Skip to main content
Log in

The human pattern of gyrification in the cerebral cortex

  • Original Articles
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

The degree of cortical folding found in adult human brains has been analyzed using a gyrification index (GI). This parameter permits the description of a mean value for the whole brain, but also a local specific analysis of different brain regions. Correlation analyses of the GI with age, body weight, body length, brain weight and volume of the prosencephalon and the cortex show no significant results. GI values do not differ significantly between male and female brains, right and left hemispheres or right and left sides of the superior temporal plane. The GI shows maximal values over the prefrontal and the parieto-temporo-occipital association cortex. A comparison between the rostro-caudal GI patterns of human brains and those of prosimians and Old World monkeys shows the largest difference over the prefrontal cortex. The mean GI increases from prosimians to human brains with the highest values for non-human primates being in the pongid group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Armstrong E, Zilles K, Schlaug G, Schleicher A (1986) Comparative aspects of the primate posterior cingulate cortex. J Comp Neurol 253:539–548

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde. Barth, Leipzig

    Google Scholar 

  • Cunningham DJ (1890) On cerebral anatomy. Br Med J 2:277–283

    Google Scholar 

  • De Lacoste-Utamsing, Holloway RL (1982) Sexual dimorphism in the human corpus callosum. Science 216:1431–1432

    Google Scholar 

  • Elias H, Schwartz D (1969) Surface areas of the cerebral cortex of mammals determined by stereological methods. Science 166:1011–1013

    Google Scholar 

  • Elias H, Schwartz D (1971) Cerebral-cortical surface areas, volumes, lengths of gyri and their interdependence in mammals, including man. Z Säugetierkunde 36:147–163

    Google Scholar 

  • Falk D (1978) External neuroanatomy of Old World monkeys (Cercopithecoidea). Contrib Primatol 15:525–539

    Google Scholar 

  • Galaburda AM, Corsiglia J, Rosen GD, Sherman GF (in press) Planum temporale asymmetry: Reappraisal since Geschwind and Levitsky. Neuropsychol

  • Geschwind N, Levitsky W (1968) Human brain: Left-right asymmetries in temporal speach regions. Science 161:167–168

    Google Scholar 

  • Heitmann KU (in preparation) Oberflächenrekonstruktion bei Gehirnen nach der Schnittserienmethode. Inaug-Diss, Köln

  • Henneberg R (1910) Messung der Oberfläche der Großhirnrinde. J Psychol Neurol 17:144–158

    Google Scholar 

  • Kretschmann HJ, Vossius G (1968) Über die Nativmakrotomie, eine schnelle und genaue Methode zur Volumenbestimmung von Gehirn- und Rückenmarkszentren. J Hirnforsch 10:373–378

    Google Scholar 

  • Leboucq G (1929) Le rapport entre le poids et la surface de l'hémisphère cérébral chez l'homme et les signes. Acad Roy de Belgique, Classe des Sciences Memoi 9:3–56

    Google Scholar 

  • Paul F (1971) Biometrische Analyse der Volumina des Prosencephalon und der Großhirnrinde von 31 menschlichen, adulten Gehirnen. Z Anat Entwickl Gesch 133:325–368

    Google Scholar 

  • Prothero JW, Sundsten JW (1984) Folding of the cerebral cortex in mammals. A scaling model. Brain Behav Evol 24:152–167

    Google Scholar 

  • Radinsky LB (1968) A new approach to mammalian analysis illustrated by examples of prosimian primates. J Morphol 124:167–180

    Google Scholar 

  • Radinsky LB (1979) The Fossil Record of Primate Brain Evolution. Forty-ninth James Arthur Lecture on the Evolution of the Human Brain. Am Mus Nat Hist, New York

    Google Scholar 

  • Richman DP, Stewart RM, Hutchison JW, Caviness SV (1975) Mechanical model of brain convolutional development. Science 189:18–21

    Google Scholar 

  • Sanides F (1972) Representation in the cerebral cortex its areal lamination patterns. In: Bourne GH (ed) Structure and Function of Nervous Tissue, vol 5. Academic Press, New York, pp 329–453

    Google Scholar 

  • Spitzka EA (1907) Study of the brains of 6 eminent scientists and scholars belonging to the American Anthropometric Society, together with a description of the skull of Professor E D Cope. Trans Am Philos Soc 21:175–308

    Google Scholar 

  • Stephan H (1960) Methodische Studien über den quantitativen Vergleich architektonischer Struktureinheiten des Gehirns. Z Wiss Zool 164:143–172

    Google Scholar 

  • Stephan H (1961) Vergleichend-anatomische Untersuchungen an Insektivorengehirnen. V. Die quantitative Zusammensetzung der Oberflächen des Allocortex. Acta Anat 44:12–59

    Google Scholar 

  • Wagner H (1984) Maßbestimmungen der Oberfläche des großen Gehirns. Inaug Diss, Göttingen

  • Welker WI, Campos GB (1963) Physiological significance of sulci in somatosensory cerebral cortex in mammals of the family Procynidae. J Comp Neurol 120:19–36

    Google Scholar 

  • Wessely W (1970) Biometrische Analyse der Frischvolumina des Rhombencephalon, des Cerebellum und der Ventrikel von 31 menschlichen, adulten Gehirnen. J Hirnforsch 12:11–28

    Google Scholar 

  • Zilles K (1972) Biometrische Analyse der Frischvolumina verschiedener prosencephaler Hirnregionen von 78 menschlichen, adulten Gehirnen. Gegenbaurs Morph Jahrb 118:234–273

    Google Scholar 

  • Zilles K, Stephan H, Schleicher A (1982) Quantitative cytoarchitectonics of the cerebral cortices of several prosimian species. In: Armstrong E, Falk D (eds) Primate Brain Evolution: Methods and Concepts. Plenum, New York, pp 177–201

    Google Scholar 

  • Zilles K, Armstrong E, Schlaug G, Schleicher A (1986) Quantitative cytoarchitectonics of the posterior cingulate cortex in primates. J Comp Neurol 253:514–524

    Google Scholar 

  • Zilles K, Armstrong E, Moser KH, Schleicher A, Stephan H (1988) Gyrification in the cerebral cortex of primates. Brain Behav Evol

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Prof. Dr. J. Lang, Anatomisches Institut der Universität Würzburg, in celebration of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zilles, K., Armstrong, E., Schleicher, A. et al. The human pattern of gyrification in the cerebral cortex. Anat Embryol 179, 173–179 (1988). https://doi.org/10.1007/BF00304699

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00304699

Key words

Navigation