Skip to main content
Log in

Stressor controllability and learned helplessness research in the United States: Sensitization and fatigue processes

  • Published:
Integrative Physiological & Behavioral Science Aims and scope Submit manuscript

Abstract

Recent work in the learned helplessness paradigm suggests that neuronal sensitization and fatigue processes are critical to producing the behavioral impairment that follows prolonged exposure to an unsignaled inescapable stressor such as a series of electric tail shocks. Here we discuss how an interaction between serotonin (5-HT) and corticosterone (CORT) sensitizes GABA neurons early in the pretreatment session with inescapable shock. We propose that this process eventually depletes GABA, thus removing an important form of inhibition on excitatory glutamate transmission in the amygdala, hippocampus, and frontal cortex. When rats are re-exposed to shock during shuttle-escape testing 24 hrs later, the loss of inhibition (as well as other excitatory effects) results in unregulated excitation of glutamate neurons. This state of neuronal over-excitation rapidly compromises metabolic homeostasis. Metabolic fatigue results in compensatory inhibition by the nucleoside adenosine, which regulates neuronal excitation with respect to energy availability. The exceptionally potent form of inhibition associated with adenosine receptor activation yields important neuroprotective benefits under conditions of metabolic failure, but also precludes the processing of information in fatigued neurons. The substrates of adaptive behavior are removed; performance deficits ensue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amat, J. Matus-Amat, P., Watkins, L. R. & Maier, S. F. (1998). Escapable and inescapable stress differentially alter extracellular levels of 5-HT in the basolateral amygdala of the rat.Brain Research, 812: 113–120.

    Article  PubMed  Google Scholar 

  • Baxter, L. R. (1991). PET studies of cerebral function in major depression and obsessive-compulsive disorder: The emerging prefrontal cortex consensus.Annals of Clinical Psychiatry, 3: 103–109.

    Article  Google Scholar 

  • Beylin, A. V. & Shors, T. J. (1998). Stress enhances excitatory trace eyeblink conditioning and opposes acquisition of inhibitory conditioning.Behavioral Neuroscience, 112: 1327–1338.

    Article  PubMed  Google Scholar 

  • Choi, D. W. (1988). Glutamate neurotoxicity and diseases of the nervous system.Neuron, 1: 623–634.

    Article  PubMed  Google Scholar 

  • Corodimas, K., LeDoux, J. Gold, P. & Schulkin, J. (1994). Corticosterone potentiation of learned fear.Annuals of the New York Academy of Sciences, 746: 392–393.

    Article  Google Scholar 

  • Deak, T., Nguyen, K. T., Cotter, C. S., Fleshner, M., Watkins, L. R., Maier, S. F., Spencer, R. L. (1999). Long-term changes in mineralocorticoid and glucocorticoid receptor occupancy following exposure to an acute stressor.Brain Research, 847(2): 211–220.

    Article  PubMed  Google Scholar 

  • DeCola, J. P. & Fanselow, M. S. (1992).Dorsolateral periaqueductal gray lesions and benzodiazepine agonists and antagonists dissociate associative and nonassociative fear conditioning. Presented at the annual meeting of the Society for Neuroscience, Anaheim, CA.

  • DeCola, J. P. & Fanselow, M. S. (1992).Nonassociative Sensitization of Associative Fear Conditioning Following US Preexposure. Presented at the annual meeting of the Psychonomic Society, St. Louis, MO.

  • DeCola, J. P., Kim, J. J. & Fanselow, M. S. (1991).NMDA antagonist MK-801 blocks associative fear conditioning but not nonassociative sensitization of conditional fear. Presented at the annual meeting of the Society for Neuroscience, New Orleans, LA.

  • Dess, N. K. (2000). Responses to basic taste qualities in rats selectively bred for high versus low saccharin intake.Physiology & Behavior, 69:247–257.

    Article  Google Scholar 

  • Dess, N. K. & Edelheit, D. (1998). The bitter with the sweet: The taste/stress/temperament nexus.Biological Psychology, 48: 103–119.

    Article  PubMed  Google Scholar 

  • Dess, N. K., Choe, S. & Minor, T. R. (1998). The interaction of diet and stress in rats: High-energy food and sucrose treatment.Journal of Experimental Psychology: Animal Behavior Processes, 24, 60–71.

    Article  PubMed  Google Scholar 

  • Engel, G. L. & Schmale, A. H. (1972).Conservation-withdrawal: A primary regulatory process for organismis homeostasis. Ciba Foundation Symposium No. 8, 57–85. Elsevier: Amsterdam.

    Google Scholar 

  • Fanselow, M. S., DeCola, Joseph P. & Young, S. L. (1993). Mechanisms responsible for reduced contextual conditioning with massed unsignaled unconditional stimuli,Journal of Experimental Psychology Animal Behavior Processes, 19: 121–137.

    Article  PubMed  Google Scholar 

  • Fanselow, M. S. & LeDoux, J. E. (1999). Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala.Neuron, 23: 229–232.

    Article  PubMed  Google Scholar 

  • Haracz, J. L., Minor, T. R., Wilkins, J. N. & Zimmermann, E. G. (1988). Learned helplessness: An experimental model of the DST in rats.Biological Psychiatry, 23: 388–396.

    Article  PubMed  Google Scholar 

  • Hoehn, K. & White, T. D. (1990). Role of excitatory amino acid receptors in K+—and glutamate-evoked release of endogenous adenosine from rat cortical slices. Journal ofNeurochemistry, 54: 256–265.

    Article  PubMed  Google Scholar 

  • Hunter, A. M., Arfai, M., Balleine, B. W. & Minor, T. R. (2001).Frontal Cortex and Escape Performance: Glutamate-adenosine Interactions. Manuscript submitted for publication.

  • Joels, M., Karten, Y., Hesen, W. & de Kloet, E. R. (1997). Corticosteroid effects on electrical properties of brain cells: Temporal aspects and role of antiglucocorticoids.Psychoneuroendocrinology, 22 (Suppl 1): S81-S86.

    Article  PubMed  Google Scholar 

  • Kitzman, P. H. & Bishop, G. A. (1997). The physiological effects of serotonin on spontaneous and amino acid-induced activation of cerebellar nuclear cells: An in vivo study in the cat.Progress in Brain Research, 114: 209–223.

    Article  PubMed  Google Scholar 

  • Kram, M. L., Kramer, G. L., Steciuk, M., Ronan, P. J. & Petty, F. (2000). Effects of learned helplessness on brain GABAreceptors.Neuroscience Research, 38: 193–198.

    Article  PubMed  Google Scholar 

  • Maier, S. F. & Watkins, L. R. (2000). The neurobiology of stressor controllability. In J. E. Gillham (Ed.),The science of optimism and hope: Research essays in honor of Martin E. P. Seligman (pp. 41–56). Philadelphia, PA: Templeton Foundation Press Templeton Foundation Press.

    Google Scholar 

  • Maier, S. F. (1990). The role of fear in mediating shuttle escape deficits produced by inescapable shock.Journal of Experimental Psychology: Animal Behavior Processes, 16: 137–149.

    Article  PubMed  Google Scholar 

  • Maier, S. F., Albin, R. W. & Testa, T. J. (1973). Failure to learn to escape in rats previously exposed to inescapable shock depends on the nature of the escape response.Journal of Comparative Physiological Psychology, 85: 581–592.

    Article  Google Scholar 

  • Maier, S. F., Ryan, S. M., Barksdale, C. M. & Kalin, N. H. (1986). Stressor controllability and the pituitaryadrenal system.Behavioral Neuroscience, 100: 669–674.

    Article  PubMed  Google Scholar 

  • Maren, S. & Fanselow, M. S. (1995). Synaptic plasticity in the basolateral amygdala induced by hippocampal formation stimulation-I in vivo.Journal of Neuroscience, 15: 7548–7564.

    PubMed  Google Scholar 

  • Martin, R. L., Lloyd, H. G. & Cowan, A. I. (1994). The early events of oxygen and glucose deprivation: setting the scene for neuronal death?Trends in Neurosciences, 17: 251–257.

    Article  PubMed  Google Scholar 

  • Martin, P., Pichat, P., Massol, J., Soubrie, P., Lloyd & Puech (1989). Decreased GABA B receptors in helpless rats: Reversal in tricyclic antidepressants.Neuropsychobiology, 22: 220–224.

    Article  PubMed  Google Scholar 

  • McEwen, B., Chao, H. & Rostene, W. (1986). Adrenal steroid receptors and actions in the nervous system.Physiological Review, 66: 1122–1188.

    Google Scholar 

  • Meghji, P. (1991). Adenosine production and metabolism. In T. W. Stone (Ed.),Adenosine in the nervous system (pp. 25–39). San Diego, CA: Academic Press.

    Google Scholar 

  • Milligan, E. D., Nguyen, K. T., Deak, T., Hinde, J. L., Fleshner, M., Watkins, L. R. & Maier, S. F. (1998). The long term acute phase-like responses that follow acute stressor exposure are blocked by alpha-melanocyte stimulating hormone.Brain Research, 810: 48–58.

    Article  PubMed  Google Scholar 

  • Milusheva, E., Sperlágh, B., Kiss, B., Szporny, L., Pásztor, E., Papasova, M. & Vizi, E. S. (1990). Inhibitory effect of hypoxic condition on acetylcholine release is partly due to the effect of adenosine released from the tissue.Brain Research Bulletin, 24: 369–73.

    Article  PubMed  Google Scholar 

  • Mineka, S., Cook, M. & Miller, S. (1984). Fear conditioned with escapable and inescapable shock: Effects of a feedback stimulus.Journal of Experimental Psychology: Animal Behavior Processes, 10: 307–323.

    Article  Google Scholar 

  • Minor, T. R. & Saade, S. (1997). Poststress glucose mitigates behavioral impairment in rats in the “learned helplessness” model of psychopathology.Biological Psychiatry, 42: 324–334.

    Article  PubMed  Google Scholar 

  • Minor, T. R., Rowe, M. K., Job, R. F. S. & Ferguson, E. C. (2001). Escape deficits induced by inescapable shock and metabolic stress are reversed by adenosine receptor antagonists.Behavioural Brain Research, 120: 203–212.

    Article  PubMed  Google Scholar 

  • Minor, T.R., Dess, N. K., Ben-David, E. & Chang, W. (1994). Individual differences in vulnerability to inescapable shock in rats.Journal of Experimental Psychology: Animal Behavior Processes, 20: 402–412.

    Article  PubMed  Google Scholar 

  • Minor, T. R. & LoLordo, V. M. (1984). Escape deficits following inescapable shock: The role of contextual odor.Journal of Experimental Psychology: Animal Behavior Processes, 10: 168–181.

    Article  Google Scholar 

  • Minor, T. R. (1990). Conditioned fear and neophobia following inescapable shock.Animal Learning and Behavior, 18: 212–226.

    Article  Google Scholar 

  • Minor, T. R., Chang, W. C. & Winslow, J. L. (1994). Stress and adenosine: I. Effect of methylxanthine and amphetamine stimulants on learned helplessness in rats.Behavioral Neuroscience, 108: 254–264.

    Article  PubMed  Google Scholar 

  • Minor, T. R., Dess, N. K. & Overmier, J. B. (1991). Inverting the traditional view of “learned helplessness.” In M. R. Denny (Ed.),Fear, avoidance and phobias: A fundamental analysis (pp. 87–133). Hillsdale NJ: Lawrence-Erlbaum Associates.

    Google Scholar 

  • Minor, T. R., Trauner, M. A., Lee, C. & Dess, N. K. (1990). Modeling signal features of escape response: Effects of cessation conditioning in “learned helplessness” paradigm.Journal of Experimental Psychology: Animal Behavior Processes, 16: 123–136.

    Article  PubMed  Google Scholar 

  • Minor, T. R., Winslow, J. L. & Chang, W. C. (1994). Stress and adenosine: II. Adenosine analogs mimic the effect of inescapable shock in shuttle-escape performance in rats.Behavioral Neuroscience, 108: 265–276.

    Article  PubMed  Google Scholar 

  • Mitchell, J., Betito, K., Rowe, W., Boksa, P. & Meaney, M. (1992). Serotonergic regulation of type II corticosteroid receptor binding in hippocampal cell cultures: Evidence for the importance of serotonergic-induced changes in cAMP levels.Neuroscience, 48: 631–639.

    Article  PubMed  Google Scholar 

  • Moore, R. Y. & Halaris, A. E. (1975). Hippocampal innervation by serotonin neurons of the midbrain raphe in the rat.Journal of Comparative Neurology, 164: 171–183.

    Article  PubMed  Google Scholar 

  • Mowrer, O. H. & Viek, P. (1948). An experimental analogue of fear from a sense of helpelssness.Journal of Abnormal and Social Psychology, 43: 193–200.

    Article  Google Scholar 

  • Overmier, J. B. & Murison, R. (2000). Anxiety and helplessness in the face of stress predisposes, precipitates, and sustains gastric ulceration.Behavioural Brain Research, 110: 161–174.

    Article  PubMed  Google Scholar 

  • Overmier, J. B. (1998). Learned helplessness: State or stasis of the art? In M. Sabourin & F. Craik (Eds.),Advances in psychological science, Vol. 2: Biological and cognitive aspects. Hove, England: Psychology Press/Erlbaum (UK) Taylor & Francis.

    Google Scholar 

  • Overmier, J. B. & Seligman, M. E. P. (1967). Effects of inescapable shock upon subsequent escape and avoidance responding.Journal of Comparative and Physiological Psychology, 63: 28–33.

    Article  PubMed  Google Scholar 

  • Petty, F., McChesney, C. & Kramer, G. (1985). Intracortical glutamate injection produces helpless-like behavior in the rat.Phamacology Biochemistry & Behavior, 22: 531–533.

    Article  Google Scholar 

  • Petty, F. (1995). GABA and Mood Disorders: A Brief Review and Hypothesis.Journal of Affective Disorders, 34: 275–281.

    Article  PubMed  Google Scholar 

  • Petty, F. & Sherman, A. D. (1981). GABAergic modulation of learned helplessness.Pharmacology, Biochemistry and Behavior, 15: 567–570.

    Article  Google Scholar 

  • Rall, T. W. (1990). Drugs used in the treatment of asthma: The methylxanthines, cromolyn sodium, and other agents. In A. Goodman-Gilman, T. W. Rall, A. S. Nies & P. Taylor (Eds.),Goodman and Gilman’s the pharmacological basis of therapeutics (pp. 618–637). Elmsford, NY: Pergamon Press.

    Google Scholar 

  • Rescorla, R. A. & Lolordo, V. M. (1965). Inhibition of Avoidance Behavior.Journal of Comparative & Physiological Psychology, 59(3): 406–412

    Article  Google Scholar 

  • Rowe, M. K., Huang, Q. J. & Minor, T. R. (2001).Escape performance in rats treated with NBTI. Manuscript in preparation.

  • Segundo, J. P., Galeano, C., Sommer-Smith, J. A. & Roig, J. A. (1961). Behavioral and EEG effects of tones reinforced by cessation of painful stimuli. In A. Fessard, R. W. Gerard & J. Konorski (Eds.),Brain mechanisms and learning (pp. 265–292).

  • Seligman, M. E. P., Reivich, K., Jaycox, L. & Gillham, J. (1995).The optimistic child. Boston, MA: Houghton Mifflin Co.

    Google Scholar 

  • Seligman, M. E. P. & Binik, Y. M. (1977). The safety signal hypothesis. In H. Davis & H. M. B. Hurwitz (Eds.),Operant-Pavlovian Interactions (pp. 165–188). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Sherman, A. D. & Petty, F. (1980). Neurochemical basis of the action of antidepressants on learned helplessness.Behavioral & Neural Biology, 30: 119–134.

    Article  Google Scholar 

  • Soares, J. C. & Mann, J. J. (1997). The functional neuroanatomy of mood disorders.Journal of Psychiatric Research, 31: 393–432.

    Article  PubMed  Google Scholar 

  • Sokoloff, L. (1989). Circulation and energy metabolism of the brain. In G. Siegel, B. Agranoff, R. W. Albers & P. Molinoff (Eds.),Basic neurochemistry (pp. 565–590). New York: Raven Press.

    Google Scholar 

  • Stone, T. W. (1991). Adenosine as a neuroprotective compound in the central nervous system. In J. W. Phillis (Ed.),Adenosine and Adenine Nucleotides as Regulators of Cellular Function (pp. 329–338). Boca Raton: CRC Press.

    Google Scholar 

  • Stutzmann, G. E. & LeDoux, J. E. (1999). GABAergic antagonists block the inhibitory effects of serotonin in the lateral amygdala: A mechanism for modulation of sensory inputs related to fear conditioning.The Journal of Neuroscience, 19: 1–4.

    Google Scholar 

  • Stutzmann, G. E., McEwen, B. S. & LeDoux, J. E. (1998). Serotonin modulation of sensory inputs to the lateral amygdala: Dependency on corticosterone.Journal of Neuroscience, 18: 9529–9538.

    PubMed  Google Scholar 

  • Swenson, R. M. & Vogel, W. H. (1983). Plasma catecholamine and corticosterone as well as brain catecholamine changes during coping in rats exposed to stressful footshock.Pharmacology, Biochemistry & Behavior, 18: 689–693.

    Article  Google Scholar 

  • Thompson, K. & Minor, T. R. (1991). Escape performance in rats treated with metyrapone prior to inescapable shock: an assessment of CORT in the helplessness paradigm. Unpublished raw data.

  • Weiss, J. M. & Sundar, S. (1992). Effects of stress on cellular immune responses in animals.American Psychiatric Press Review of Psychiatry (pp. 145–168). American Psychiatric Press Inc. 11.

  • Weiss, J. M., Goodman, P. A., Losito, B. G., Corrigan, S., Charry, J. M. & Bailey, W. H. (1981). Behavioral depression produced by an uncontrollable stressor: Relationship to norepinephrine, dopamine, and serotonin levels in various regions of rat brain.Brain Research Review, 3: 167–205.

    Article  Google Scholar 

  • Woodson, J. C., Minor, T. R. & Job, R. F. S. (1998). Inhibition of adenosine deaminase by erythro-9—(2-hydroxy-3-nonyl) adenine (EHNA) mimics the effect of inescapable shock on escape learning in rats.Behavioral Neuroscience, 112: 399–409.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimee M. Hunter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minor, T.R., Hunter, A.M. Stressor controllability and learned helplessness research in the United States: Sensitization and fatigue processes. Integrative Physiological & Behavioral Science 37, 44–58 (2002). https://doi.org/10.1007/BF02688805

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02688805

Keywords

Navigation