Skip to main content
Log in

The opioid antagonist naltrexone reduces the reinforcing effects of Δ9-tetrahydrocannabinol (THC) in squirrel monkeys

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Experimental evidence from animal studies suggests reciprocal functional interactions between endogenous brain cannabinoid and opioid systems. There is recent evidence for a role of the opioid system in the modulation of the reinforcing effects of synthetic cannabinoid CB1 receptor agonists in rodents. Since Δ9–tetrahydrocannabinol (THC), the natural psychoactive ingredient in marijuana, is actively and persistently self-administered by squirrel monkeys, this provides an opportunity to directly study involvement of opioid systems in the reinforcing effects of THC in non-human primates.

Objectives

To study the effects of naltrexone, an opioid antagonist, on THC self-administration behavior in squirrel monkeys.

Methods

Monkeys pressed a lever for intravenous injections of THC under a ten-response, fixed-ratio (FR) schedule with a 60-s time-out after each injection. Effects of pre-session treatment with naltrexone (0.03–0.3 mg/kg intramuscularly, 15 min before session) for 5 consecutive days on self-administration of different doses of THC (2–8 µg/kg per injection) were studied.

Results

Self-administration responding for THC was significantly reduced by pretreatment with 0.1 mg/kg naltrexone for five consecutive daily sessions. Naltrexone pretreatment had no significant effect on cocaine self-administration responding under identical conditions.

Conclusions

Self-administration behavior under a fixed-ratio schedule of intravenous THC injection was markedly reduced by daily pre-session treatment with naltrexone, but remained above saline self-administration levels. These findings demonstrate for the first time the modulation of the reinforcing effects of THC by an opioid antagonist in a non-human primate model of marijuana abuse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bain GT, Kornetsky C (1987) Naloxone attenuation of the effect of cocaine on rewarding brain stimulation. Life Sci 40:1119–1125

    Article  CAS  PubMed  Google Scholar 

  • Beardsley PM, Balster RL, Harris LS (1986) Dependence on tetrahydrocannabinol in rhesus monkeys. J Pharmacol Exp Ther 239:311–319

    Google Scholar 

  • Berrendero F, Maldonado R (2002) Involvement of the opioid system in the anxiolytic-like effects induced by delta(9)-tetrahydrocannabinol. Psychopharmacology 163:111–117

    Article  CAS  PubMed  Google Scholar 

  • Bloom AS, Dewey WL (1978) A comparison of some pharmacological actions of morphine and delta9-tetrahydrocannabinol in the mouse. Psychopharmacology 57:243–248

    CAS  PubMed  Google Scholar 

  • Braida D, Pozzi M, Cavallini R, Sala M (2001a) Conditioned place preference induced by the cannabinoid agonist CP 55,940: interaction with the opioid system. Neuroscience 104:923–926

    Article  CAS  PubMed  Google Scholar 

  • Braida D, Pozzi M, Parolaro D, Sala M (2001b) Intracerebral self-administration of the cannabinoid receptor agonist CP 55,940 in the rat: interaction with the opioid system. Eur J Pharmacol 413:227–234

    CAS  PubMed  Google Scholar 

  • Chen JP, Paredes W, Li J, Smith D, Lowinson J, Gardner EL (1990) Delta 9-tetrahydrocannabinol produces naloxone-blockable enhancement of presynaptic basal dopamine efflux in nucleus accumbens of conscious, freely-moving rats as measured by intracerebral microdialysis. Psychopharmacology 102:156–162

    Google Scholar 

  • De Vries TJ, Homberg JR, Binnekade R, Raaso H, Schoffelmeer AN (2003) Cannabinoid modulation of the reinforcing and motivational properties of heroin and heroin-associated cues in rats. Psychopharmacology 168:164–169

    Article  PubMed  Google Scholar 

  • Dewey WL (1986) Cannabinoid pharmacology. Pharmacol Rev 38:151–178

    CAS  PubMed  Google Scholar 

  • Emmerson PJ, Liu MR, Woods JH, Medzihradsky F (1994) Binding affinity and selectivity of opioids at mu, delta and kappa receptors in monkey brain membranes. J Pharmacol Exp Ther 271:1630–1637

    CAS  PubMed  Google Scholar 

  • Gardner EL, Paredes W, Smith D, Zukin RS (1989) Facilitation of brain stimulation reward by delta-9-tetrahydrocannabinol is mediated by an endogenous opioid mechanism. In: Cros J, Meunier J-C, Hamon M (eds) Progress in opioid research. Pergamon Press, New York, pp 671–674

  • Gewiss MV, Marley RJ, Thorndike EB, Goldberg SR, Schindler CW (1994) GABA receptor-linked chloride channels and the behavioral effects of naltrexone in rats. Pharmacol Biochem Behav 49:589–597

    Article  CAS  PubMed  Google Scholar 

  • Ghozland S, Matthes HW, Simonin F, Filliol D, Kieffer BL, Maldonado R (2002) Motivational effects of cannabinoids are mediated by mu-opioid and kappa-opioid receptors. J Neurosci 22:1146–1154

    CAS  PubMed  Google Scholar 

  • Goldberg SR (1973) Comparable behavior maintained under fixed-ratio and second-order schedules of food presentation, cocaine injection or d-amphetamine injection in the squirrel monkey. J Pharmacol Exp Ther 186:18–30

    CAS  PubMed  Google Scholar 

  • Goldberg SR, Morse WH, Goldberg DM (1981) Acute and chronic effects of naltrexone and naloxone on schedule-controlled behavior of squirrel monkeys and pigeons. J Pharmacol Exp Ther 216:500–509

    Google Scholar 

  • Greenwald MK, Stitzer ML (2000) Antinociceptive, subjective and behavioral effects of smoked marijuana in humans. Drug Alcohol Depend 59:261–275

    Article  CAS  PubMed  Google Scholar 

  • Haney M, Bisaga A, Foltin RW (2003) Interaction between naltrexone and oral THC in heavy marijuana smokers. Psychopharmacology 166:77–85

    CAS  PubMed  Google Scholar 

  • Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583

    CAS  PubMed  Google Scholar 

  • Hoffman AF, Lupica CR (2001) Direct actions of cannabinoids on synaptic transmission in the nucleus accumbens: a comparison with opioids. J Neurophysiol 85:72–83

    CAS  PubMed  Google Scholar 

  • Howlett AC (2002) The cannabinoid receptors. Prostaglandins Other Lipid Mediat 68–69:619–631

    Google Scholar 

  • Justinova Z, Tanda G, Redhi GH, Goldberg SR (2003) Self-administration of delta(9)-tetrahydrocannabinol (THC) by drug naive squirrel monkeys. Psychopharmacology 169:135–140

    Article  CAS  PubMed  Google Scholar 

  • Kaymakcalan S, Ayhan IH, Tulunay FC (1977) Naloxone-induced or postwithdrawal abstinence signs in delta9-tetrahydrocannabinol-tolerant rats. Psychopharmacology 55:243–249

    CAS  PubMed  Google Scholar 

  • Killian AK, Bonese K, Schuster CR (1978) The effects of naloxone on behavior maintained by cocaine and heroin injections in the rhesus monkey. Drug Alcohol Depend 3:243–251

    CAS  PubMed  Google Scholar 

  • Kiyatkin EA, Brown PL (2003) Naloxone depresses cocaine self-administration and delays its initiation on the following day. Neuroreport 14:251–255

    Article  CAS  PubMed  Google Scholar 

  • Ko MC, Butelman ER, Traynor JR, Woods JH (1998) Differentiation of kappa opioid agonist-induced antinociception by naltrexone apparent pA2 analysis in rhesus monkeys. J Pharmacol Exp Ther 285:518–526

    CAS  PubMed  Google Scholar 

  • Kreek MJ, LaForge KS, Butelman E (2002) Pharmacotherapy of addictions. Nat Rev Drug Discov 1:710–726

    Article  CAS  PubMed  Google Scholar 

  • Manzanares J, Corchero J, Romero J, Fernandez-Ruiz JJ, Ramos JA, Fuentes JA (1998) Chronic administration of cannabinoids regulates proenkephalin mRNA levels in selected regions of the rat brain. Brain Res Mol Brain Res 55:126–132

    CAS  PubMed  Google Scholar 

  • Manzanares J, Corchero J, Romero J, Fernandez-Ruiz JJ, Ramos JA, Fuentes JA (1999) Pharmacological and biochemical interactions between opioids and cannabinoids. Trends Pharmacol Sci 20:287–294

    CAS  PubMed  Google Scholar 

  • Mello NK, Mendelson JH, Kuehnle JC, Sellers MS (1981) Operant analysis of human heroin self-administration and the effects of naltrexone. J Pharmacol Exp Ther 216:45–54

    Google Scholar 

  • Mello NK, Mendelson JH, Bree MP, Lukas SE (1990) Buprenorphine and naltrexone effects on cocaine self-administration by rhesus monkeys. J Pharmacol Exp Ther 254:926–939

    CAS  PubMed  Google Scholar 

  • Navarro M, Carrera MR, Fratta W, Valverde O, Cossu G, Fattore L, Chowen JA, Gomez R, del A, I, Villanua MA, Maldonado R, Koob GF, Rodriguez de Fonseca F (2001) Functional interaction between opioid and cannabinoid receptors in drug self-administration. J Neurosci 21:5344–5350

    CAS  PubMed  Google Scholar 

  • Olsen JL, Makhani M, Davis KH, Wall ME (1973) Preparation of 9-tetrahydrocannabinol for intravenous injection. J Pharm Pharmacol 25:344

    CAS  PubMed  Google Scholar 

  • O’Malley SS, Jaffe AJ, Chang G, Schottenfeld RS, Meyer RE, Rounsaville B (1992) Naltrexone and coping skills therapy for alcohol dependence. A controlled study. Arch Gen Psychiatry 49:881–887

    PubMed  Google Scholar 

  • Reisine T, Law SF, Blake A, Tallent M (1996) Molecular mechanisms of opiate receptor coupling to G proteins and effector systems. Ann N Y Acad Sci 780:168–175

    CAS  PubMed  Google Scholar 

  • Rodriguez JJ, Mackie K, Pickel VM (2001) Ultrastructural localization of the CB1 cannabinoid receptor in mu-opioid receptor patches of the rat caudate putamen nucleus. J Neurosci 21:823–833

    PubMed  Google Scholar 

  • Sinclair JD (2001) Evidence about the use of naltrexone and for different ways of using it in the treatment of alcoholism. Alcohol Alcohol 36:2–10

    Article  CAS  PubMed  Google Scholar 

  • Solinas M, Panlilio LV, Antoniou K, Pappas LA, Goldberg SR (2003a) The cannabinoid CB1 antagonist N-piperidinyl-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide (SR-141716A) differentially alters the reinforcing effects of heroin under continuous reinforcement, fixed ratio, and progressive ratio schedules of drug self-administration in rats. J Pharmacol Exp Ther 306:93–102

    Article  CAS  PubMed  Google Scholar 

  • Solinas M, Zangen A, Pappas LA, Goldberg SR (2003b) The subjective response to delta-9-tetrahydrocannabinol (THC) is modulated by activation of endogenous opioid systems in rats. Neuroscience 2003 abstracts (SfN 33rd Annual Meeting)

  • Svensson AI, Berntsson A, Eirefelt M, Söderpalm B (2000) Naloxone antagonizes GABA(A)/benzodiazepine receptor function in rat corticohippocampal synaptoneurosomes. J Neural Transm 107:261–270

    Article  CAS  PubMed  Google Scholar 

  • Swift RM, Whelihan W, Kuznetsov O, Buongiorno G, Hsuing H (1994) Naltrexone-induced alterations in human ethanol intoxication. Am J Psychiatry 151:1463–1467

    PubMed  Google Scholar 

  • Tanda G, Goldberg SR (2003) Cannabinoids: reward, dependence, and underlying neurochemical mechanisms-a review of recent preclinical data. Psychopharmacology 169:115–134

    Article  CAS  PubMed  Google Scholar 

  • Tanda G, Pontieri FE, Di Chiara G (1997) Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science 276:2048–2050

    CAS  PubMed  Google Scholar 

  • Tanda G, Munzar P, Goldberg SR (2000) Self-administration behavior is maintained by the psychoactive ingredient of marijuana in squirrel monkeys. Nat Neurosci 3:1073–1074

    Article  CAS  PubMed  Google Scholar 

  • Teal JJ, Holtzman SG (1980) Stimulus effects of morphine in the monkey: quantitative analysis of antagonism. Pharmacol Biochem Behav 12:587–593

    CAS  PubMed  Google Scholar 

  • Valverde O, Noble F, Beslot F, Dauge V, Fournie-Zaluski MC, Roques BP (2001) Delta9-tetrahydrocannabinol releases and facilitates the effects of endogenous enkephalins: reduction in morphine withdrawal syndrome without change in rewarding effect. Eur J Neurosci 13:1816–1824

    CAS  PubMed  Google Scholar 

  • Vivian JA, Kishioka S, Butelman ER, Broadbear J, Lee KO, Woods JH (1998) Analgesic, respiratory and heart rate effects of cannabinoid and opioid agonists in rhesus monkeys: antagonist effects of SR 141716A. J Pharmacol Exp Ther 286:697–703

    Google Scholar 

  • Volpicelli JR, Alterman AI, Hayashida M, O’Brien CP (1992) Naltrexone in the treatment of alcohol dependence. Arch Gen Psychiatry 49:876–880

    PubMed  Google Scholar 

  • Wachtel SR, de Wit H (2000) Naltrexone does not block the subjective effects of oral delta(9)-tetrahydrocannabinol in humans. Drug Alcohol Depend 59:251–260

    Article  CAS  PubMed  Google Scholar 

  • Welch SP, Stevens DL (1992) Antinociceptive activity of intrathecally administered cannabinoids alone, and in combination with morphine, in mice. J Pharmacol Exp Ther 262:10–18

    CAS  PubMed  Google Scholar 

  • Williams KL, Woods JH (1998) Oral ethanol-reinforced responding in rhesus monkeys: effects of opioid antagonists selective for the mu-, kappa-, or delta-receptor. Alcohol Clin Exp Res 22:1634–1639

    CAS  PubMed  Google Scholar 

  • Williams KL, Woods JH (1999) Naltrexone reduces ethanol- and/or water-reinforced responding in rhesus monkeys: effect depends upon ethanol concentration. Alcohol Clin Exp Res 23:1462–1467

    CAS  PubMed  Google Scholar 

  • Williams KL, Winger G, Pakarinen ED, Woods JH (1998) Naltrexone reduces ethanol- and sucrose-reinforced responding in rhesus monkeys. Psychopharmacology 139:53–61

    CAS  PubMed  Google Scholar 

  • Winger G, Skjoldager P, Woods JH (1992) Effects of buprenorphine and other opioid agonists and antagonists on alfentanil- and cocaine-reinforced responding in rhesus monkeys. J Pharmacol Exp Ther 261:311–317

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Godfrey Redhi and Scott Kutkat for excellent technical assistance. Work was supported by the Intramural Research Program of the National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Goldberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Justinova, Z., Tanda, G., Munzar, P. et al. The opioid antagonist naltrexone reduces the reinforcing effects of Δ9-tetrahydrocannabinol (THC) in squirrel monkeys. Psychopharmacology 173, 186–194 (2004). https://doi.org/10.1007/s00213-003-1693-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-003-1693-6

Keywords

Navigation