Skip to main content

Inflammation and brain edema: new insights into the role of chemokines and their receptors

  • Conference paper

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 96))

Summary

Brain edema is associated with a variety of neuropathological conditions such as brain trauma, ischemic and hypoxic brain injury, central nervous system infection, acute attacks of multiple sclerosis, and brain tumors. A common finding is an inflammatory response, which may have a significant impact on brain edema formation. One critical event in the development of brain edema is blood-brain barrier (BBB) breakdown, which may be initiated and regulated by several proinflammatory mediators (oxidative mediators, adhesion molecules, cytokines, chemokines). These mediators not only regulate the magnitude of leukocyte extravasation into brain parenchyma, but also act directly on brain endothelial cells causing the loosening of junction complexes between endothelial cells, increasing brain endothelial barrier permeability, and causing vasogenic edema. Here we review junction structure at the BBB, the effects of pro-inflammatory mediators on that structure, and focus on the effects of chemokines at the BBB. New evidence indicates that chemokines (chemoattractant cytokines) do not merely direct leukocytes to areas of injury. They also have direct and indirect effects on the BBB leading to BBB disruption, facilitating entry of leukocytes into brain, and inducing vasogenic brain edema formation. Chemokine inhibition may be a new therapeutic target to reduce vasogenic brain edema.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andjelkovic AV, Kerkovich D, Shanley J, Pulliam L, Pachter JS (1999) Expression of binding sites for β chemokines on human astrocytes. Glia 28: 225–235

    Article  PubMed  CAS  Google Scholar 

  2. Andjelkovic AV, Spencer DD, Pachter JS (1999) Visualization of chemokine binding sites on human brain microvessels. J Cell Biol 145: 401–413

    Article  Google Scholar 

  3. Anthony D, Dempster R, Fearn S, Clements J, Wells G, Perry VH, Walker K (1998) CXC chemokines generate age-related increases in neutrophil-mediated brain inflammation and blood-brain barrier breakdown. Curr Biol 8: 923–926

    Article  PubMed  CAS  Google Scholar 

  4. Bauer HC, Bauer H (1999) Neural induction of the blood brain barrier: still an enigma. Cell Mol Neurobiol 20: 13–28

    Article  Google Scholar 

  5. Blamire AM, Anthony DC, Rajagopalan B, Sibson NR, Perry VH, Styles P (2000) Interleukin-1beta-induced changes in blood-brain barrier permeability, apparent diffusion coefficient, and cerebral blood volume in the rat brain: a magnetic resonance study. J Neurosci 20: 8153–8159

    PubMed  CAS  Google Scholar 

  6. Brown H, Hien TT, Day N, Mai NT, Chuong LV, Chau TT, Loc PP, Phu NH, Bethell D, Farrar J, Gatter K, White N, Turner G (1999) Evidence of blood-brain barrier dysfunction in human cerebral malaria. Neuropathol Appl Neurobiol 25: 331–340

    Article  PubMed  CAS  Google Scholar 

  7. Campbell SJ, Wilcockson DC, Butchart AG, Perry VH, Anthony DC (2002) Altered chemokine expression in the spinal cord and brain contributes to differential interleukin-1beta-induced neutrophil recruitment. J Neurochem 83: 432–441

    Article  PubMed  CAS  Google Scholar 

  8. Chen Y, Hallenbeck JM, Ruetzler C, Bol D, Thomas K, Berman NE, Vogel SN (2003) Overexpression of monocyte chemoattractant protein 1 in the brain exacerbates ischemic brain injury and is associated with recruitment of inflammatory cells. J Cereb Blood Flow Metab 23: 748–755

    Article  PubMed  CAS  Google Scholar 

  9. Citi S, Cordenonsi M (1998) Tight junction proteins. Biochim Biophys Acta 1448: 1–11

    Article  PubMed  CAS  Google Scholar 

  10. Coghlan MP, Chou MM, Carpenter CL (2000) Atypical protein kinases C-λ and-ζ associate with the GTP-binding protein Cdc42 and mediate stress fiber loss. Mol Cell Biol 20: 2880–2889

    Article  PubMed  CAS  Google Scholar 

  11. Couraud PO (1998) Infiltration of inflammatory cells through brain endothelium. Pathol Biol (Paris) 46: 176–180

    PubMed  CAS  Google Scholar 

  12. Davies DC (2002) Blood-brain barrier breakdown in septic encephalopathy and brain tumours. J Anat 200: 639–646

    Article  PubMed  CAS  Google Scholar 

  13. Denker BM, Nigam SK (1998) Molecular structure and assembly of the tight junction. Am J Physiol 274: F1–F9

    PubMed  CAS  Google Scholar 

  14. Dietrich JB (2002) The adhesion molecule ICAM-1 and its regulation in relation with the blood-brain barrier. J Neuroimmunol 128: 58–68

    Article  PubMed  CAS  Google Scholar 

  15. Farshori P, Kachar B (1999) Redistribution and phosphorylation of occludin during opening and resealing of tight junctions in cultured epithelial cells. J Membr Biol 170: 147–156

    Article  PubMed  CAS  Google Scholar 

  16. Feuerstein, GZ, Wang X, Barone FC (2000) Inflammatory gene expression in cerebral ischemia and trauma. Ann New York Acad Sci 24: 179

    Google Scholar 

  17. Fujimura M, Gasche Y, Morita-Fujimura Y, Massengale J, Kawase M, Chan PH (1999) Early appearance of activated matrix metalloproteinase-9 and blood brain barrier disruption in mice after focal cerebral ischemia and reperfusion. Brain Res 842: 92–100

    Article  PubMed  CAS  Google Scholar 

  18. Garcia JG, Schaphorst KL (1995) Regulation of endothelial cell gap formation and paracellular permeability. J Invest Med 43: 117–126

    CAS  Google Scholar 

  19. Gerriets T, Stolz E, Walberer M, Muller C, Kluge A, Bachmann A, Fisher M, Kaps M, Bachmann G (2004) Noninvasive quantification of brain edema and the space-occupying effect in rat stroke models using magnetic resonance imaging. Stroke 35: 566–571

    Article  PubMed  CAS  Google Scholar 

  20. Gloor SM, Wachtel M, Bolliger MF, Ishihara H, Landmann R, Frei K (2001) Molecular and cellular permeability control at the blood brain barrier. Brain Res Brain Res Rev 36: 258–264

    Article  PubMed  CAS  Google Scholar 

  21. Gray F, Belec L, Chretien F, Dubreuil-Lemaire ML, Ricolfi F, Wingertsmann L, Poron F, Gherardi R (1998) Acute, relapsing brain oedema with diffuse blood-brain barrier alteration and axonal damage in the acquired immunodeficiency syndrome. Neuropathol Appl Neurobiol 24: 209–216

    Article  PubMed  CAS  Google Scholar 

  22. Halliday G, Robinson SR, Shepherd C, Kril J (2000) Alzheimer’s disease and inflammation: a review of cellular and therapeutic mechanisms. Clin Exp Pharmacol Physiol 27: 1–8

    Article  PubMed  CAS  Google Scholar 

  23. Heo JH, Han SW, Lee SK (2005) Free radicals as triggers of brain edema formation after stroke. Free Radic Biol Med 39: 51–70

    Article  PubMed  CAS  Google Scholar 

  24. Hosomi N, Ban CR, Naya T, Takahashi T, Guo P, Song XY, Kohno M (2005) Tumor necrosis factor-alpha neutralization reduced cerebral edema through inhibition of matrix metalloproteinase production after transient focal cerebral ischemia. J Cereb Blood Flow Metab 25: 959–967

    Article  PubMed  CAS  Google Scholar 

  25. Huber JD, Egleton RD, Davis TP (2001) Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci 24: 719–725

    Article  PubMed  CAS  Google Scholar 

  26. Kirk J, Plumb J, Mirakhur M, McQuaid S (2003) Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination. J Pathol 201: 319–327

    Article  PubMed  Google Scholar 

  27. Koedel U, Pfister HW (1999) Oxidative stress in bacterial meningitis. Brain Pathol 9: 57–67

    Article  PubMed  CAS  Google Scholar 

  28. Kumai Y, Ooboshi H, Takada J, Kamouchi M, Kitazono T, Egashira K, Ibayashi S, Iida M (2004) Anti-monocyte chemoattractant protein-1 gene therapy protects against focal brain ischemia in hypertensive rats. J Cereb Blood Flow Metab 24: 1359–1368

    Article  PubMed  CAS  Google Scholar 

  29. Lorenzl S, Koedel U, Pfister HW (1996) Mannitol, but not allopurinol, modulates changes in cerebral blood flow, intracranial pressure, and brain water content during pneumococcal meningitis in the rat. Crit Care Med 24: 1874–1880

    Article  PubMed  CAS  Google Scholar 

  30. Losy J, Zaremba J (2001) Monocyte chemoattractant protein-1 is increased in the cerebrospinal fluid of patients with ischemic stroke. Stroke 32: 2695–2696

    PubMed  CAS  Google Scholar 

  31. Mark KS, Davis TP (2002) Cerebral microvascular changes in permeability and tight junctions induced by hypoxiareoxygenation. Am J Physiol 282: H1485–H1494

    CAS  Google Scholar 

  32. Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, Simmons D, Dejana E (1998) Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. Cell Biol 142: 117–127

    Article  CAS  Google Scholar 

  33. Martiney JA, Cuff C, Litwak M, Berman J, Brosnan CF (1998) Cytokine-induced inflammation in the central nervous system revisited. Neurochem Res 23: 349–356

    Article  PubMed  CAS  Google Scholar 

  34. Mastroianni CM, Lancella L, Mengoni F, Lichtner M, Santopadre P, D’Agostino C, Ticca F, Vullo V (1998) Chemokine profiles in the cerebrospinal fluid (CSF) during the course of pyrogenic and tuberculous meningitis. Clin Exp Immunol 114: 210–214

    Article  PubMed  CAS  Google Scholar 

  35. Matsumoto T, Ikeda K, Mukaida N, Harada A, Matsumoto Y, Yamashita J, Matsushima K (1997) Prevention of cerebral edema and infarct in cerebral reperfusion injury by an antibody to interleukin-8. Lab Invest 77: 119–125

    PubMed  CAS  Google Scholar 

  36. Mellado M, Rodriguez-Frade JM, Manes S, Martinez-A C (2001) Chemokine signaling and functional responses: the role of receptors dimerization and TK pathway activation. Ann Rev Immunol 19: 397–421

    Article  CAS  Google Scholar 

  37. Menicken F, Maki R, de Souza EB, Quirion R (1999) Chemokines and chemokine receptors in the CNS: a possible role in neuroinflammation and patterning. Trends Pharmacol Sci 20: 73–77

    Article  Google Scholar 

  38. Merrill JE, Murphy SP (1997) Inflammatory events at the blood brain barrier: regulation of adhesion molecules, cytokines, and chemokines by reactive nitrogen and oxygen species. Brain Behav Immun 11: 245–263

    Article  PubMed  CAS  Google Scholar 

  39. Miller RJ, Meucci O (1999) AIDS and the brain: is there a chemokine connection? Trends Neurosci 22: 471–476

    Article  PubMed  CAS  Google Scholar 

  40. Mitic LL, Aderon JM (1998) Molecular architecture of tight junctions. Ann Rev Physiol 60: 121–142

    Article  CAS  Google Scholar 

  41. Murphy PM (1994) The molecular biology of leukocyte chemoattractant receptors. Ann Rev Immunol 12: 593–633

    Article  CAS  Google Scholar 

  42. Nagafuchi A (2001) Molecular architecture of adherens junctions. Curr Opin Cell Biol 13: 600–603

    Article  PubMed  CAS  Google Scholar 

  43. Ng I, Yap E, Tan WL, Kong NY (2003) Blood-brain barrier disruption following traumatic brain injury: roles of tight junction proteins. Ann Acad Med Singapore 32: S63–S66

    PubMed  CAS  Google Scholar 

  44. Oprica M, Van Dam AM, Lundkvist J, Iverfeldt K, Winblad B, Bartfai T, Schultzberg M (2004) Effects of chronic overexpression of interleukin-1 receptor antagonist in a model of permanent focal cerebral ischemia in mouse. Acta Neuropathol (Berl) 108: 69–80

    Article  PubMed  CAS  Google Scholar 

  45. Ozates M, Kemaloglu S, Gurkan F, Ozkan U, Hosoglu S, Simsek MM (2000) CT of the brain in tuberculous meningitis. A review of 289 patients. Acta Radiol 41: 13–17

    Article  PubMed  CAS  Google Scholar 

  46. Paul R, Koedel U, Winkler F, Kieseier BC, Fontana A, Kopf M, Hartung HP, Pfister HW (2003) Lack of IL-6 augments inflammatory response but decreases vascular permeability in bacterial meningitis. Brain 126: 1873–1882

    Article  PubMed  Google Scholar 

  47. Petty MA, Lo EH (2002) Junctional complexes of the blood-brain barrier: permeability changes in neuroinflammation. Prog Neurobiol 68: 311–323

    Article  PubMed  CAS  Google Scholar 

  48. Prat A, Biernacki K, Wosik K, Antel JP (2001) Glia cell influence on the human blood brain barrier. Glia 36: 145–155

    Article  PubMed  CAS  Google Scholar 

  49. Reidel MA, Stippich C, Heiland S, Storch-Hagenlocher B, Jansen O, Hahnel S (2003) Differentiation of multiple sclerosis plaques, subacute cerebral ischaemic infarcts, focal vasogenic oedema and lesions of subcortical arteriosclerotic encephalopathy using magnetisation transfer measurements. Neuroradiology 45: 289–294

    PubMed  CAS  Google Scholar 

  50. Ridley AJ (1997) Signaling by rho family proteins. Biochem Soc Trans 25: 1005–1010

    PubMed  CAS  Google Scholar 

  51. Rodriguez-Frade JM, Mellado M, Martinez-A C (2001) CCR2. In: Oppenheim J, Feldmann M, Durum SK (eds) Cytokine reference: a compendium of cytokines and other mediators of host defense, vol 2: receptors. Academic Press, London, pp 2041–2052

    Google Scholar 

  52. Rollins BJ (1997) Chemokines. Blood 90: 909–928

    PubMed  CAS  Google Scholar 

  53. Rubin LL, Staddon JM (1999) The cell biology of the blood-brain barrier. Ann Rev Neurosci 22: 11–28

    Article  PubMed  CAS  Google Scholar 

  54. Sakakibara A, Furuse M, Saitou M, Ando-Akatsuka Y, Tsukita S (1997) Possible involvement of phosphorylation of occludin in tight junction formation. J Cell Biol 137: 1393–1401

    Article  PubMed  CAS  Google Scholar 

  55. Schraufstatter IU, Chung J, Burger M (2001) IL-8 activates endothelial cell CXCR1 and CXCR2 through Rho and Rac signaling pathways. Am J Physiol 280: L1094–L1103

    CAS  Google Scholar 

  56. Sindern E, Niederkinkhaus Y, Henschel M, Ossege LM, Patzold T, Malin JP (2001) Differential release of beta-chemokines in serum and CSF of patients with relapsing-remitting multiple sclerosis. Acta Neurol Scand 104: 88–91

    Article  PubMed  CAS  Google Scholar 

  57. Small VJ, Rottner K, Kaverina I (1999) Functional design in the actin cytoskeleton. Curr Opin Cell Biol 11: 54–60

    Article  PubMed  CAS  Google Scholar 

  58. Sorensen TL, Ransohoff RM, Strieter RM, Sellebjerg F (2004) Chemokine CCL2 and chemokine receptor CCR2 in early active multiple sclerosis. Eur J Neurol 11: 445–449

    Article  PubMed  CAS  Google Scholar 

  59. Staddon JM, Rubin LL (1996) Cell adhesion, cell junctions and the blood-brain barrier. Curr Opin Neurobiol 6: 622–627

    Article  PubMed  CAS  Google Scholar 

  60. Stamatovic SM, Keep RF, Kunkel SL, Andjelkovic AV (2003) Potential role of MCP-1 in endothelial cell tight junction ‘opening’: signaling via Rho and Rho kinase. J Cell Sci 116: 4615–4628

    Article  PubMed  CAS  Google Scholar 

  61. Stamatovic SM, Shakui P, Keep RF, Moore BB, Kunkel SL, Van Rooijen N, Andjelkovic AV (2005) Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability. J Cereb Blood Flow Metab 25: 593–606

    Article  PubMed  CAS  Google Scholar 

  62. Sutherland JD, Witke W (1999) Molecular genetic approaches to understanding the actin cytoskeleton. Curr Opin Cell Biology 11: 142–151

    Article  CAS  Google Scholar 

  63. Tsukamato T, Nigam SK (1999) Role of tyrosine phosphorylation in the reassembly of occludin and other tight junction proteins. Am J Physiol 276: F737–F750

    Google Scholar 

  64. Unterberg AW, Stover J, Kress B, Kiening KL (2004) Edema and brain trauma. Neuroscience 129: 1021–1029

    Article  PubMed  CAS  Google Scholar 

  65. Wachtel M, Frei K, Ehler E, Fontana A, Winterhalter K, Gloor SM (1999) Occludin proteolysis and increased permeability in endothelial cells through tyrosine phosphatase inhibition. J Cell Sci 112: 4347–4356

    PubMed  CAS  Google Scholar 

  66. Wang AJ, Pollard TD, Herman IM (1983) Actin filaments stress fibers in vascular endothelial cells in vivo. Science 219: 867–869

    Google Scholar 

  67. Wolburg H, Risau W (1995) Formation of the blood-brain barrier. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, Oxford, pp 763–776

    Google Scholar 

  68. Yang GY, Gong C, Qin Z, Liu XH, Betz AL (1999) Tumor necrosis factor alpha expression produces increased blood-brain barrier permeability following temporary focal cerebral ischemia in mice. Brain Res Mol Brain Res 69: 135–143

    Article  PubMed  CAS  Google Scholar 

  69. Yoshie O, Imai T, Nomiyama H (1997) Novel lymphocytespecific CC chemokines and their receptors. J Leukoc Biol 62: 634–644

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this paper

Cite this paper

Stamatovic, S.M., Dimitrijevic, O.B., Keep, R.F., Andjelkovic, A.V. (2006). Inflammation and brain edema: new insights into the role of chemokines and their receptors. In: Hoff, J.T., Keep, R.F., Xi, G., Hua, Y. (eds) Brain Edema XIII. Acta Neurochirurgica Supplementum, vol 96. Springer, Vienna. https://doi.org/10.1007/3-211-30714-1_91

Download citation

  • DOI: https://doi.org/10.1007/3-211-30714-1_91

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-30712-0

  • Online ISBN: 978-3-211-30714-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics