1 channels. Neuroscience 242:151–160

    CAS  PubMed  Google Scholar 

  • Nilius B (2007) Transient receptor potential (TRP) cation channels: rewarding unique proteins. Bull Mem Acad R Med Belg 162:244–253

    PubMed  Google Scholar 

  • Nilius B, Appendino G (2013) Spices: the savory and beneficial science of pungency. Rev Physiol Biochem Pharmacol 164:1–76

    PubMed  Google Scholar 

  • Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12:218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217

    CAS  PubMed  Google Scholar 

  • Nilius B, Appendino G, Owsianik G (2012) The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch 464:425–458

    CAS  PubMed  Google Scholar 

  • Nozawa K, Kawabata-Shoda E, Doihara H, Kojima R, Okada H, Mochizuki S, Sano Y, Inamura K, Matsushime H, Koizumi T, Yokoyama T, Ito H (2009) TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells. Proc Natl Acad Sci U S A 106:3408–3413

    CAS  PubMed Central  PubMed  Google Scholar 

  • Obata K, Katsura H, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, Fukuoka T, Tokunaga A, Tominaga M, Noguchi K (2005) TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest 115:2393–2401

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okubo K, Matsumura M, Kawaishi Y, Aoki Y, Matsunami M, Okawa Y, Sekiguchi F, Kawabata A (2012) Hydrogen sulfide-induced mechanical hyperalgesia and allodynia require activation of both Cav3.2 and TRPA1 channels in mice. Br J Pharmacol 166:1738–1743

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okun A, Liu P, Davis P, Ren J, Remeniuk B, Brion T, Ossipov MH, Xie J, Dussor GO, King T, Porreca F (2012) Afferent drive elicits ongoing pain in a model of advanced osteoarthritis. Pain 153:924–933

    PubMed Central  PubMed  Google Scholar 

  • Olesen J, Diener HC, Husstedt IW, Goadsby PJ, Hall D, Meier U, Pollentier S, Lesko LM (2004) Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med 350:1104–1110

    CAS  PubMed  Google Scholar 

  • O’Neill J, Brock C, Olesen AE, Andresen T, Nilsson M, Dickenson AH (2012) Unravelling the mystery of capsaicin: a tool to understand and treat pain. Pharmacol Rev 64:939–971

    PubMed Central  PubMed  Google Scholar 

  • Ott MG, Diller WF, Jolly AT (2003) Respiratory effects of toluene diisocyanate in the workplace: a discussion of exposure-response relationships. Crit Rev Toxicol 33:1–59

    CAS  PubMed  Google Scholar 

  • Owsianik G, D'Hoedt D, Voets T, Nilius B (2006) Structure-function relationship of the TRP channel superfamily. Rev Physiol Biochem Pharmacol 156:61–90

    CAS  PubMed  Google Scholar 

  • Pachman DR, Barton DL, Watson JC, Loprinzi CL (2011) Chemotherapy-induced peripheral neuropathy: prevention and treatment. Clin Pharmacol Ther 90:377–387

    CAS  PubMed  Google Scholar 

  • Patwardhan A, Edelmayer R, Annabi E, Price T, Malan P, Dussor G (2012) Receptor specificity defines algogenic properties of propofol and fospropofol. Anesth Analg 115:837–840

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    CAS  PubMed  Google Scholar 

  • Petrus M, Peier AM, Bandell M, Hwang SW, Huynh T, Olney N, Jegla T, Patapoutian A (2007) A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol Pain 3:40

    PubMed Central  PubMed  Google Scholar 

  • Poole DP, Pelayo JC, Cattaruzza F, Kuo YM, Gai G, Chiu JV, Bron R, Furness JB, Grady EF, Bunnett NW (2011) Transient receptor potential ankyrin 1 is expressed by inhibitory motoneurons of the mouse intestine. Gastroenterology 141:565–575, e561–564

    Google Scholar 

  • Ramanathan B, Jan KY, Chen CH, Hour TC, Yu HJ, Pu YS (2005) Resistance to paclitaxel is proportional to cellular total antioxidant capacity. Cancer Res 65:8455–8460

    CAS  PubMed  Google Scholar 

  • Ross RA (2003) Anandamide and vanilloid TRPV1 receptors. Br J Pharmacol 140:790–801

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roussos AP, Hirsch AR (2013) Alliaceous Migraines. Headache 2013:12091

    Google Scholar 

  • Rowbotham MC, Nothaft W, Duan WR, Wang Y, Faltynek C, McGaraughty S, Chu KL, Svensson P (2011) Oral and cutaneous thermosensory profile of selective TRPV1 inhibition by ABT-102 in a randomized healthy volunteer trial. Pain 152:1192–1200

    CAS  PubMed  Google Scholar 

  • Rozen TD (2010) Cluster headache as the result of secondhand cigarette smoke exposure during childhood. Headache 50:130–132

    PubMed  Google Scholar 

  • Salvatore CA, Hershey JC, Corcoran HA, Fay JF, Johnston VK, Moore EL, Mosser SD, Burgey CS, Paone DV, Shaw AW, Graham SL, Vacca JP, Williams TM, Koblan KS, Kane SA (2008) Pharmacological characterization of MK-0974 [N-[(3R,6S)-6-(2,3-difluorophenyl)-2-oxo-1-(2,2,2-trifluoroethyl)azepan-3-yl]-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide], a potent and orally active calcitonin gene-related peptide receptor antagonist for the treatment of migraine. J Pharmacol Exp Ther 324:416–421

    CAS  PubMed  Google Scholar 

  • Samad A, Sura L, Benedikt J, Ettrich R, Minofar B, Teisinger J, Vlachova V (2011) The C-terminal basic residues contribute to the chemical- and voltage-dependent activation of TRPA1. Biochem J 433:197–204

    CAS  PubMed Central  PubMed  Google Scholar 

  • Satoh J, Yamakage M (2009) Desflurane induces airway contraction mainly by activating transient receptor potential A1 of sensory C-fibers. J Anesth 23:620–623

    PubMed  Google Scholar 

  • Sawada Y, Hosokawa H, Matsumura K, Kobayashi S (2008) Activation of transient receptor potential ankyrin 1 by hydrogen peroxide. Eur J Neurosci 27:1131–1142

    PubMed  Google Scholar 

  • Schaefer M (2005) Homo- and heteromeric assembly of TRP channel subunits. Pflugers Arch 451:35–42

    CAS  PubMed  Google Scholar 

  • Schulze A, Oehler B, Urban N, Schaefer M, Hill K (2013) Apomorphine is a bimodal modulator of TRPA1 channels. Mol Pharmacol 83:542–551

    CAS  PubMed  Google Scholar 

  • Schwartz ES, Christianson JA, Chen X, La JH, Davis BM, Albers KM, Gebhart GF (2011) Synergistic role of TRPV1 and TRPA1 in pancreatic pain and inflammation. Gastroenterology 140(1283–1291):e1281–e1282

    Google Scholar 

  • Schwartz ES, La JH, Scheff NN, Davis BM, Albers KM, Gebhart GF (2013) TRPV1 and TRPA1 antagonists prevent the transition of acute to chronic inflammation and pain in chronic pancreatitis. J Neurosci 33:5603–5611

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shapiro D, Deering-Rice CE, Romero EG, Hughen RW, Light AR, Veranth JM, Reilly CA (2013) Activation of transient receptor potential ankyrin-1 (TRPA1) in lung cells by wood smoke particulate material. Chem Res Toxicol 26:750–758

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sherrington CS (1906) The Integrative Action of the Nervous System Scribner, New York

    Google Scholar 

  • Shevel E (2011) The extracranial vascular theory of migraine–a great story confirmed by the facts. Headache 51:409–417

    PubMed  Google Scholar 

  • Shigetomi E, Tong X, Kwan KY, Corey DP, Khakh BS (2011) TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT-3. Nat Neurosci 15:70–80

    PubMed Central  PubMed  Google Scholar 

  • Shigetomi E, Jackson-Weaver O, Huckstepp RT, O'Dell TJ, Khakh BS (2013) TRPA1 Channels Are Regulators of Astrocyte Basal Calcium Levels and Long-Term Potentiation via Constitutive D-Serine Release. J Neurosci 33:10143–10153

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simon F, Varela D, Cabello-Verrugio C (2013) Oxidative stress-modulated TRPM ion channels in cell dysfunction and pathological conditions in humans. Cell Signal 25:1614–1624

    CAS  PubMed  Google Scholar 

  • Sinclair SR, Kane SA, Van der Schueren BJ, Xiao A, Willson KJ, Boyle J, de Lepeleire I, Xu Y, Hickey L, Denney WS, Li CC, Palcza J, Vanmolkot FH, Depre M, Van Hecken A, Murphy MG, Ho TW, de Hoon JN (2010) Inhibition of capsaicin-induced increase in dermal blood flow by the oral CGRP receptor antagonist, telcagepant (MK-0974). Br J Clin Pharmacol 69:15–22

    CAS  PubMed Central  PubMed  Google Scholar 

  • Staaf S, Oerther S, Lucas G, Mattsson JP, Ernfors P (2009) Differential regulation of TRP channels in a rat model of neuropathic pain. Pain 144:187–199

    CAS  PubMed  Google Scholar 

  • Staruschenko A, Jeske NA, Akopian AN (2010) Contribution of TRPV1-TRPA1 interaction to the single channel properties of the TRPA1 channel. J Biol Chem 285:15167–15177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    CAS  PubMed  Google Scholar 

  • Straus DS, Glass CK (2001) Cyclopentenone prostaglandins: new insights on biological activities and cellular targets. Med Res Rev 21:185–210

    CAS  PubMed  Google Scholar 

  • Streng T, Axelsson HE, Hedlund P, Andersson DA, Jordt SE, Bevan S, Andersson KE, Hogestatt ED, Zygmunt PM (2008) Distribution and function of the hydrogen sulfide-sensitive TRPA1 ion channel in rat urinary bladder. Eur Urol 53:391–399

    CAS  PubMed  Google Scholar 

  • Szabo C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6:917–935

    CAS  PubMed  Google Scholar 

  • Szallasi A, Blumberg PM (1999) Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol Rev 51:159–212

    CAS  PubMed  Google Scholar 

  • Szallasi A, Cortright DN, Blum CA, Eid SR (2007) The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov 6:357–372

    CAS  PubMed  Google Scholar 

  • Szolcsanyi J, Sandor Z (2012) Multisteric TRPV1 nocisensor: a target for analgesics. Trends Pharmacol Sci 33:646–655

    CAS  PubMed  Google Scholar 

  • Ta LE, Bieber AJ, Carlton SM, Loprinzi CL, Low PA, Windebank AJ (2010) Transient Receptor Potential Vanilloid 1 is essential for cisplatin-induced heat hyperalgesia in mice. Mol Pain 6:15

    PubMed Central  PubMed  Google Scholar 

  • Takahashi N, Mori Y (2011) TRP Channels as Sensors and Signal Integrators of Redox Status Changes. Front Pharmacol 2:58

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi N, Mizuno Y, Kozai D, Yamamoto S, Kiyonaka S, Shibata T, Uchida K, Mori Y (2008) Molecular characterization of TRPA1 channel activation by cysteine-reactive inflammatory mediators. Channels (Austin) 2:287–298

    Google Scholar 

  • Talavera K, Gees M, Karashima Y, Meseguer VM, Vanoirbeek JA, Damann N, Everaerts W, Benoit M, Janssens A, Vennekens R, Viana F, Nemery B, Nilius B, Voets T (2009) Nicotine activates the chemosensory cation channel TRPA1. Nat Neurosci 12:1293–1299

    CAS  PubMed  Google Scholar 

  • Taylor-Clark TE, Kiros F, Carr MJ, McAlexander MA (2008a) Transient Receptor Potential Ankyrin 1 Mediates Toluene Diisocyanate-Evoked Respiratory Irritation. Am J Respir Cell Mol Biol 40:756–762

    PubMed Central  PubMed  Google Scholar 

  • Taylor-Clark TE, McAlexander MA, Nassenstein C, Sheardown SA, Wilson S, Thornton J, Carr MJ, Undem BJ (2008b) Relative contributions of TRPA1 and TRPV1 channels in the activation of vagal bronchopulmonary C-fibres by the endogenous autacoid 4-oxononenal. J Physiol 586:3447–3459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor-Clark TE, Undem BJ, Macglashan DW Jr, Ghatta S, Carr MJ, McAlexander MA (2008c) Prostaglandin-induced activation of nociceptive neurons via direct interaction with transient receptor potential A1 (TRPA1). Mol Pharmacol 73:274–281

    CAS  PubMed  Google Scholar 

  • Taylor-Clark TE, Ghatta S, Bettner W, Undem BJ (2009) Nitrooleic acid, an endogenous product of nitrative stress, activates nociceptive sensory nerves via the direct activation of TRPA1. Mol Pharmacol 75:820–829

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomsen LL, Olesen J (2001) Nitric oxide in primary headaches. Curr Opin Neurol 14:315–321

    CAS  PubMed  Google Scholar 

  • Thornalley PJ (2002) Glycation in diabetic neuropathy: characteristics, consequences, causes, and therapeutic options. Int Rev Neurobiol 50:37–57

    CAS  PubMed  Google Scholar 

  • Traverso N, Menini S, Cosso L, Odetti P, Albano E, Pronzato MA, Marinari UM (1998) Immunological evidence for increased oxidative stress in diabetic rats. Diabetologia 41:265–270

    CAS  PubMed  Google Scholar 

  • Trevisan G, Hoffmeister C, Rossato MF, Oliveira SM, Silva MA, Ineu RP, Guerra GP, Materazzi S, Fusi C, Nassini R, Geppetti P, Ferreira J (2013a) Transient receptor potential ankyrin 1 receptor stimulation by hydrogen peroxide is critical to trigger pain during monosodium urate-induced inflammation in rodents. Arthritis Rheum 65:2984–2995

    CAS  PubMed  Google Scholar 

  • Trevisan G, Materazzi S, Fusi C, Altomare A, Aldini G, Lodovici M, Patacchini R, Geppetti P, Nassini R (2013b) Novel Therapeutic Strategy to Prevent Chemotherapy-Induced Persistent Sensory Neuropathy By TRPA1 Blockade. Cancer Res 73:3120–3131

    CAS  PubMed  Google Scholar 

  • Trevisani M, Siemens J, Materazzi S, Bautista DM, Nassini R, Campi B, Imamachi N, Andre E, Patacchini R, Cottrell GS, Gatti R, Basbaum AI, Bunnett NW, Julius D, Geppetti P (2007) 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci U S A 104:13519–13524

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tvedskov JF, Tfelt-Hansen P, Petersen KA, Jensen LT, Olesen J (2010) CGRP receptor antagonist olcegepant (BIBN4096BS) does not prevent glyceryl trinitrate-induced migraine. Cephalalgia 30:1346–1353

    CAS  PubMed  Google Scholar 

  • van Hecke O, Torrance N, Smith BH (2013) Chronic pain epidemiology and its clinical relevance. Br J Anaesth 111:13–18

    PubMed  Google Scholar 

  • Vander Jagt DL (2008) Methylglyoxal, diabetes mellitus and diabetic complications. Drug Metabol Drug Interact 23:93–124

    CAS  PubMed  Google Scholar 

  • Vincent AM, Callaghan BC, Smith AL, Feldman EL (2011) Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat Rev Neurol 7:573–583

    CAS  PubMed  Google Scholar 

  • Wang YY, Chang RB, Waters HN, McKemy DD, Liman ER (2008) The nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. J Biol Chem 283:32691–32703

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wantke F, Focke M, Hemmer W, Bracun R, Wolf-Abdolvahab S, Gotz M, Jarisch R, Gotz M, Tschabitscher M, Gann M, Tappler P (2000) Exposure to formaldehyde and phenol during an anatomy dissecting course: sensitizing potency of formaldehyde in medical students. Allergy 55:84–87

    CAS  PubMed  Google Scholar 

  • Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B (2002) Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 277:47044–47051

    CAS  PubMed  Google Scholar 

  • Wei EP, Moskowitz MA, Boccalini P, Kontos HA (1992) Calcitonin gene-related peptide mediates nitroglycerin and sodium nitroprusside-induced vasodilation in feline cerebral arterioles. Circ Res 70:1313–1319

    CAS  PubMed  Google Scholar 

  • Wei H, Hamalainen MM, Saarnilehto M, Koivisto A, Pertovaara A (2009) Attenuation of mechanical hypersensitivity by an antagonist of the TRPA1 ion channel in diabetic animals. Anesthesiology 111:147–154

    CAS  PubMed  Google Scholar 

  • Wei H, Koivisto A, Pertovaara A (2010) Spinal TRPA1 ion channels contribute to cutaneous neurogenic inflammation in the rat. Neurosci Lett 479:253–256

    CAS  PubMed  Google Scholar 

  • Wilson SR, Gerhold KA, Bifolck-Fisher A, Liu Q, Patel KN, Dong X, Bautista DM (2011) TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nat Neurosci 14:595–602

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson SR, Nelson AM, Batia L, Morita T, Estandian D, Owens DM, Lumpkin EA, Bautista DM (2013) The ion channel TRPA1 is required for chronic itch. J Neurosci 33:9283–9294

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wood H (2010) Pain: new familial pain syndrome caused by TRPA1 mutation. Nat Rev Neurol 6:412

    PubMed  Google Scholar 

  • Xu H, Delling M, Jun JC, Clapham DE (2006) Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci 9:628–635

    CAS  PubMed  Google Scholar 

  • Yang J, Li Y, Zuo X, Zhen Y, Yu Y, Gao L (2008) Transient receptor potential ankyrin-1 participates in visceral hyperalgesia following experimental colitis. Neurosci Lett 440:237–241

    CAS  PubMed  Google Scholar 

  • Yu S, Ouyang A (2009) TRPA1 in bradykinin-induced mechanical hypersensitivity of vagal C fibers in guinea pig esophagus. Am J Physiol Gastrointest Liver Physiol 296:G255–G265

    CAS  PubMed  Google Scholar 

  • Yu YB, Yang J, Zuo XL, Gao LJ, Wang P, Li YQ (2010) Transient receptor potential vanilloid-1 (TRPV1) and ankyrin-1 (TRPA1) participate in visceral hyperalgesia in chronic water avoidance stress rat model. Neurochem Res 35:797–803

    CAS  PubMed  Google Scholar 

  • Zhong J, Minassi A, Prenen J, Taglialatela-Scafati O, Appendino G, Nilius B (2011) Umbellulone modulates TRP channels. Pflugers Arch 462:861–870

    CAS  PubMed  Google Scholar 

  • Ziegler D (2009) Painful diabetic neuropathy: advantage of novel drugs over old drugs? Diabetes Care 32(Suppl 2):S414–S419

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zurborg S, Yurgionas B, Jira JA, Caspani O, Heppenstall PA (2007) Direct activation of the ion channel TRPA1 by Ca2+. Nat Neurosci 10:277–279

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierangelo Geppetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nassini, R., Materazzi, S., Benemei, S., Geppetti, P. (2014). The TRPA1 Channel in Inflammatory and Neuropathic Pain and Migraine. In: Nilius, B., Gudermann, T., Jahn, R., Lill, R., Offermanns, S., Petersen, O. (eds) Reviews of Physiology, Biochemistry and Pharmacology, Vol. 167. Reviews of Physiology, Biochemistry and Pharmacology, vol 167. Springer, Cham. https://doi.org/10.1007/112_2014_18

Download citation

Publish with us

Policies and ethics