Skip to main content
Log in

Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background and rationale

Reinstatement of the function of working memory, the cardinal cognitive process essential for human reasoning and judgment, is potentially the most intractable problem for the treatment of schizophrenia. Since deficits in working memory are associated with dopamine dysregulation and altered D1 receptor signaling within prefrontal cortex, we present the case for targeting novel drug therapies towards enhancing prefrontal D1 stimulation for the amelioration of the debilitating cognitive deficits in schizophrenia.

Objectives

This review examines the role of dopamine in regulating cellular and circuit function within prefrontal cortex in order to understand the significance of the dopamine dysregulation found in schizophrenia and related non-human primate models. By revealing the associations among prefrontal neuronal function, dopamine and D1 signaling, and cognition, we seek to pinpoint the mechanisms by which dopamine modulates working memory processes and how these mechanisms may be exploited to improve cognitive function.

Results and conclusions

Dopamine deficiency within dorsolateral prefrontal cortex leads to abnormal recruitment of this region by cognitive tasks. Both preclinical and clinical studies have demonstrated a direct relationship between prefrontal dopamine function and the integrity of working memory, suggesting that insufficient D1 receptor signaling in this region results in cognitive deficits. Moreover, working memory deficits can be ameliorated by treatments that augment D1 receptor stimulation, indicating that this target presents a unique opportunity for the restoration of cognitive function in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abi-Dargham A, Gil R, Krystal J, Baldwin RM, Seibyl JP, Bowers M, van Dyck CH, Charney DS, Innis RB, Laruelle M (1998) Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 155:761–767

    PubMed  Google Scholar 

  • Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y, Hwang D-R, Keilp J, Kochan L, Van Heertum R, Gorman JM, Laruelle M (2002) Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci 22:3708–3719

    CAS  PubMed  Google Scholar 

  • Akil M, Pierri JN, Whitehead RE, Edgar CL, Mohila C, Sampson AR, Lewis DA (1999) Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects. Am J Psychiatry 156:1580–1589

    CAS  PubMed  Google Scholar 

  • Akil M, Edgar CL, Pierri JN, Casali S, Lewis DA (2000) Decreased density of tyrosine hydroxylase-immunoreactive axons in the entorhinal cortex of schizophrenic subjects. Biol Psychiatry 47:361–370

    Article  CAS  PubMed  Google Scholar 

  • Akil M, Kolachana BS, Rothmond DA, Hyde TM, Weinberger DR, Kleinman JE (2003) Catechol-O-methyltransferase genotype and dopamine regulation in the human brain. J Neurosci 23:2008–2013

    CAS  PubMed  Google Scholar 

  • Albert KA, Hemmings HC Jr, Adamo AID, Potkin SG, Akbarian S, Sandman CA, Cotman CW, Bunney WE Jr, Greengard P (2002) Evidence for decreased DARPP-32 in the prefrontal cortex of patients with schizophrenia. Arch Gen Psychiatry 59:705–712

    Article  CAS  PubMed  Google Scholar 

  • Andén NE, Butcher SG, Corrodi H, Fuxe K, Ungerstedt U (1970) Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. Eur J Pharmacol 11:303–314

    PubMed  Google Scholar 

  • Andreasen NC (1997) Linking mind and brain in the study of mental illnesses: a project for a scientific psychopathology. Science 275:1586–1593

    CAS  PubMed  Google Scholar 

  • Angrist B, Peselow E, Rubinstein M, Wolkin A, Rotrosen J (1985) Amphetamine response and relapse risk after depot neuroleptic discontinuation. Psychopharmacology 85:277–283

    Google Scholar 

  • Arnsten AFT, Cai JX, Murphy BL, Goldman-Rakic PS (1994) Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology 116:143–151

    CAS  PubMed  Google Scholar 

  • Arnsten AFT, Cai JX, Steere JC, Goldman-Rakic PS (1995) Dopamine D2 receptor mechanisms contribute to age-related cognitive decline: the effects of quinpirole on memory and motor performance in monkeys. J Neurosci 15:3429–3439

    CAS  PubMed  Google Scholar 

  • Bachevalier J, Landis LS, Walker LC, Brickson M, Mishkin M, Price DL, Cork LC (1991) Aged monkeys exhibit behavioral deficits indicative of widespread cerebral dysfunction. Neurobiol Aging 12:99–111

    Article  CAS  PubMed  Google Scholar 

  • Baldessarini RJ, Tarazi FI (1996) Brain dopamine receptors: a primer on their current status, basic and clinical. Harv Rev Psychiatry 3:301–325

    CAS  PubMed  Google Scholar 

  • Bannon MJ, Whitty CJ (1997) Age-related and regional differences in dopamine transporter RNA expression in human midbrain. Neurology 48:969–977

    Google Scholar 

  • Bartus RT, Gleming D, Johnson HR (1978) Aging in the rhesus monkey. Debilitating effects on short-term memory. J Gerontol 33:858–871

    CAS  PubMed  Google Scholar 

  • Bauer RH, Fuster JM (1976) Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys. J Comp Physiol Psychol 90:293–302

    CAS  PubMed  Google Scholar 

  • Berman KF, Zec RF, Weinberger DR (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. II. Role of neuroleptic treatment, attention, and mental effort. Arch Gen Psychiatry 43:126–135

    CAS  PubMed  Google Scholar 

  • Bertolino A, Knable MB, Saunders RC, Callicott JH, Kolachana B, Mattay VS, Bachevalier J, Frank JA, Egan M, Weinberger DR (1999) The relationship between dorsolateral prefrontal N-acetylaspartate measures and striatal dopamine activity in schizophrenia. Biol Psychiatry 45:660–667

    CAS  PubMed  Google Scholar 

  • Bertolino A, Breier A, Callicott JH, Adler C, Mattay VS, Shapiro M, Frank JA, Pickar D, Weinberger DR (2000) The relationship between dorsolateral prefrontal neuronal N-acetylaspartate and evoked release of striatal dopamine in schizophrenia. Neuropsychopharmacology 22:125–132

    Google Scholar 

  • Bjijou Y, Stinus L, Le Moal M, Cador M (1996) Evidence for selective involvement of dopamine D1 receptors of the ventral tegmental area in the behavioral sensitization induced by intra-ventral tegmental area injections of d-amphetamine. J Pharmacol Exp Ther 277:1177–1187

    CAS  PubMed  Google Scholar 

  • Bilder RM, Volavka J, Czobar P, Malhotra AK, Kennedy JL, Ni X, Goldman RS, Hoptman MJ, Sheitman B, Lindenmayer JP, Citrome L, McEvoy JP, Kunz M, Chakos M, Cooper TB, Lieberman JA (2002) Neurocognitive correlates of the COMT Val(158)Met polymorphism in schonic schizophrenia. Biol Psychiatry 52:701–707

    Article  CAS  PubMed  Google Scholar 

  • Brozoski TJ, Brown RM, Rosvold HE, Goldman PS (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205:929–932

    CAS  PubMed  Google Scholar 

  • Bruce CJ, Goldberg ME (1985) Primaate frontal eye fields. I. Single neurons discharging before saccades. J Neurophysiol 53:603–635

    CAS  PubMed  Google Scholar 

  • Brunel N, Wang X-J (2001) Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J Comput Neurosci 11:63–85

    Google Scholar 

  • Butters N, Pandya D, Sanders K, Dye P (1971) Behavioral deficits in monkeys after selective lesions within the middle third of sulcus principalis. J Comp Physiol Psychol 72:132–144

    Google Scholar 

  • Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27:699–711

    CAS  PubMed  Google Scholar 

  • Cai JX, Arnsten AFT (1997) Dose-dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on spatial working memory in aged monkeys. J Pharmacol Exp Ther 283:183–9

    Google Scholar 

  • Callicott JH, Bertolino A, Mattay VS, Langheim FJP, Duyn J, Coppola R, Goldberg TE, Weinberger DR (2000) Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb Cortex 10:1078–1092

    Article  CAS  PubMed  Google Scholar 

  • Carlsson A, Lindqvist M (1963) Effect of chlorpromazine and haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 20:140–144

    CAS  Google Scholar 

  • Carter CS, Mintun M, Nichols T, Cohen JD (1997) Anterior cingulate gyrus dysfunction and selective attention deficits in schizophrenia: [15O]H2O PET study during single-trial Stroop task performance. Am J Psychiatry 154:1670–1675

    CAS  PubMed  Google Scholar 

  • Carter CS, Perlstein W, Ganguli R, Brar J, Mintun M, Cohen JD (1998) Functional hypofrontality and working memory dysfunction in schizophrenia. Am J Psychiatry 155:1285–1287

    CAS  PubMed  Google Scholar 

  • Castner SA, Goldman-Rakic PS (1999a) Long-lasting psychotomimetic consequences of repeated low dose amphetamine exposure in rhesus monkeys. Neuropsychopharmacology 20:10–28

    Google Scholar 

  • Castner SA, Goldman-Rakic PS (1999b) Profound cognitive impairments in nonhuman primates exposed to amphetamine. Soc Neurosci Abstr 25:1563

    Google Scholar 

  • Castner SA, Goldman-Rakic PS (2003) Amphetamine sensitization of hallucinatory-like behaviors is dependent on prefrontal cortex in nonhuman primates. Biol Psychiatry 54:105–110

    Article  CAS  PubMed  Google Scholar 

  • Castner SA, Goldman-Rakic PS (2004) Enhancement of working memory in aged monkeys by a sensitizing regimen of dopamine D1 receptor stimulation. J Neurosci 24:1446–1450

    Article  CAS  PubMed  Google Scholar 

  • Castner SA, Williams GV, Goldman-Rakic PS (2000) Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation. Science 287:2020–2022

    Article  CAS  PubMed  Google Scholar 

  • Castner SA, Vosler PS, Goldman-Rakic PS (2001) Lowered dopamine turnover in amphetamine-sensitized monkeys: development of a primate model of schizophrenia. Biol Psychiatr Abstr 49:124S

    Google Scholar 

  • Cepeda C, Li Z, Cromwell HC, Altemus KL, Crawford CA, Nansen EA, Ariano MA, Sibley DR, Peacock WJ, Mathern GW, Levine MS (1999) Electrophysiological and morphological analyses of cortical neurons obtained from children with catastrophic epilepsy: dopamine receptor modulation of glutamatergic responses. Dev Neurosci 21:223–235

    CAS  PubMed  Google Scholar 

  • Cepeda C, Radisavljevic Z, Peacock W, Levine MS, Buchwald NA (1992) Differential modulation by dopamine of responses evoked by excitatory amino acids in human cortex. Synapse 11:330–341

    CAS  PubMed  Google Scholar 

  • Chen L, Yang CR (2002) Interaction of dopamine D1 and NMDA receptors mediates acute clozapine potentiation of glutamate EPSPs in rat prefrontal cortex. J Neurophysiol 87:2324–2336

    CAS  PubMed  Google Scholar 

  • Collins P, Roberts AC, Dias R, Everitt BJ, Robbins TW (1998) Perseveration and strategy in a novel spatial self-ordered sequencing task for nonhuman primates: effects of excitotoxic lesions and dopamine depletions of the prefrontal cortex. J Cognit Neurosci 10:332–354

    Article  CAS  Google Scholar 

  • Collins P, Wilkinson LS, Everitt BJ, Robbins TW, Roberts AC (2000) The effect of dopamine depletion from the caudate nucleus of the common marmoset (Callithrix jacchus) on tests of prefrontal cognitive function. Behav Neurosci 114:3–17

    CAS  PubMed  Google Scholar 

  • Cools R, Stefanova E, Barker RA, Robbins TW, Owen AM (2002) Dopaminergic modulation of high-level cognition in Parkinson’s disease: the role of the prefrontal cortex revealed by PET. Brain 125:584–594

    Article  PubMed  Google Scholar 

  • Costa A, Peppe A, Dell’ Agnello G, Carlesimo GA, Murri L, Bonuccelli U, Caltagirone C (2003) Dopaminergic modulation of visual-spatial working memory in Parkinson’s disease. Dement Geriatr Cognit Disord 15:55–66

    Article  CAS  Google Scholar 

  • Creese I, Hess EJ (1986) Biomedical characteristics of D1 dopamine receptors: relationship to behavior and schizophrenia. Clin Neuropharmacol 9:14–16

    Google Scholar 

  • Daniel DG, Weinberger DR, Jones DW, Zigun JR, Coppola R, Handel S, Bigelow LB, Goldberg TE, Berman KF, Kleinman JE (1991) The effect of amphetamine on regional cerebral blood flow during cognitive activation in schizophrenia. J Neurosci 11:1907–1917

    CAS  PubMed  Google Scholar 

  • Davidson M, Davis K (1988) A comparison of plasma homovanillic acid concentrations in schizophrenic patients and normal controls. Arch Gen Psychiatry 45:561–563

    CAS  PubMed  Google Scholar 

  • Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148:1474–1486

    CAS  PubMed  Google Scholar 

  • de Keyser J, de Backer JP, Vauquelin G, Ebinger G (1990) The effect of aging on the D1 dopamine receptors in human frontal cortex. Brain Res 528:308–310

    Article  PubMed  Google Scholar 

  • Del Arco A, Mora F (2000) Endogenous dopamine potentiates the effects of glutamate on extracellular GABA in the prefrontal cortex of the freely moving rat. Brain Res Bull 53:339–345

    Article  PubMed  Google Scholar 

  • Dinn WM, Robbins NC, Harris CL (2001) Adult attention-deficit/hyperactivity disorder: neuropsychological correlates and clinical presentation. Brain Cognit 46:114–121

    CAS  Google Scholar 

  • Durstewitz D, Seamans JK (2002) The computational role of dopamine D1 receptors in working memory. Neural Network 15:561–572

    Article  PubMed  Google Scholar 

  • Durstewitz D, Seamans JK, Sejnowski TJ (2000) Neurocomputational models of working memory. Nat Neurosci 3:1184–1191

    Article  CAS  PubMed  Google Scholar 

  • Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, Goldman D, Weinberger DR (2001) Effect of COMT Val 108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 98:6917–6922

    Article  CAS  PubMed  Google Scholar 

  • Elevag B, Goldberg TE (2000) Cognitive impairment in schizophrenia is the core of the disorder. Crit Rev Neurobiol 14:1–21

    CAS  PubMed  Google Scholar 

  • Fernandez-Ruiz J, Doudet DJ, Aigner TG (1995) Long-term cognitive impairment in MPTP-treated rhesus monkeys. Neuroreport 7:102–104

    CAS  PubMed  Google Scholar 

  • Fernandez-Ruiz J, Doudet D, Aigner TG (1999) Spatial memory improvement by levodopa in parkinsonian MPTP-treated monkeys. Psychopharmacology 147:104–107

    Article  CAS  PubMed  Google Scholar 

  • Fici GJ, Wu H, VonVoigtlander PF, Sethy VH (1997) D1 dopamine receptor activity of anti-parkisonian drugs. Life Sci 60:1597–1603

    Article  CAS  PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61:331–349

    CAS  PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1993) Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic “scotomas”. J Neurosci 13:1479–1497

    CAS  PubMed  Google Scholar 

  • Fuster JM (1997) The prefrontal cortex. Raven Press, New York

  • Gao WJ, Krimer LS, Goldman-Rakic PS (2001) Presynaptic regulation of recurrent excitation by D1 receptors in prefrontal circuits. Proc Natl Acad Sci USA 98:295–300

    Article  CAS  PubMed  Google Scholar 

  • Giardina WJ, Williams M (2001) Adrogolide HCL (ABT-431; DAS-431), a prodrug of the dopamine D1 receptor agonist, A-86929: preclinical pharmacology and clinical data. CNS Drug Rev 7:305–316

    CAS  PubMed  Google Scholar 

  • Godbout R, Mantz J, Pirot S, Glowinski J, Thierry AM (1991) Inhibitory influence of the mesocortical dopaminergic neurons on their target cells: electrophysiological and pharmacological characterization. J Pharmacol Exp Ther 258:728–738

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Plum F (ed) Handbook of physiology, the nervous system, functions of the brain. American Physiological Society, Bethesda, Md., pp 373–417

  • Goldman-Rakic PS (1991) Prefrontal cortical dysfunction in working memory: the relevance of working memory. In: Caroll BJ, Barrett JE (eds) Psychopathology and the brain. Raven, New York, pp 1–23

  • Goldman-Rakic PS (1994) Working memory dysfunction in schizophrenia. J Neuropsychiatr Clin Neurosci 6:348–357

    CAS  Google Scholar 

  • Goldman-Rakic PS (1999) The physiological approach: Functional architecture of working memory and disordered cognition in schizophrenia. Biol Psychiatry 46:650–661

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS, Brown RM (1981) Regional changes in monoamines in cerebral cortex and subcortical structures of aging rhesus monkeys. Neuroscience 6:117–187

    Article  Google Scholar 

  • Gonon F (1997) Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo. J Neurosci 17:5972–5978

    CAS  PubMed  Google Scholar 

  • Gonon F, Sundstrom L (1996) Excitatory effects of dopamine released by impulse flow in the rat nucleus accumbens in vivo. Neuroscience 75:13–18

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Islas C, Hablitz JJ (2003) Dopamine enhances EPSCs in layer II-III pyramidal neurons in rat prefrontal cortex. J Neurosci 23:867–875

    CAS  PubMed  Google Scholar 

  • Granon S, Passetti F, Thomas KL, Dalley JW, Everitt BJ, Robbins TW (2000) Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J Neurosci 20:1208–1215

    PubMed  Google Scholar 

  • Green MF (1996) What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry 153:321–330

    CAS  PubMed  Google Scholar 

  • Green MF (1997) Schizophrenia from a neurocognitive perspective: probing the impenetrable darkness. Pearson Allyn & Bacon, Boston, Mass.

    Google Scholar 

  • Guo N, Hwang DR, Lo ES, Huang YY, Laruelle M, Abi-Dargham A (2003) Dopamine depletion and in vivo binding of PET D1 receptor radioligands: implications for imaging studies in schizophrenia. Neuropsychopharmacology 28:1703–1711

    Article  CAS  PubMed  Google Scholar 

  • Harada N, Nishiyama S, Satoh K, Fukumoto D, Kakiuchi T, Tsukada H (2002) Age-related changes in the striatal dopamine system in the living brain: a multiparametric study in conscious monkeys. Synapse 45:38–45

    Article  CAS  PubMed  Google Scholar 

  • Henby SE, Trojanowski JQ (2003) Neuron-specific age-related decreases in dopamine receptor mRNAs. J Comp Neurol 456:176–183

    Article  PubMed  Google Scholar 

  • Herken H, Erdal ME (2001) Catechol-O-methyltransferase gene polymorphism in schizophrenia: evidence for association between symptomatology and prognosis. Psychiatr Genet 11:105–109

    Article  CAS  PubMed  Google Scholar 

  • Hikosaka O, Wurtz RH (1983) Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. J Neurophysiol 49:1268–1284

    CAS  PubMed  Google Scholar 

  • Ichikawa J, Ishii H, Bonaccorso S, Fowler WL, O’Laughlin IA, Meltzer HY (2001) 5-HT(2A) and D(2) receptor blockade increases cortical DA release via 5-HT(1A) receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 76:1521–1531

    CAS  PubMed  Google Scholar 

  • Inada T, Nakamura A, Iijima Y (2003) Relationship between catechol-O-methyltransferase polymorphism and treatment-resistant schizophrenia. Am J Med Genet 120B:35–39

    Article  PubMed  Google Scholar 

  • Jentsch JD, Redmond DE Jr, Elsworth JD, Taylor JR, Youngren KD, Roth RH (1997) Enduring cognitive deficits and cortical dopamine dysfunction in monkeys after long-term administration of phencyclidine. Science 277:953–955

    Article  CAS  PubMed  Google Scholar 

  • Jentsch JD, Taylor JR, Elsworth JD, Redmond DE Jr, Roth RH (1999a) Altered frontal cortical dopaminergic transmission in monkeys after subchronic phencyclidine exposure: involvement in frontostriatal cognitive deficits. Neuroscience 90:823–832

    Article  CAS  PubMed  Google Scholar 

  • Jentsch JD, Taylor JR, Redmond DE Jr, Elsworth JD, Youngren KD, Roth RH (1999b) Dopamine D4 receptor antagonist reversal of subchronic phencyclidine-induced object retrieval/detour deficits in monkeys. Psychopharmacology 142:78–84

    Article  CAS  PubMed  Google Scholar 

  • Jin LQ, Goswami S, Cai G, Zhen X, Friedman E (2003) SKF83959 selectively regulates phosphatidylinositol-linked D1 opamine receptors in rat brain. J Neurochem 85:378–386

    CAS  PubMed  Google Scholar 

  • Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of drug and stress-induced sensitization of motor activity. Brain Res Rev 16:223–244

    CAS  PubMed  Google Scholar 

  • Karlsson P, Farde L, Halldin C, Sedvall G (2002) PET study of D1 dopamine receptor binding in neuroleptic-naive patients with schizophrenia. Am J Psychiatry 159:761–767

    Article  PubMed  Google Scholar 

  • Kashima H (1991) Frontal dysfunction of chronic schizophrenia—the pros and cons in neuropsychological assessment. Yakubutsu Seishin Kodo 11:83–88

    CAS  PubMed  Google Scholar 

  • Kebabian JW, Beaulieu M, Itoh Y (1984) Pharmacological and biochemical evidence for the existence of two categories of dopamine receptor. Can J Neurol Sci 11:114–117

    CAS  PubMed  Google Scholar 

  • Keefe RS, Roitman SE, Harvey PD, Blum CS, DuPre RL, Prieto DM, Davidson M, Davis KL (1995) A pen-and-paper human analogue of a monkey prefrontal cortex activation task: spatial working memory in patients with schizophrenia. Schizophr Res 17:25–33

    Article  CAS  PubMed  Google Scholar 

  • Keks NA (1997) Impact of newer antipsychotics on outcomes in schizophrenia. Clin Ther 19:148–158

    Article  CAS  PubMed  Google Scholar 

  • Khan ZU, Mrzljak L, Gutierrez A, de la Calle A, Goldman-Rakic PS (1998) Prominence of the dopamine D2 short isoform in dopaminergic pathways. Proc Natl Acad Sci USA 95:7731–7736

    Article  PubMed  Google Scholar 

  • Khan ZU, Koulen P, Rubinstein M, Grandy DK, Goldman-Rakic PS (2001) An astroglia-linked dopamine D2-receptor action in prefrontal cortex. Proc Natl Acad Sci USA 98:1964–1969

    Article  CAS  PubMed  Google Scholar 

  • Kimura K, White BH, Sidhu A (1995) Coupling of human D-1 dopamine receptors to different guanine nucleotide binding proteins. Evidence that D-1 dopamine receptors can couple to both Gs and G(o). J Biol Chem 270:14672–14678

    Article  CAS  PubMed  Google Scholar 

  • Kirrane RM, Mitropoulou V, Nunn M, New AS, Harvey PD, Schopick F, Silverman J, Siever LJ (2000) Effects of amphetamine on visuospatial working memory performance in schizophrenia spectrum personality disorder. Neuropsychopharmacology 22:14–18

    Article  CAS  PubMed  Google Scholar 

  • Koepp MJ, Gunn RN, Lawrence AD, Cunningham VJ, Dagher A, Jones T, Brooks DJ, Bench CJ, Grasby PM (1998) Evidence for striatal dopamine release during a video game. Nature 393:266–268

    CAS  PubMed  Google Scholar 

  • Koh PO, Bergson C, Undie AS, Goldman-Rakic PS, Lidow MS (2003) Up-regulation of the D1 dopamine receptor-interacting protein, calcyon, in patients with schizophrenia. Arch Gen Psychiatry 60:311–319

    Article  CAS  PubMed  Google Scholar 

  • Kraepelin E (1909) Dementia praecox and paraphrenia. Kraepelin’s textbook of psychiatry, 8th edn, translated by Barclay RM. Livingstone, Edinburgh, p 1919

  • Kulisevsky J, Garcia-Sanchez C, Berthier ML, Barbanoj M, Pascual-Sedano B, Gironell A, Estevez-Gonzalez A (2000) Chronic effects of dopaminergic replacement on cognitive function in Parkinson’s disease: a two-follow-up study of previously untreated patients. Move Disord 15:613–636

    Article  CAS  Google Scholar 

  • Lachowicz JE, Sibley DR (1997) Molecular characteristics of mammalian dopamine receptors. Pharmacol Toxicol 81:105–113

    CAS  PubMed  Google Scholar 

  • Lange KW, Robbins TW, Marsden CD, James M, Owen AM, Paul GM (1992) l-Dopa withdrawal in Parkinson’s disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction. Psychopharmacology 107:394–404

    Google Scholar 

  • Laruelle M (2003) Dopamine transmission in the schizophrenic brain. In: Hirsch SR, Weinberger DR (eds) Schizophrenia. Blackwell, Oxford, pp 365–387

  • Laruelle M, Abi-Dargham A (1999) Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies. J Psychopharmacol 13:358–371

    CAS  PubMed  Google Scholar 

  • Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D’Souza CD, Erdos J, McCance E, Rosenblatt W, Findago C, Zoghbi SS, Baldwin RM, Seibyl JP, Krystal JH, Charney DS, Innis RB (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA 93:9235–9240

    CAS  PubMed  Google Scholar 

  • Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R (1999) Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry 46:56–72

    CAS  PubMed  Google Scholar 

  • Lee T, Seeman P, Tourtellotte WW, Farley IJ, Hornykeiwicz O (1978) Binding of 3H-neuroleptics and 3H-apomorphine in schizophrenic brains. Nature 274:897–950

    Google Scholar 

  • Levy R, Goldman-Rakic PS (1999) Association of storage and processing functions in the dorsolateral prefrontal cortex of the nonhuman primate. J Neurosci 19:5149–5158

    CAS  PubMed  Google Scholar 

  • Lezcano N, Mrzljak L, Eubanks S, Levenson R, Goldman-Rakic P, Bergson C (2000) Dual signaling regulated by calcyon, a D1 dopamine receptor interacting protein. Science 287:1660–1664

    Article  CAS  PubMed  Google Scholar 

  • Liddle PF (2000) Cognitive impairment in schizophrenia: its impact on social functioning. Acta Psychiatr Scand Suppl 400:11–16

    Article  CAS  PubMed  Google Scholar 

  • Lidow MS, Goldman-Rakic PS (1994) A common action of clozapine, haloperidol, and remoxipride on D1- and D2-dopaminergic receptors in the primate cerebral cortex. Proc Natl Acad Sci USA 91:4353–4356

    CAS  PubMed  Google Scholar 

  • Lidow MS, Goldman-Rakic PS, Gallager D W, Rakic P (1991) Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390. Neuroscience 40:657–671

    Article  CAS  PubMed  Google Scholar 

  • Lidow MS, Elsworth JD, Goldman-Rakic PS (1997) Down-regulation of the D1 and D5 dopamine receptors in the primate prefrontal cortex by chronic treatment with antipsycotic drugs. J Pharmacol Exp Ther 281:597–603

    CAS  PubMed  Google Scholar 

  • Lidow MS, Williams GV, Goldman-Rakic PS (1998) The cerebral cortex: a case for a common site of action of antipsychotics. Trends Pharmacol Sci 19:136–140

    CAS  Google Scholar 

  • Lieberman JA, Kane JM, Gadaleta D, Brenner R, Lesser MS, Kinon B.(1984) Methylphenidate challenge as a predictor of relapse in schizophrenia. Am J Psychiatry 141:633–638

    CAS  PubMed  Google Scholar 

  • Liegeois JF, Ichikawa J, Meltzer HY (2002) 5-HT(2A) receptor antagonism potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and inhibits that in the nucleus accumbens in a dose-dependent manner. Brain Res 947:157–165

    Article  PubMed  Google Scholar 

  • Linner L, Wiker C, Wadenberg ML, Schalling M, Svensson TH (2002) Noradrenaline reuptake inhibition enhances the antipsychotic-like effect of raclopride and potentiates D2-blockage-induced dopamine release in the medial prefrontal cortex of the rat. Neuropsychopharmacology 27:691–698

    Article  CAS  PubMed  Google Scholar 

  • Luine V, Bowling D, Hearns M (1990) Spatial memory deficits in aged rats: contributions of monoaminergic systems. Brain Res 537:271–278

    Article  CAS  PubMed  Google Scholar 

  • Lysaker PH, Bell MD, Bioty S, Zito WS (1996) Performance on the Wisconsin card sorting test as a predictor of rehospitalization in schizophrenia. J Nerv Ment Dis 184:319–321

    Article  CAS  PubMed  Google Scholar 

  • Ma SY, Ciliax BJ, Stebbins G, Jaffar S, Joyce JN, Cochran EJ, Kordower JH, Mash DC, Levey AI, Mufson EJ (1999) Dopamine transporter-immunoreactive neurons decrease with age in the human substantia nigra. J Comp Neurol 409:25–37

    Article  CAS  PubMed  Google Scholar 

  • Mackay A, Iversen L, Rossor M, Spokes E, Bird E, Arregui A, Creese I, Synder SH (1982) Increased brain dopamine and dopamine receptors in schizophrenia. Arch Gen Psychiatry 39:991–997

    CAS  PubMed  Google Scholar 

  • Malhotra AK, Kestler LJ, Mazzanti C, Bates JA, Goldberg T, Goldman D (2002) A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry 159:652–654

    Article  PubMed  Google Scholar 

  • Manoach DS, Gollub RL, Benson ES, Searl MM, Goff DC, Halpern E, Saper CB, Rauch SL (2000) Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biol Psychiatry 48:99–109

    Google Scholar 

  • Mattay VS, Callicott JH, Bertolino A, Heaton I, Frank JA, Coppola R, Berman KF, Goldberg TE, Weinberger DR (2000) Effects of dextroamphetamine on cognitive performance and cortical activation. Neuroimage 12:268–275

    Article  CAS  PubMed  Google Scholar 

  • Mattay VS, Tessitore A, Callicott JH, Bertolino A, Goldberg TE, Chase TN, Hyde TM, Weinberger DR (2002) Dopaminergic modulation of cortical function in patients with Parkinson’s disease. Ann Neurol 51:156–164

    Article  CAS  PubMed  Google Scholar 

  • McDowell SK (1996) A role for dopamine in executive function deficits. J Head Trauma Rehabil 11:89–92

    Google Scholar 

  • McGurk SR, Meltzer HY (2000) The role of cognition in vocational functioning in schizophrenia. Schizophr Res 45:175–184

    Article  CAS  PubMed  Google Scholar 

  • Mehta MA, Swainson R, Ogilvie AD, Sahakian J, Robbins TW (2001) Improved short-term spatial memory but impaired reversal learning following the dopamine D(2) agonist bromocriptine in human volunteers. Psychopharmacology 159:10–20

    Google Scholar 

  • Meltzer HY (1999) Outcome in schizophrenia: beyond symptom reduction. J Clin Psychiatry 60:3–7

    Google Scholar 

  • Meltzer HY, Thompson PA, Lee MA, Ranjan R (1996) Neuropsychologic deficits in schizophrenia: relation to social function and effect of antipsychotic drug treatment. Neuropsychopharmacology 14:27S–33S

    Article  CAS  PubMed  Google Scholar 

  • Meltzer HY, Park S, Kessler R (1999) Cognition, schizophrenia, and the atypical antipsychotic drugs. Proc Natl Acad Sci USA 96:13591–13593

    CAS  PubMed  Google Scholar 

  • Meyer-Lindenberg A, Miletich RS, Kohn PD, Esposito G, Carson RE, Quarantelli M, Weinberger DR, Berman KF (2002) Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 5:267–271

    Article  CAS  PubMed  Google Scholar 

  • Muller U, von Cramon DY, Pollmann S (1998) D1- versus D2-receptor modulation of visuospatial working memory in humans. J Neurosci 18:2720–2728

    PubMed  Google Scholar 

  • Muly EC III, Szigeti K, Goldman-Rakic PS (1998) D1 receptor in interneurons of macaque prefrontal cortex: distribution and subcellular localization. J Neurosci 18:10553–10565

    CAS  PubMed  Google Scholar 

  • Nakahara K, Hayashi T, Konishi S, Miyashita Y (2002) Functional MRI of macaque monkeys performing a cognitive set-shifting task. Science 295:1532–1536

    Article  CAS  PubMed  Google Scholar 

  • Naoi M, Maruyama W (1999) Cell death of dopamine neurons in aging and Parkinson’s disease. Mech Ageing Dev 111:75–178

    Article  Google Scholar 

  • Neve KA, Neve RL (eds) The dopamine receptors. Humana Press, Totowa, New Jersey

  • Okubo Y, Suhara T, Suzuki K, Kobayashi K, Inoue O, Terasaki O, Someya Y, Sassa T, Sudo Y, Matsushima E, Iyo M, Tateno Y, Toru M (1997) Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385:634–636

    CAS  PubMed  Google Scholar 

  • Owen AM, Robbins TW (1998) Attention and working memory in movements disorders. In: Jahanashi M, Brown R (eds) Neuropsychology of movement disorders. North-Holland, Amsterdam

  • Owen AM, Beksinska M, James M, Leigh PN, Summers BA, Marsden CD, Quinn NP, Sahakian BJ, Robbins TW (1993) Visuospatial memory deficits at different stages of Parkinson’s disease. Neuropsychologia 31:627–644

    CAS  PubMed  Google Scholar 

  • Owen AM, Iddon JL, Hodges JR, Summers BA, Robbins TW (1997) Spatial and non-spatial working memory at different stages of Parkinson’s disease. Neuropsychologia 35:519–532

    Article  CAS  PubMed  Google Scholar 

  • Park S, Holzman PS (1992) Schizophrenics show spatial working memory deficits. Arch Gen Psychiatry 49:975–982

    CAS  PubMed  Google Scholar 

  • Park S, Puschel J, Sauter BH, Rentsch M, Hell D (1999) Spatial working memory deficits and clinical symptoms in schizophrenia: a 4-month follow-up study. Biol Psychiatry 46:392–400

    Article  CAS  PubMed  Google Scholar 

  • Paspalas CD, Goldman-Rakic PS (2002) Target-selective expression of D1 immunoreactivity in excitatory-like axons of the macaque prefrontal cortex. Soc Neurosci Abstr 336.5

  • Paspalas CD, Goldman-Rakic PS (2003) Ultrastructural evidence for dopamine-regulated intracellular calcium signaling: selective association of D5 receptors with IP3-gated calcium stores in the primate neocortex. Soc Neurosci Abstr 33:469.1

    Google Scholar 

  • Passingham RE (1985) Memory of monkeys (Macaca mulatta) with lesions in prefrontal cortex. Behav Neurosci 99:3–21

    CAS  PubMed  Google Scholar 

  • Pierri JN, Volk CL, Auh S, Sampson A, Lewis DA (2001) Decreased somal size of deep layer 3 pyramidal neurons in the prefrontal cortex of subjects with schizophrenia. Arch Gen Psychiatry 58:466–473

    Article  CAS  PubMed  Google Scholar 

  • Pirot S, Godbout R, Mantz J, Tassin JP, Glowinski J, Thierry AM (1992) Inhibitory effects of ventral tegmental area stimulation on the activity of prefrontal cortical neurons: evidence for the involvement of both dopaminergic and GABAergic components. Neuroscience 49:857–865

    Article  CAS  PubMed  Google Scholar 

  • Potkin SG, Basile VS, Jin Y, Masellis M, Badri F, Keator D, Wu JC, Alva G, Carreon DT, Bunney WE Jr, Fallon JH, Kennedy JL (2003) D1 receptor alleles predict PET metabolic correlates of clinical response to clozapine. Mol Psychiatry 8:109–113

    Article  CAS  PubMed  Google Scholar 

  • Rao SG, Williams GV, Goldman-Rakic PS (1999) Isodirectional tuning of adjacent interneurons and pyramidal cells during working memory: evidence for microcolumnar organization in PFC. J Neurophysiol 81:1903–1916

    CAS  PubMed  Google Scholar 

  • Rapp PR, Amaral DG (1989) Evidence for task-dependent memory dysfunction in the aged monkey. J Neurosci 104:876–884

    Google Scholar 

  • Rinne JO, Lonneberg P, Marjamaki P (1990) Age-dependent decline in human brain dopamine D1 and D2 receptors. Brain Res 508:349–352

    CAS  PubMed  Google Scholar 

  • Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and valuation of animal models of amphetamine psychosis. Brain Res 396:157–198

    CAS  PubMed  Google Scholar 

  • Roitman SE, Mitropoulou V, Keefe RS, Silverman JM, Serby M, Harvey PD, Reynolds DA, Mohs RC, Siever LJ (2000) Visuospatial working memory in schizotypal personality disorder patients. Schizophr Res 41:447–455

    Article  CAS  PubMed  Google Scholar 

  • Rybakowski JK, Borkowska A, Czerski PM, Hauser J (2002) Eye movement disturbances in schizophrenia and a polymorphism of catechol-O-methyltransferase gene. Psychiatry Res 113:49–57

    Article  CAS  PubMed  Google Scholar 

  • Saunders RC, Kolachana BS, Bachevalier J, Weinberger DR (1998) Neonatal lesions of the medial temporal lobe disrupt prefrontal cortical regulation of striatal dopamine. Nature 393:169–171

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1991) D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251:947–950

    CAS  PubMed  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1994) The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J Neurophysiol 71:515–528

    CAS  PubMed  Google Scholar 

  • Sawaguchi T, Matsumura M, Kubota K (1988) Dopamine enhances the neuronal activity of spatial short-term memory task in the primate prefrontal cortex. Neurosci Res 5:465–473

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi T, Matsumura M, Kubota K (1990) Effects of dopamine antagonists on neuronal activity related to a delayed response task in monkey prefrontal cortex. J Neurophysiol 63:1401–1412

    CAS  PubMed  Google Scholar 

  • Schneider JS, Pope-Coleman A (1995) Cognitive deficits precede motor deficits in a slowly progressing model of parkinsonism in monkeys. Neurodegeneration 4:245–255

    CAS  PubMed  Google Scholar 

  • Schneider JS, Roeltgen DP (1993) Delayed matching-to-sample, object retrieval, and discrimination reversal deficits in chronic low dose MPTP-treated monkeys. Brain Res 615:351–354

    Article  CAS  PubMed  Google Scholar 

  • Schneider JS, Sun ZQ, Roeltgen DP (1994a) Effects of dopamine agonists on delayed response performance in chronic low-dose MPTP-treated monkeys. Pharmacol Biochem Behav 48:235–240

    Google Scholar 

  • Schneider JS, Sun ZQ, Roeltgen DP (1994b) Effects of dihydrexidine, a full D-1 dopamine receptor agonist, on delayed response performance in chronic low dose MPTP-treated monkeys. Brain Res 663:140–144

    Article  CAS  PubMed  Google Scholar 

  • Schneider JS, Tinker JP, Van Velson M, Manzaghi F, Lloyd GK (1999) Nicotinic acetylcholine receptor agonist SIB-1508Y improves cognitive functioning in chronic low-dose MPTP-treated monkeys. J Pharmacol Exp Ther 290:731–739

    CAS  PubMed  Google Scholar 

  • Schneider JS, Tinker JP, Menzaghi G, Lloyd GK (2003) The subtype-selective nicotinic acetylcholine receptor agonist SIB-1553A improves both attention and memory components of a spatial working memory task in chronic low dose 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys. J Pharmacol Exp Ther 306:401–406

    Article  CAS  PubMed  Google Scholar 

  • Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263

    CAS  PubMed  Google Scholar 

  • Seamans JK, Gorelova N, Durstewitz D, Yang CR (2001) Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. J Neurosci 21:3628–3638

    CAS  PubMed  Google Scholar 

  • Seeman P (1987) Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1:133–152

    CAS  PubMed  Google Scholar 

  • Seeman P (2002) Atypical antipsychotics: mechanism of action. Can J Psychiatry 47:27–38

    Google Scholar 

  • Selemon LD, Rajkowska G, Goldman-Rakic PS (1995) Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 52:805–818

    CAS  PubMed  Google Scholar 

  • Sesack SR, Hawrylak VA, Melchitzky DS, Lewis DA (1998) Dopamine innervation of a subclass of local circuit neurons in monkey prefrontal cortex: ultrastructural analysis of tyrosine hydroxylase and parvalbumin immunoreactive structures. Cereb Cortex 8:614–622

    Article  CAS  PubMed  Google Scholar 

  • Sevy S, Davidson M (1995) The cost of cognitive impairment in schizophrenia. Schizophr Res 17:1–3

    Article  CAS  PubMed  Google Scholar 

  • Shallice T, Marzocchi GM, Coser S, Del Savio M, Meuter RF, Rumiati RI (2002) Executive function profile of children with attention deficit hyperactivity disorder. Dev Neuropsychol 21:43–71

    Article  PubMed  Google Scholar 

  • Sidhu A, Kimura K, Uh M, White BH, Patel S (1998) Multiple coupling of human D5 dopamine receptors to guanine nucleotide binding proteins Gs and Gz. J Neurochem 70:2459–2467

    CAS  PubMed  Google Scholar 

  • Siegel BV, Trestman R, O’Flaithbheartaigh S, Mitropoulou V, Amin F, Kirrane R, Silverman J, Schmeidler J, Keefe RS, Siever LJ (1996) d-Amphetamine challenge effects on Wisconsin Card Sort Test: performance in schizotypal personality disorder. Schizophr Res 20:29–32

    Article  PubMed  Google Scholar 

  • Smiley JF, Goldman-Rakic PS (1993) Heterogeneous targets of dopamine synapses in monkey prefrontal cortex demonstrated by serial section electron microscopy: a laminar analysis using the silver-enhanced diaminobenzidine sulfide (SEDS) immunolabeling technique. Cereb Cortex 3:223–238

    CAS  PubMed  Google Scholar 

  • Smiley JF, Levey AI, Ciliax BJ, Goldman-Rakic PS (1994) D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines. Proc Natl Acad Sci USA 91:5720–5724

    CAS  PubMed  Google Scholar 

  • Smith TE, Hull JW, Romanelli S, Fertuck E, Weiss KA (1999a) Symptoms and neurocognition as rate limiters in skills training for psychotic patients. Am J Psychiatry 156:1817–1818

    CAS  PubMed  Google Scholar 

  • Smith TE, Hull JW, Goodman M, Hedayat-Harris A, Willson DF, Israel LM, Munich RL (1999b) The relative influence of symptoms, insight, and neurocognition on social adjustment in schizophrenia and schizoaffective disorder. J Nerv Ment Dis 187:102–108

    Article  CAS  PubMed  Google Scholar 

  • Stevens AA, Goldman-Rakic PS, Gore JC, Fulbright RK, Wexler BE (1998) Cortical dysfunction in schizophrenia during auditory word and tone working memory demonstrated by functional magnetic imaging. Arch Gen Psychiatry 55:1097–1103

    Article  CAS  PubMed  Google Scholar 

  • Suhara T, Fukuda H, Inoue T, Suzuki K, Yamasaki T, Tateno Y (1991) Age-related changes in D1 dopamine receptors measured by positron emission tomography. Psychopharmacology 103:41–45

    CAS  PubMed  Google Scholar 

  • Surmeier DJ, Bargas J, Hemmings HC Jr, Nairn AC, Greengard P (1995) Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 14:385–397

    CAS  PubMed  Google Scholar 

  • Svensson TH (2000) Dysfunctional brain dopamine systems induced by psychotomimetic NMDA-receptor antagonists and the effects of antipsychotic drugs. Brain Res Rev 31:320–329

    PubMed  Google Scholar 

  • Tanaka S (2002) Dopamine controls fundamental cognitive operations of multi-target spatial working memory. Neural Networks 15:573–582

    Article  PubMed  Google Scholar 

  • Taylor JR, Elsworth JD, Roth RH, Slaydek JR Jr, Redmond DE Jr (1990) Cognitive and motor deficits in the acquisition of an object retrieval/detour task in MPTP-treated monkeys. Brain 113:617–637

    PubMed  Google Scholar 

  • Trestman RL, Keefe RS, Mitropoulou V, Harvey PD, deVegvar ML, Lees-Roitman S, Davidson M, Aronson A, Silverman J, Siever LJ (1995) Cognitive function and biological correlates of cognitive performance in schizotypal personality disorder. Psychiatry Res 59:127–136

    Article  CAS  PubMed  Google Scholar 

  • Vezina P (1996) D1 dopamine receptor stimulation is necessary for the induction of sensitization by amphetamine in the ventral tegmental area. J Neurosci 16:2411–2420

    CAS  PubMed  Google Scholar 

  • Vincent SL, Khan Y, Benes FM (1993) Cellular distribution of dopamine D1 and D2 receptors in rat medial prefrontal cortex. J Neurosci 13:2551–2564

    CAS  PubMed  Google Scholar 

  • Walters AS, Mandelbaum DE, Lewin DS, Kugler S, England SJ, Miller M (2000) Dopaminergic therapy in children with restless legs/periodic limb movements in sleep and ADHD: dopaminergic therapy study group. Pediatr Neurol 22:182–186

    Article  CAS  PubMed  Google Scholar 

  • Wang HY, Undie AS, Friedman E (1995) Evidence for the coupling of Gq protein to D1-like dopamine sites in rat striatum: possible role in dopamine-mediated inositol phosphate formation. Mol Pharmacol 48:988-994

    CAS  PubMed  Google Scholar 

  • Wang J, O’Donnell P (2001) D(1) dopamine receptors potentiate NMDA-mediated excitability increase in layer V prefrontal cortical pyramidal neurons. Cereb Cortex 11:452–462

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chan GL, Holden JE, Dobko T, Mak E, Schulzer M, Huser JM, Snow BJ, Ruth TJ, Calne DB, Stoessl AJ (1998) Age-dependent decline in dopamine D1 receptors in human brain: a PET study. Synapse 30:56–61

    Article  CAS  PubMed  Google Scholar 

  • Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669

    CAS  PubMed  Google Scholar 

  • Weinberger DR, Gallhofer B (1997) Cognitive function in schizophrenia. Int Clin Psychopharmacol Suppl 4:S29–36

    Google Scholar 

  • Weinberger DR, Laruelle M (2001) Neurochemical and neuropharmacological imaging in schizophrenia. In: Davis KL, Charney DS, Coyle JT, Nemeroff C (eds) Neuropharmacology: the fifth generation of progress. Lippincott, Williams, and Wilkins, New York

  • Weinberger DR, Berman KF, Zec RF (1986) Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch Gen Psychiatry 43:114–125

    CAS  PubMed  Google Scholar 

  • Weinberger DR, Egan MF, Bertolino A, Callicott JH, Mattay VS, Lipska BK, Berman KF, Goldberg TE (2001) Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 50:825–844

    Article  CAS  PubMed  Google Scholar 

  • Wenk GL, Pierce DJ, Struble RG, Price DL, Cork LC (1989) Age-related changes in multiple neurotransmitter systems in the monkey brain. Neurobiol Aging 10:11–19

    CAS  PubMed  Google Scholar 

  • White F (1996) Synaptic regulation of mesocorticolimbic dopamine neurons. Annu Rev Neurosci 19:405–436

    CAS  PubMed  Google Scholar 

  • Wilkinson LS (1997) The nature of interactions involving prefrontal and striatal dopamine systems. J Psychopharmacol 11:143–150

    CAS  PubMed  Google Scholar 

  • Williams GV, Goldman-Rakic PS (1995) Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376:549–550

    Article  PubMed  Google Scholar 

  • Williams SM, Goldman-Rakic PS (1993) Characterization of the dopaminergic innervation of the primate frontal cortex using a dopamine-specific antibody. Cereb Cortex 3:199–222

    CAS  PubMed  Google Scholar 

  • Williams GV, Millar J (1990) Concentration-dependent actions of stimulated dopamine release on neuronal activity in rat striatum. Neurosci 39:1–16

    Article  CAS  Google Scholar 

  • Wong DF, Wagner HN Jr, Tune LE, Dannals RF, Pearlson GD, Links JM, Tamminga CA, Broussolle EP, Ravert HT, Wilson AA, et al. (1986) Positron emission tomography reveals elevated D2 dopamine receptors in drug-naïve schizophrenics. Science 234:1558–1563

    CAS  PubMed  Google Scholar 

  • Wonodi I, Stine OC, Mitchell BD, Buchanan RW, Thaker GK (2003) Association between Val108/158 Met polymorphism of the COMT gene and schizophrenia. Am J Med Genet 120B:47–50

    Article  PubMed  Google Scholar 

  • Yang CR, Seamans JK (1996) Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration. J Neurosci 16:1922–1935

    CAS  PubMed  Google Scholar 

  • Yang CR, Seamans JK, Gorelova N (1999) Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex. Neuropsychopharmacology 21:161–194

    Google Scholar 

  • Youngren KD, Inglis FM, Pivirotto PJ, Jedema HP, Bradberry CW, Goldman-Rakic PS, Roth RH, Moghaddam B (1999) Clozapine preferentially increases dopamine release in the rhesus monkey prefrontal cortex compared with the caudate nucleus. Neuropsychopharmacology 20:403–412

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham V. Williams.

Additional information

Dr. Patricia S. Goldman-Rakic passed away July 31, 2003. This review is dedicated to her memory and to her vision of the origins and treatment of cognitive deficits in schizophrenia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldman-Rakic, P.S., Castner, S.A., Svensson, T.H. et al. Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology 174, 3–16 (2004). https://doi.org/10.1007/s00213-004-1793-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-1793-y

Keywords

Navigation