Skip to main content

Advertisement

Log in

Towards a Universal Taxonomy of Macro-scale Functional Human Brain Networks

  • Review
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

The past decade has witnessed a proliferation of studies aimed at characterizing the human connectome. These projects map the brain regions comprising large-scale systems underlying cognition using non-invasive neuroimaging approaches and advanced analytic techniques adopted from network science. While the idea that the human brain is composed of multiple macro-scale functional networks has been gaining traction in cognitive neuroscience, the field has yet to reach consensus on several key issues regarding terminology. What constitutes a functional brain network? Are there “core” functional networks, and if so, what are their spatial topographies? What naming conventions, if universally adopted, will provide the most utility and facilitate communication amongst researchers? Can a taxonomy of functional brain networks be delineated? Here we survey the current landscape to identify six common macro-scale brain network naming schemes and conventions utilized in the literature, highlighting inconsistencies and points of confusion where appropriate. As a minimum recommendation upon which to build, we propose that a scheme incorporating anatomical terminology should provide the foundation for a taxonomy of functional brain networks. A logical starting point in this endeavor might delineate systems that we refer to here as “occipital”, “pericentral”, “dorsal frontoparietal”, “lateral frontoparietal”, “midcingulo-insular”, and “medial frontoparietal” networks. We posit that as the field of network neuroscience matures, it will become increasingly imperative to arrive at a taxonomy such as that proposed here, that can be consistently referenced across research groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen EA, Damaraju E, Plis SM et al (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24:663–676

    PubMed  Google Scholar 

  • Andrews-Hanna JR, Reidler JS, Sepulcre J et al (2010) Functional-anatomic fractionation of the brain’s default network. Neuron 65:550–562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews-Hanna JR, Smallwood J, Spreng RN (2014) The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann N Y Acad Sci 1316:29–52

    PubMed  PubMed Central  Google Scholar 

  • Bar M, Aminoff E, Mason M, Fenske M (2007) The units of thought. Hippocampus 17:420–428

    PubMed  Google Scholar 

  • Barrett LF, Satpute AB (2013) Large-scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain. Curr Opin Neurobiol. 23:361–372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bassett DS, Sporns O (2017) Network neuroscience. Nat Neurosci 20:353–364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B 360:1001–1013

    Google Scholar 

  • Benoit RG, Schacter DL (2015) Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation. Neuropsychologia 75:450–457

    PubMed  PubMed Central  Google Scholar 

  • Betzel RF, Bassett DS (2017) Multi-scale brain networks. Neuroimage 160:73–83

    PubMed  Google Scholar 

  • Bijsterbosch JD, Woolrich MW, Glasser MF et al (2018) The relationship between spatial configuration and functional connectivity of brain regions. eLife. https://doi.org/10.7554/eLife.32992

    Article  PubMed  PubMed Central  Google Scholar 

  • Binder JR, Desai RH, Graves WW, Conant LL (2009) Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19:2767–2796

    PubMed  PubMed Central  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    CAS  PubMed  Google Scholar 

  • Bolt T, Nomi JS, Rubinov M, Uddin LQ (2017a) Correspondence between evoked and intrinsic functional brain network configurations. Hum Brain Mapp 38:1992–2007

    PubMed  PubMed Central  Google Scholar 

  • Bolt T, Nomi JS, Yeo BTT, Uddin LQ (2017b) Data-Driven extraction of a nested model of human brain function. J Neurosci 37:7263–7277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bolt T, Nomi JS, Bainter SA et al (2019) The situation or the person? Individual and task-evoked differences in BOLD activity. Hum Brain Mapp 40:2943–2954

    PubMed  PubMed Central  Google Scholar 

  • Braga RM, Buckner RL (2017) Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron 95:457–471.e5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braga RM, Van Dijk KRA, Polimeni JR et al (2019) Parallel distributed networks resolved at high resolution reveal close juxtaposition of distinct regions. J Neurophysiol 121:1513–1534

    PubMed  PubMed Central  Google Scholar 

  • Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38

    PubMed  Google Scholar 

  • Buckner RL, Krienen FM, Castellanos A et al (2011) The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol 106:2322–2345

    PubMed  PubMed Central  Google Scholar 

  • Chang C, Glover GH (2010) Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 50:81–98

    PubMed  Google Scholar 

  • Choi EY, Yeo BTT, Buckner RL (2012) The organization of the human striatum estimated by intrinsic functional connectivity. J Neurophysiol 108:2242–2263

    PubMed  PubMed Central  Google Scholar 

  • Chong M, Bhushan C, Joshi AA et al (2017) Individual parcellation of resting fMRI with a group functional connectivity prior. Neuroimage 156:87–100

    CAS  PubMed  Google Scholar 

  • Christoff K, Irving ZC, Fox KCR et al (2016) Mind-wandering as spontaneous thought: a dynamic framework. Nat Rev Neurosci 17:718–731

    CAS  PubMed  Google Scholar 

  • Ciric R, Nomi JS, Uddin LQ, Satpute AB (2017) Contextual connectivity: a framework for understanding the intrinsic dynamic architecture of large-scale functional brain networks. Sci Rep 7:6537

    PubMed  PubMed Central  Google Scholar 

  • Cole MW, Reynolds JR, Power JD et al (2013) Multi-task connectivity reveals flexible hubs for adaptive task control. Nat Neurosci 16:1348–1355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cole MW, Bassett DS, Power JD et al (2014) Intrinsic and task-evoked network architectures of the human brain. Neuron 83:238–251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18:192–205

    CAS  PubMed  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215

    CAS  PubMed  Google Scholar 

  • Corbetta M, Shulman GL (2011) Spatial neglect and attention networks. Annu Rev Neurosci 34:569–599

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58:306–324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Z, Li H, Xia CH, et al (2019) Individual variation in control network topography supports executive function in youth

  • Damoiseaux JS, Rombouts SA, Barkhof F et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Luca M, Beckmann CF, De Stefano N et al (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29:1359–1367

    PubMed  Google Scholar 

  • Dixon ML, Andrews-Hanna JR, Spreng RN et al (2017) Interactions between the default network and dorsal attention network vary across default subsystems, time, and cognitive states. Neuroimage 147:632–649

    PubMed  Google Scholar 

  • Dixon ML, De La Vega A, Mills C et al (2018) Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proc Natl Acad Sci USA 115(7):E1598–E1607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dohmatob E, Dumas G, Bzdok D (2018) Dark control: towards a unified account of default mode function by Markov decision processes

  • Dosenbach NU, Fair DA, Miezin FM et al (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA 104:11073–11078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dosenbach NU, Fair DA, Cohen AL et al (2008) A dual-networks architecture of top-down control. Trends Cogn Sci 12:99–105

    PubMed  PubMed Central  Google Scholar 

  • Doucet GE, Lee WH, Frangou S (2019) Evaluation of the spatial variability in the major resting-state networks across human brain functional atlases. Hum Brain Mapp 40:4577–4587

    PubMed  PubMed Central  Google Scholar 

  • Duncan J (2010) The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn Sci 14:172–179

    PubMed  Google Scholar 

  • Eickhoff SB, Constable RT, Yeo BTT (2018a) Topographic organization of the cerebral cortex and brain cartography. Neuroimage 170:332–347

    PubMed  Google Scholar 

  • Eickhoff SB, Yeo BTT, Genon S (2018b) Imaging-based parcellations of the human brain. Nat Rev Neurosci 19:672–686

    CAS  PubMed  Google Scholar 

  • Farrant K, Uddin LQ (2015) Asymmetric development of dorsal and ventral attention networks in the human brain. Dev Cogn Neurosci 12:165–174

    PubMed  PubMed Central  Google Scholar 

  • Fedorenko E, Duncan J, Kanwisher N (2013) Broad domain generality in focal regions of frontal and parietal cortex. Proc Natl Acad Sci USA 110:16616–16621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    CAS  PubMed  Google Scholar 

  • Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711

    CAS  PubMed  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–9678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fox MD, Corbetta M, Snyder AZ et al (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA 103:10046–10051

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friston K (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2:56–78

    Google Scholar 

  • Glasser MF, Coalson TS, Robinson EC et al (2016) A multi-modal parcellation of human cerebral cortex. Nature 536:171–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    CAS  PubMed  Google Scholar 

  • Gordon EM, Laumann TO, Adeyemo B et al (2017a) Individual-specific features of brain systems identified with resting state functional correlations. NeuroImage 146:918–939

    PubMed  Google Scholar 

  • Gordon EM, Laumann TO, Adeyemo B, Petersen SE (2017b) Individual variability of the system-level organization of the human brain. Cereb Cortex 27:386–399

    PubMed  Google Scholar 

  • Gordon EM, Laumann TO, Gilmore AW et al (2017c) Precision functional mapping of individual human brains. Neuron 95:791–807.e7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258

    CAS  PubMed  Google Scholar 

  • Harrison SJ, Woolrich MW, Robinson EC et al (2015) Large-scale probabilistic functional modes from resting state fMRI. Neuroimage 109:217–231

    PubMed  Google Scholar 

  • Haxby JV, Horwitz B, Ungerleider LG et al (1994) The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations. J Neurosci 14:6336–6353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayama HR, Vilberg KL, Rugg MD (2012) Overlap between the neural correlates of cued recall and source memory: evidence for a generic recollection network? J Cogn Neurosci 24:1127–1137

    PubMed  PubMed Central  Google Scholar 

  • Hindriks R, Adhikari MH, Murayama Y et al (2016) Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? Neuroimage 127:242–256

    CAS  PubMed  Google Scholar 

  • Hugdahl K, Raichle ME, Mitra A, Specht K (2015) On the existence of a generalized non-specific task-dependent network. Front Hum Neurosci 9:430

    PubMed  PubMed Central  Google Scholar 

  • Hutchison RM, Womelsdorf T, Allen EA et al (2013) Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80:360–378

    PubMed  Google Scholar 

  • Ji JL, Spronk M, Kulkarni K et al (2019) Mapping the human brain’s cortical-subcortical functional network organization. Neuroimage 185:35–57

    PubMed  Google Scholar 

  • Kam JWY, Lin JJ, Solbakk A-K et al (2019) Default network and frontoparietal control network theta connectivity supports internal attention. Nat Hum Behav. https://doi.org/10.1038/s41562-019-0717-0

    Article  PubMed  Google Scholar 

  • Kennedy DP, Adolphs R (2012) The social brain in psychiatric and neurological disorders. Trends Cogn Sci 16:559–572

    PubMed  PubMed Central  Google Scholar 

  • Kiviniemi V, Starck T, Remes J et al (2009) Functional segmentation of the brain cortex using high model order group PICA. Hum Brain Mapp 30:3865–3886

    PubMed  PubMed Central  Google Scholar 

  • Kong R, Li J, Orban C et al (2019) Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion. Cereb Cortex 29:2533–2551

    PubMed  Google Scholar 

  • Krienen FM, Yeo BTT, Buckner RL (2014) Reconfigurable task-dependent functional coupling modes cluster around a core functional architecture. Philos Trans R Soc B 369:20130526

    Google Scholar 

  • Kucyi A, Hodaie M, Davis KD (2012) Lateralization in intrinsic functional connectivity of the temporoparietal junction with salience- and attention-related brain networks. J Neurophysiol 108:3382–3392

    PubMed  Google Scholar 

  • Laird AR, Fox PM, Eickhoff SB et al (2011) Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci 23:4022–4037

    PubMed  PubMed Central  Google Scholar 

  • Laumann TO, Gordon EM, Adeyemo B et al (2015) Functional system and areal organization of a highly sampled individual human brain. Neuron 87:657–670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laumann TO, Snyder AZ, Mitra A et al (2017) On the stability of BOLD fMRI correlations. Cereb Cortex 27:4719–4732

    PubMed  Google Scholar 

  • Li J, Bolt T, Bzdok D et al (2019a) Topography and behavioral relevance of the global signal in the human brain. Sci Rep 9:14286

    PubMed  PubMed Central  Google Scholar 

  • Li M, Wang D, Ren J et al (2019b) Performing group-level functional image analyses based on homologous functional regions mapped in individuals. PLoS Biol 17:e2007032

    PubMed  PubMed Central  Google Scholar 

  • Liégeois R, Laumann TO, Snyder AZ et al (2017) Interpreting temporal fluctuations in resting-state functional connectivity MRI. Neuroimage 163:437–455

    PubMed  Google Scholar 

  • Lu J, Liu H, Zhang M et al (2011) Focal pontine lesions provide evidence that intrinsic functional connectivity reflects polysynaptic anatomical pathways. J Neurosci 31:15065–15071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lurie D, Kessler D, Bassett D et al (2018) On the nature of resting fMRI and time-varying functional connectivity

  • Mar RA (2004) The neuropsychology of narrative: story comprehension, story production and their interrelation. Neuropsychologia 42:1414–1434

    PubMed  Google Scholar 

  • Mar RA (2011) The neural bases of social cognition and story comprehension. Annu Rev Psychol 62:103–134

    PubMed  Google Scholar 

  • Margulies DS, Ghosh SS, Goulas A et al (2016) Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci USA 113:12574–12579

    CAS  PubMed  PubMed Central  Google Scholar 

  • McIntosh AR (2004) Contexts and catalysts: a resolution of the localization and integration of function in the brain. Neuroinformatics 2:175–182

    PubMed  Google Scholar 

  • Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214:655–667

    PubMed  PubMed Central  Google Scholar 

  • Mesulam MM (1990) Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 28:597–613

    CAS  PubMed  Google Scholar 

  • Murphy AC, Bertolero MA, Papadopoulos L et al (2019) Multiscale and multimodal network dynamics underpinning working memory

  • Mwilambwe-Tshilobo L, Ge T, Chong M et al (2019) Loneliness and meaning in life are reflected in the intrinsic network architecture of the brain. Soc Cogn Affect Neurosci 14:423–433

    PubMed  PubMed Central  Google Scholar 

  • Ngo GH, Eickhoff SB, Nguyen M et al (2019) Beyond consensus: embracing heterogeneity in curated neuroimaging meta-analysis. Neuroimage 200:142–158

    PubMed  Google Scholar 

  • Nichols TE, Das S, Eickhoff SB et al (2017) Best practices in data analysis and sharing in neuroimaging using MRI. Nat Neurosci 20:299–303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niendam TA, Laird AR, Ray KL et al (2012) Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn Affect Behav Neurosci 12:241–268

    PubMed  PubMed Central  Google Scholar 

  • Nomi JS, Farrant K, Damaraju E et al (2016) Dynamic functional network connectivity reveals unique and overlapping profiles of insula subdivisions. Hum Brain Mapp 37:1770–1787

    PubMed  PubMed Central  Google Scholar 

  • Nomi JS, Schettini E, Broce I et al (2018) Structural connections of functionally defined human insular subdivisions. Cereb Cortex 28:3445–3456

    CAS  PubMed  Google Scholar 

  • Pessoa L (2014) Understanding brain networks and brain organization. Phys Life Rev 11:460–461

    Google Scholar 

  • Poldrack RA, Kittur A, Kalar D et al (2011) The cognitive atlas: toward a knowledge foundation for cognitive neuroscience. Front Neuroinformatics 5:17

    Google Scholar 

  • Power JD, Cohen AL, Nelson SM et al (2011) Functional network organization of the human brain. Neuron 72:665–678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Preti MG, Van De Ville D (2017) Dynamics of functional connectivity at high spatial resolution reveal long-range interactions and fine-scale organization. Sci Rep 7

  • Raichle ME, MacLeod AM, Snyder AZ et al (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ralph MAL, Lambon Ralph MA, Jefferies E et al (2017) The neural and computational bases of semantic cognition. Nat Rev Neurosci 18:42–55

    CAS  PubMed  Google Scholar 

  • Ray KL, McKay DR, Fox PM et al (2013) ICA model order selection of task co-activation networks. Front Neurosci 7:237

    PubMed  PubMed Central  Google Scholar 

  • Reid AT, Headley DB, Mill RD et al (2019) Advancing functional connectivity research from association to causation. Nat Neurosci 22:1751–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roy M, Shohamy D, Wager TD (2012) Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends Cogn Sci 16:147–156

    PubMed  PubMed Central  Google Scholar 

  • Rueter AR, Abram SV, MacDonald AW 3rd et al (2018) The goal priority network as a neural substrate of conscientiousness. Hum Brain Mapp 39:3574–3585

    PubMed  PubMed Central  Google Scholar 

  • Salehi M, Karbasi A, Shen X et al (2018) An exemplar-based approach to individualized parcellation reveals the need for sex specific functional networks. Neuroimage 170:54–67

    PubMed  Google Scholar 

  • Schacter DL, Addis DR, Hassabis D et al (2012) The future of memory: remembering, imagining, and the brain. Neuron 76:677–694

    CAS  PubMed  Google Scholar 

  • Seeley WW, Menon V, Schatzberg AF et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seitzman BA, Gratton C, Laumann TO et al (2019) Trait-like variants in human functional brain networks. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1902932116

    Article  PubMed  PubMed Central  Google Scholar 

  • Sejnowski TJ, Koch C, Churchland PS (1988) Computational neuroscience. Science 241:1299–1306

    CAS  PubMed  Google Scholar 

  • Shulman GL, Fiez JA, Corbetta M et al (1997) Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci 9:648–663

    CAS  PubMed  Google Scholar 

  • Smith SM, Fox PT, Miller KL et al (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spreng RN (2012) The fallacy of a “task-negative” network. Front Psychol 3:145

    PubMed  PubMed Central  Google Scholar 

  • Spreng RN, Andrews-Hanna JR (2015) The default network and social cognition. Brain Mapp 3:165–169

    Google Scholar 

  • Spreng RN, Mar RA, Kim AS (2009) The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J Cogn Neurosci 21:489–510

    PubMed  Google Scholar 

  • Spreng RN, Stevens WD, Chamberlain JP et al (2010) Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage 53:303–317

    PubMed  Google Scholar 

  • Spreng RN, Schacter DL (2012) Default network modulation and large-scale network interactivity in healthy young and old adults. Cereb Cortex 22:2610–2621

    PubMed  Google Scholar 

  • Spreng RN, Sepulcre J, Turner GR et al (2013) Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. J Cogn Neurosci 25:74–86

    PubMed  Google Scholar 

  • Spreng RN, DuPre E, Selarka D et al (2014) Goal-congruent default network activity facilitates cognitive control. J Neurosci 34:14108–14114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spunt RP, Lieberman MD (2012) Dissociating modality-specific and supramodal neural systems for action understanding. J Neurosci 32:3575–3583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA 105:12569–12574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens WD, Tessler MH et al (2015) Functional connectivity constrains the category-related organization of human ventral occipitotemporal cortex. Hum Brain Mapp 36:2187–2206

    PubMed  PubMed Central  Google Scholar 

  • Stevens WD, Kravitz DJ et al (2017) Privileged functional connectivity between the visual word form area and the language system. J Neurosci 37:5288–5297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Theime, New York

    Google Scholar 

  • Tamber-Rosenau BJ, Asplund CL, Marois R (2018) Functional dissociation of the inferior frontal junction from the dorsal attention network in top-down attentional control. J Neurophysiol 120:2498–2512

    PubMed  PubMed Central  Google Scholar 

  • Thakral PP, Wang TH, Rugg MD (2017) Decoding the content of recollection within the core recollection network and beyond. Cortex 91:101–113

    PubMed  Google Scholar 

  • Toro R, Fox PT, Paus T (2008) Functional coactivation map of the human brain. Cereb Cortex 18:2553–2559

    PubMed  PubMed Central  Google Scholar 

  • Turner JA, Laird AR (2012) The cognitive paradigm ontology: design and application. Neuroinformatics 10:57–66

    PubMed  PubMed Central  Google Scholar 

  • Uddin LQ (2014) Dynamic connectivity and dynamic affiliation. Comment on “Understanding brain networks and brain organization” by L. Pessoa. Phys Life Rev 11:460–461

    PubMed  PubMed Central  Google Scholar 

  • Uddin LQ (2015) Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci 16:55–61

    CAS  PubMed  Google Scholar 

  • Uddin LQ (2016) Salience network of the human brain. Academic Press, Cambridge

    Google Scholar 

  • Uddin LQ, Iacoboni M, Lange C, Keenan JP (2007) The self and social cognition: the role of cortical midline structures and mirror neurons. Trends Cogn Sci 11:153–157

    PubMed  Google Scholar 

  • Uddin LQ, Kinnison J, Pessoa L, Anderson ML (2014) Beyond the tripartite cognition-emotion-interoception model of the human insular cortex. J Cogn Neurosci 26:16–27

    PubMed  Google Scholar 

  • Ungerleider LG, Haxby JV (1994) “What”and “where”in the human brain. Curr Opin Neurobiol 4:157–165

    CAS  PubMed  Google Scholar 

  • Urchs S, Armoza J, Moreau C et al (2019) MIST: a multi-resolution parcellation of functional brain networks. MNI Open Res

  • van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31:15775–15786

    PubMed  PubMed Central  Google Scholar 

  • Van Essen DC, Glasser MF (2018) Parcellating cerebral cortex: how invasive animal studies inform noninvasive mapmaking in humans. Neuron 99:640–663

    PubMed  PubMed Central  Google Scholar 

  • Van Essen DC, Smith SM, Barch DM et al (2013) The WU-Minn human connectome project: an overview. Neuroimage 80:62–79

    PubMed  Google Scholar 

  • Van Overwalle F, Baetens K (2009) Understanding others’ actions and goals by mirror and mentalizing systems: a meta-analysis. Neuroimage 48:564–584

    PubMed  Google Scholar 

  • Vincent JL, Kahn I, Snyder AZ et al (2008) Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol 100:3328–3342

    PubMed  PubMed Central  Google Scholar 

  • Wang D, Buckner RL, Fox MD et al (2015) Parcellating cortical functional networks in individuals. Nat Neurosci 18:1853–1860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wig GS, Schlaggar BL, Petersen SE (2011) Concepts and principles in the analysis of brain networks. Ann N Y Acad Sci 1224:126–146

    PubMed  Google Scholar 

  • Wilk HA, Ezekiel F, Morton JB (2012) Brain regions associated with moment-to-moment adjustments in control and stable task-set maintenance. Neuroimage 59:1960–1967

    PubMed  Google Scholar 

  • Yeo BT, Krienen FM, Sepulcre J et al (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125–1165

    PubMed  Google Scholar 

  • Yeo BTT, Krienen FM, Eickhoff SB, Yaakub SN, Fox PT, Buckner RL, Asplund CL, Chee MWL (2016) Functional specialization and flexibility in human association cortex. Cereb Cortex 25:3654–3672

    Google Scholar 

  • Zaki J, Wager TD, Singer T et al (2016) The anatomy of suffering: understanding the relationship between nociceptive and empathic pain. Trends Cogn Sci 20:249–259

    PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Zhao L, Zhou N et al (2019) Predictive big data analytics using the UK Biobank data. Sci Rep 9:6012

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

LQU is supported by the National Institute of Mental Health (R01MH107549), the Canadian Institute for Advanced Research, and a University of Miami Gabelli Senior Scholar Award. RNS is supported by the Natural Sciences and Engineering Research Council of Canada and Canadian Institutes of Health Research, and is a Research Scholar supported by Fonds de recherche du Québec – Santé. BTTY is supported by the Singapore National Research Foundation (NRF) Fellowship (Class of 2017). The authors gratefully acknowledge Roberto Toro and Evan Gordan for assistance with figures.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lucina Q. Uddin or R. Nathan Spreng.

Additional information

Handling Editor: Christoph M. Michel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of several papers published together in Brain Topography on the “Special Issue: Current Opinions in Brain Imaging Methods and Applications”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uddin, L.Q., Yeo, B.T.T. & Spreng, R.N. Towards a Universal Taxonomy of Macro-scale Functional Human Brain Networks. Brain Topogr 32, 926–942 (2019). https://doi.org/10.1007/s10548-019-00744-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-019-00744-6

Keywords

Navigation