Skip to main content

Advertisement

Log in

Relevance of endogenous 3α-reduced neurosteroids to depression and antidepressant action

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

The naturally occurring 3α-reduced neurosteroids allopregnanolone and its isomer pregnanolone are among the most potent positive allosteric modulators of γ-aminobutyric acid type A receptors. They play a critical role in the maintenance of physiological GABAergic tone and display a broad spectrum of neuropsychopharmacological properties. We have reviewed existing evidence implicating the relevance of endogenous 3α-reduced neuroactive steroids to depression and to the mechanism of action of antidepressants. A wide range of preclinical and clinical evidence suggesting the antidepressant potential of 3α-reduced neuroactive steroids and a possible involvement of a deficiency and a disequilibrium of neuroactive steroid levels in pathomechanisms underlying the etiology of major depressive disorder have emerged in recent years. Antidepressants elevate 3α-reduced neurosteroid levels in rodent brain, and clinically effective antidepressant pharmacotherapy is associated with normalization of plasma and cerebrospinal fluid (CSF) concentrations of endogenous neuroactive steroids in depressed patients, unveiling a possible contribution of neuroactive steroids to the mechanism of action of antidepressants. In contrast, recent studies using nonpharmacological antidepressant therapy suggest that changes in plasma neuroactive steroid levels may not be a general mandatory component of clinically effective antidepressant treatment per se, but may reflect distinct properties of pharmacotherapy only. While preclinical studies offer convincing evidence in support of an antidepressant-like effect of 3α-reduced neuroactive steroids in rodent models of depression, current clinical investigations are inconclusive of an involvement of neuroactive steroid deficiency in the pathophysiology of depression. Moreover, clinical evidence is merely suggestive of a role of neuroactive steroids in the mechanism of action of clinically effective antidepressant therapy. Additional clinical studies evaluating the impact of successful pharmacological and nonpharmacological antidepressant therapies on changes in neuroactive steroid levels in both plasma and CSF samples of the same patients are necessary in order to more accurately address the relevance of 3α-reduced neuroactive steroids to major depressive disorder. Finally, proof-of-concept studies with drugs that are known to selectively elevate brain neurosteroid levels may offer a direct assessment of an involvement of neurosteroids in the treatment of depressive symptomatology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

3α,5α-THP:

allopregnanolone

3α,5β-THP:

pregnanolone

3α-HSD:

3α-hydroxysteroid dehydrogenase

3β,5α-THP:

3β-hydroxy-5α-pregnan-20-one

3β-HSDiso:

3β-hydroxysteroid dehydrogenase isomerase

5α-DHP:

5α-dihydroprogesterone

5β-DHP:

5β-dihydroprogesterone

5α-R:

5α-reductase

5β-R:

5β-reductase

ADX/CX:

adrenalectomized/castrated

CNS:

central nervous system

CSF:

cerebrospinal fluid

FST:

forced swim test

GABAA :

γ-aminobutyric acid type A

GC/MS:

gas chromatography/mass spectrometry

HPA:

hypothalamic–pituitary–adrenal

HPLC:

high-performance liquid chromatography

MAOI:

monoamine oxidase inhibitor

OB:

olfactory bulbectomized

P450SCC:

P450 side-chain cleavage

rTMS:

repetitive transcranial magnetic stimulation

SSRI:

selective serotonin reuptake inhibitor

TCA:

tricyclic antidepressant

THDOC:

allotetrahydrodeoxycorticosterone

References

  • Akwa Y, Purdy RH, Koob GF, Britton KT (1999) The amygdala mediates the anxiolytic-like effect of the neurosteroid allopregnanolone in rat. Behav Brain Res 106:119–125

    Article  PubMed  CAS  Google Scholar 

  • Baghai TC, di Michele F, Schuele C, Eser D, Zwanzger P, Pasini A, Romeo E, Rupprecht R (2005) Plasma concentrations of neuroactive steroids before and after electroconvulsive therapy in major depression. Neuropsychopharmacology 30:1181–1186

    Article  PubMed  CAS  Google Scholar 

  • Baulieu EE (1998) Neurosteroids: a novel function of the brain. Psychoneuroendocrinology 23:963–987

    Article  PubMed  CAS  Google Scholar 

  • Baulieu EE, Robel P, Schumacher M (2001) Neurosteroids: beginning of the story. Int Rev Neurobiol 46:1–32

    PubMed  CAS  Google Scholar 

  • Bixo M, Andersson A, Winblad B, Purdy RH, Backstrom T (1997) Progesterone, 5alpha-pregnane-3,20-dione and 3alpha-hydroxy-5alpha-pregnane-20-one in specific regions of the human female brain in different endocrine states. Brain Res 764:173–178

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, McGrath C, Leonard BE, Norman TR (1998) Combining pindolol and paroxetine in an animal model of chronic antidepressant action—can early onset of action be detected? Eur J Pharmacol 352:23–28

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, McGrath C, Leonard BE, Norman TR (1999) Onset of the effects of the 5-HT1A antagonist, WAY-100635, alone, and in combination with paroxetine, on olfactory bulbectomy and 8-OH-DPAT-induced changes in the rat. Pharmacol Biochem Behav 63:333–338

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23:238–245

    Article  PubMed  CAS  Google Scholar 

  • Czlonkowska AI, Zienowicz M, Bidzinski A, Maciejak P, Lehner M, Taracha E, Wislowska A, Plaznik A (2003) The role of neurosteroids in the anxiolytic, antidepressive- and anticonvulsive effects of selective serotonin reuptake inhibitors. Med Sci Monit 9:270–275

    Google Scholar 

  • Davis M (1992) The role of the amygdala in conditioned fear. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion. Wiley-Liss, New York, pp 255–305

    Google Scholar 

  • Dong E, Matsumoto K, Uzunova V, Sugaya I, Takahata H, Nomura H, Watanabe H, Costa E, Guidotti A (2001) Brain 5alpha-dihydroprogesterone and allopregnanolone synthesis in a mouse model of protracted social isolation. Proc Natl Acad Sci U S A 98:2849–2854

    Article  PubMed  CAS  Google Scholar 

  • Drevets WC (2000) Neuroimaging of mood disorders. Biol Psychiatry 48:813–829

    Article  PubMed  CAS  Google Scholar 

  • Dubrovsky B (2000) The specificity of stress responses to different nocuous stimuli: neurosteroids and depression. Brain Res Bull 51:443–455

    Article  PubMed  CAS  Google Scholar 

  • Dubrovsky BO (2005) Steroids, neuroactive steroids and neurosteroids in psychopathology. Prog Neuropsychopharmacol Biol Psychiatry 29:169–192

    Article  PubMed  CAS  Google Scholar 

  • Eisensamer B, Rammes G, Gimpl G, Shapa M, Ferrari U, Hapfelmeier G, Bondy B, Parsons C, Gilling K, Zieglgansberger W, Holsboer F, Rupprecht R (2003) Antidepressants are functional antagonists at the serotonin type 3 (5-HT3) receptor. Mol Psychiatry 8:994–1007

    Article  PubMed  CAS  Google Scholar 

  • Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors. Nat Rev Neurosci 6:215–229

    Article  PubMed  CAS  Google Scholar 

  • Frye CA, Walf AA (2002) Changes in progesterone metabolites in the hippocampus can modulate open field and forced swim test behavior of proestrous rats. Horm Behav 41:306–315

    Article  PubMed  CAS  Google Scholar 

  • Frye CA, Walf AA (2004) Hippocampal 3alpha, 5alpha-THP may alter depressive behavior of pregnant and lactating rats. Pharmacol Biochem Behav 78:531–540

    Article  PubMed  CAS  Google Scholar 

  • Frye CA, Walf AA, Rhodes ME, Harney JP (2004) Progesterone enhances motor, anxiolytic, analgesic, and antidepressive behavior of wild-type mice, but not those deficient in type 1 5 alpha-reductase. Brain Res 1004:116–124

    Article  PubMed  CAS  Google Scholar 

  • Garzon J, Fuentes JA, Del Rio J (1979) Antidepressants selectively antagonize the hyperactivity induced in rats by long-term isolation. Eur J Pharmacol 59:293–296

    Article  PubMed  CAS  Google Scholar 

  • Gasior M, Carter RB, Witkin JM (1999) Neuroactive steroids: potential therapeutic use in neurological and psychiatric disorders. Trends Pharmacol Sci 20:107–112

    Article  PubMed  CAS  Google Scholar 

  • Genazzani AR, Petraglia F, Bernardi F, Casarosa E, Salvestroni C, Tonetti A, Nappi RE, Luisi S, Palumbo M, Purdy RH, Luisi M (1998) Circulating levels of allopregnanolone in humans: gender, age, and endocrine influences. J Clin Endocrinol Metab 83:2099–2103

    Article  PubMed  CAS  Google Scholar 

  • Goodnick PJ, Goldstein BJ (1998) Selective serotonin reuptake inhibitors in affective disorders II. Efficacy and quality of life. J Psychopharmacol 12:S21–S54

    PubMed  CAS  Google Scholar 

  • Griffin LD, Mellon SH (1999) Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes. Proc Natl Acad Sci U S A 96:13512–13517

    Article  PubMed  CAS  Google Scholar 

  • Griffin LD, Conrad SC, Mellon SH (2001) Current perspectives on the role of neurosteroids in PMS and depression. Int Rev Neurobiol 46:479–492

    Article  PubMed  CAS  Google Scholar 

  • Guidotti A, Costa E (1998) Can the antidysphoric and anxiolytic profiles of selective serotonin reuptake inhibitors be related to their ability to increase brain 3 alpha, 5 alpha-tetrahydroprogesterone (allopregnanolone) availability? Biol Psychiatry 44:865–873

    Article  PubMed  CAS  Google Scholar 

  • Guidotti A, Dong E, Matsumoto K, Pinna G, Rasmusson AM, Costa E (2001) The socially-isolated mouse: a model to study the putative role of allopregnanolone and 5α-dihydroprogesterone in psychiatric disorders. Brain Res Rev 37:110–115

    Article  PubMed  CAS  Google Scholar 

  • Jesberger JA, Richardson JS (1988) Brain output dysregulation induced by olfactory bulbectomy: an approximation in the rat of major depressive disorder in humans? Int J Neurosci 38:241–265

    Article  PubMed  CAS  Google Scholar 

  • Karavolas HJ, Hodges DR, O'Brien DJ, MacKenzie KM (1979) In vivo uptake of [3H]progesterone and [3H]5 alpha-dihydroprogesterone by rat brain and pituitary and effects of estradiol and time: tissue concentration of progesterone itself or specific metabolites? Endocrinology 104:1418–1425

    PubMed  CAS  Google Scholar 

  • Kelly JP, Wrynn AS, Leonard BE (1997) The olfactory bulbectomized rat as a model of depression: an update. Pharmacol Ther 74:299–316

    Article  PubMed  CAS  Google Scholar 

  • Kendell SF, Krystal JH, Sanacora G (2005) GABA and glutamate systems as therapeutic targets in depression and mood disorders. Expert Opin Ther Targets 9:153–168

    Article  PubMed  CAS  Google Scholar 

  • Khisti RT, Chopde CT (2000) Serotonergic agents modulate antidepressant-like effect of the neurosteroid 3α-hydroxy-5α-pregnan-20-one in mice. Brain Res 865:291–300

    Article  PubMed  CAS  Google Scholar 

  • Khisti RT, Chopde CT, Jain SP (2000) Antidepressant-like effect of the neurosteroid 3α-hydroxy-5α-pregnan-20-one in mice forced swim test. Pharmacol Biochem Behav 67:137–143

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Zhang H, Kim HY (2000) Profiling neurosteroids in cerebrospinal fluids and plasma by gas chromatography/electron capture negative chemical ionization mass spectrometry. Anal Biochem 277:187–195

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, Sanacora G, Blumberg H, Anand A, Charney DS, Marek G, Epperson CN, Goddard A, Mason GF (2002) Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol Psychiatry 7:S71–S80

    Article  PubMed  CAS  Google Scholar 

  • Lacroix C, Fiet J, Benais JP, Gueux B, Bonete R, Villette JM, Gourmel B, Dreux C (1987) Simultaneous radioimmunoassay of progesterone, androst-4-enedione, pregnenolone, dehydroepiandrosterone and 17-hydroxyprogesterone in specific regions of human brain. J Steroid Biochem 28:317–325

    Article  PubMed  CAS  Google Scholar 

  • Lambert JJ, Belelli D, Hill-Venning C, Peters JA (1995) Neurosteroids and GABAA receptor function. Trends Pharmacol Sci 16:295–303

    Article  PubMed  CAS  Google Scholar 

  • Lambert JJ, Belelli D, Peden DR, Vardy AW, Peters JA (2003) Neurosteroid modulation of GABAA receptors. Prog Neurobiol 71:67–80

    Article  PubMed  CAS  Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  PubMed  Google Scholar 

  • Lucki I (1997) The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav Pharmacol 8:523–532

    Article  PubMed  CAS  Google Scholar 

  • Lumia AR, Teicher MH, Salchli F, Ayers E, Possidente B (1992) Olfactory bulbectomy as a model for agitated hyposerotonergic depression. Brain Res 587:181–185

    Article  PubMed  CAS  Google Scholar 

  • Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232:1004–1007

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Mota L, Contreras CM, Saavedra M (1999) Progesterone reduces immobility in rats forced to swim. Arch Med Res 30:286–289

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Uzunova V, Pinna G, Taki K, Uzunov DP, Watanabe H, Mienville J-M, Guidotti A, Costa E (1999) Permissive role of brain allopregnanolone content in the regulation of pentobarbital-induced righting reflex loss. Neuropharmacology 38:955–963

    Article  PubMed  CAS  Google Scholar 

  • Mellon SH, Griffin LD (2002) Neurosteroids: biochemistry and clinical significance. Trends Endocrinol Metab 13:35–43

    Article  PubMed  CAS  Google Scholar 

  • Molina-Hernandez M, Tellez-Alcantara NP (2001) Antidepressant-like actions of pregnancy, and progesterone in Wistar rats forced to swim. Psychoneuroendocrinology 26:479–491

    Article  PubMed  CAS  Google Scholar 

  • Molina-Hernandez M, Tellez-Alcantara NP, Garcia JP, Lopez JI, Jaramillo MT (2004) Synergistic interaction between ketoconazole and several antidepressant drugs with allopregnanolone treatments in ovariectomized Wistar rats forced to swim. Prog Neuropsychopharmacol Biol Psychiatry 28:1337–1345

    Article  PubMed  CAS  Google Scholar 

  • Molina-Hernandez M, Tellez-Alcantara NP, Garcia JP, Lopez JI, Jaramillo MT (2005) Antidepressant-like actions of intra-accumbens infusions of allopregnanolone in ovariectomized Wistar rats. Pharmacol Biochem Behav 80:401–409

    Article  PubMed  CAS  Google Scholar 

  • Murphy PBE, Steinberg SI, Hu FY, Allison CM (2001) Neuroactive ring A-reduced metabolites of progesterone in human plasma during pregnancy: elevated levels of 5 alpha-dihydroprogesterone in depressed patients during the latter half of pregnancy. J Clin Endocrinol Metab 86:5981–5987

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34:13–25

    Article  PubMed  CAS  Google Scholar 

  • O'Connor WT, Earley B, Leonard BE (1985) Antidepressant properties of the triazolobenzodiazepines alprazolam and adinazolam: studies in the olfactory bulbectomized rat model of depression. Brain J Clin Pharmacol 19:45S–56S

    Google Scholar 

  • Pacher P, Kohegyi E, Kecskemeti V, Furst S (2001) Current trends in the development of new antidepressants. Curr Med Chem 8:89–100

    PubMed  CAS  Google Scholar 

  • Padberg F, di Michele F, Zwanzger P, Romeo E, Bernardi G, Schuele C, Baghai TC, Ella R, Pasini A, Rupprecht R (2002) Plasma concentrations of neuroactive steroids before and after repetitive transcranial magnetic stimulation (rTMS) in major depression. Neuropsychopharmacology 27:874–878

    Article  PubMed  CAS  Google Scholar 

  • Page ME, Detke MJ, Dalvi A, Kirby LG, Lucki I (1999) Serotonergic mediation of the effects of fluoxetine, but not desipramine, in the rat forced swimming test. Psychopharmacology 147:162–167

    Article  PubMed  CAS  Google Scholar 

  • Paul SM, Purdy RH (1992) Neuroactive steroids. FASEB J 6:2311–2322

    PubMed  CAS  Google Scholar 

  • Pause BM, Miranda A, Goeder R, Aldenhoff JB, Ferstl R (2001) Reduced olfactory performance in patients with major depression. J Psychiatr Res 35:271–277

    Article  PubMed  CAS  Google Scholar 

  • Penning TM, Burczynski ME, Jez JM, Hung CF, Lin HK, Ma H, Moore M, Palackal N, Ratnam K (2000) Human 3alpha-hydroxysteroid dehydrogenase isoforms (AKR1C1–AKR1C4) of the aldo–keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochem J 351:67–77

    Article  PubMed  CAS  Google Scholar 

  • Petit-Demouliere B, Chenu F, Bourin M (2005) Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology 177:245–255

    Article  PubMed  CAS  Google Scholar 

  • Pinna G, Uzunova V, Matsumoto K, Puia G, Mienville J-M, Costa E, Guidotti A (2000) Brain allopregnanolone regulates the potency of the GABAA receptor agonist muscimol. Neuropharmacology 39:440–448

    Article  PubMed  CAS  Google Scholar 

  • Pinna G, Dong E, Matsumoto K, Costa E, Guidotti A (2003) In socially isolated mice, the reversal of brain allopregnanolone down-regulation mediates the anti-aggressive action of fluoxetine. Proc Natl Acad Sci U S A 100:2035–2040

    Article  PubMed  CAS  Google Scholar 

  • Pinna G, Costa E, Guidotti A (2004) Fluoxetine and norfluoxetine stereospecifically facilitate pentobarbital sedation by increasing neurosteroids. Proc Natl Acad Sci U S A 101:6222–6225

    Article  PubMed  CAS  Google Scholar 

  • Pisu MG, Serra M (2004) Neurosteroids and neuroactive drugs in mental disorders. Life Sci 74:3181–3197

    Article  PubMed  CAS  Google Scholar 

  • Purdy RH, Moore PH Jr, Rao PN, Hagino N, Yamaguchi T, Schmidt P, Rubinow DR, Morrow AL, Paul SM (1990) Radioimmunoassay of 3 alpha-hydroxy-5 alpha-pregnan-20-one in rat and human plasma. Steroids 55:290–296

    Article  PubMed  CAS  Google Scholar 

  • Reddy DS (2002) The clinical potentials of endogenous neurosteroids. Drugs Today 38:465–485

    Article  PubMed  CAS  Google Scholar 

  • Reddy DS (2003a) Is there a physiological role for the neurosteroid THDOC in stress-sensitive conditions? Trends Pharmacol Sci 24:103–106

    Article  PubMed  CAS  Google Scholar 

  • Reddy DS (2003b) Pharmacology of endogenous neuroactive steroids. Crit Rev Neurobiol 15:197–234

    Article  PubMed  CAS  Google Scholar 

  • Romeo E, Stroehle A, Spalletta G, di Michele F, Hermann B, Holsboer F, Pasini A, Rupprecht R (1998) Effects of antidepressant treatment on neuroactive steroids in major depression. Am J Psychiatry 155:910–913

    PubMed  CAS  Google Scholar 

  • Rupprecht R (2003) Neuroactive steroids: mechanisms of action and neuropsychopharmacological properties. Psychoneuroendocrinology 28:139–168

    Article  PubMed  CAS  Google Scholar 

  • Rupprecht R, Holsboer F (1999a) Neuroactive steroids: mechanisms of action and neuropsychopharmacological perspectives. Trends Neurosci 22:410–416

    Article  PubMed  CAS  Google Scholar 

  • Rupprecht R, Holsboer F (1999b) Neuropsychopharmacological properties of neuroactive steroids. Steroids 64:83–91

    Article  PubMed  CAS  Google Scholar 

  • Rupprecht R, Stroehle A, Hermann B, di Michele F, Spalletta G, Pasini A, Holsboer F, Romeo E (1998) Neuroactive steroid concentrations following metyrapone administration in depressed patients and healthy volunteers. Biol Psychiatry 44:912–914

    Article  PubMed  CAS  Google Scholar 

  • Rupprecht R, di Michele F, Hermann B, Stroehle A, Lancel M, Romeo E, Holsboer F (2001) Neuroactive steroids: molecular mechanisms of action and implications for neuropsychopharmacology. Brain Res Rev 37:59–67

    Article  PubMed  CAS  Google Scholar 

  • Schuele C, di Michele F, Baghai T, Romeo E, Bernardi G, Zwanzger P, Padberg F, Pasini A, Rupprecht R (2003) Influence of sleep deprivation on neuroactive steroids in major depression. Neuropsychopharmacology 28:577–581

    Article  PubMed  CAS  Google Scholar 

  • Schuele C, di Michele F, Baghai T, Romeo E, Bernardi G, Zwanzger P, Padberg F, Pasini A, Rupprecht R (2004) Neuroactive steroids in responders and nonresponders to sleep deprivation. Ann N Y Acad Sci 1032:216–223

    Article  PubMed  CAS  Google Scholar 

  • Serra M, Pisu MG, Littera M, Papi G, Sanna E, Tuveri F, Usala L, Purdy RH, Biggio G (2000) Social isolation-induced decreases in both the abundance of neuroactive steroids and GABAA receptor function in rat brain. J Neurochem 75:732–740

    Article  PubMed  CAS  Google Scholar 

  • Serra M, Pisu MG, Muggironi M, Parodo V, Papi G, Sari R, Dazzi L, Spiga F, Purdy RH, Biggio G (2001) Opposite effects of short- versus long-term administration of fluoxetine on the concentrations of neuroactive steroids in rat plasma and brain. Psychopharmacology 158:48–54

    Article  PubMed  CAS  Google Scholar 

  • Stoffel-Wagner B (2001) Neurosteroid metabolism in the human brain. Eur J Endocrinol 145:669–679

    Article  PubMed  CAS  Google Scholar 

  • Stroehle A, Romeo E, Hermann B, Pasini A, Spalletta G, di Michele F, Holsboer F, Rupprecht R (1999) Concentrations of 3α-reduced neuroactive steroids and their precursors in plasma of patients with major depression and after clinical recovery. Biol Psychiatry 45:274–277

    Article  PubMed  Google Scholar 

  • Stroehle A, Pasini A, Romeo E, Hermann B, Spalletta G, di Michele F, Holsboer F, Rupprecht R (2000) Fluoxetine decreases concentrations of 3 alpha, 5 alpha-tetrahydrodeoxycorticosterone (THDOC) in major depression. J Psychiatr Res 34:183–186

    Article  PubMed  Google Scholar 

  • Tichomirowa MA, Keck ME, Schneider HJ, Paez-Pereda M, Renner U, Holsboer F, Stella GK (2005) Endocrine disturbances in depression. J Endocrinol Invest 28:89–99

    PubMed  CAS  Google Scholar 

  • Trauger JW, Jiang A, Stearns BA, LoGrasso PV (2002) Kinetics of allopregnanolone formation catalyzed by human 3 alpha-hydroxysteroid dehydrogenase type III (AKR1C2). Biochemistry 41:13451–13459

    Article  CAS  Google Scholar 

  • Uzunov DP, Cooper TB, Costa E, Guidotti A (1996) Fluoxetine-elicited changes in brain neurosteroid content measured by negative ion mass fragmentography. Proc Natl Acad Sci U S A 93:12599–12604

    Article  PubMed  CAS  Google Scholar 

  • Uzunova V, Sheline Y, Davis JM, Rasmusson A, Uzunov DP, Costa E, Guidotti A (1998) Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine. Proc Natl Acad Sci U S A 95:3239–3244

    Article  PubMed  CAS  Google Scholar 

  • Uzunova V, Ceci M, Kohler C, Uzunov DP, Wrynn AS (2003) Region-specific dysregulation of allopregnanolone brain content in the olfactory bulbectomized rat model of depression. Brain Res 976:1–8

    Article  PubMed  CAS  Google Scholar 

  • Uzunova V, Wrynn AS, Kinnunen A, Ceci M, Kohler C, Uzunov DP (2004) Chronic antidepressants reverse cerebrocortical allopregnanolone decline in the olfactory-bulbectomized rat. Eur J Pharmacol 486:31–34

    Article  PubMed  CAS  Google Scholar 

  • van Broekhoven F, Verkes RJ (2003) Neurosteroids in depression: a review. Psychopharmacology 165:97–110

    PubMed  Google Scholar 

  • Wang MD, Wahlstrom G, Backstrom T (1997) The regional brain distribution of the neurosteroids pregnenolone and pregnenolone sulfate following intravenous infusion. J Steroid Biochem Mol Biol 62:299–306

    Article  PubMed  CAS  Google Scholar 

  • Wong ML, Licinio J (2001) Research and treatment approaches to depression. Nat Rev Neurosci 2:343–351

    Article  PubMed  CAS  Google Scholar 

  • Wong ML, Licinio J (2004) From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nat Rev Drug Discov 3:136–151

    Article  PubMed  CAS  Google Scholar 

  • Zorumski CF, Mennerick S, Isenberg KE, Covey DF (2000) Potential clinical use of neuroactive steroids. Curr Opin Investig Drugs 1:360–369

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We are greatly indebted to Dr. John F. Cryan (Neuroscience Research, Novartis Institutes for BioMedical Research, Novartis Pharma AG) for carefully reading our manuscript and for his helpful suggestions and constructive criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doncho P. Uzunov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uzunova, V., Sampson, L. & Uzunov, D.P. Relevance of endogenous 3α-reduced neurosteroids to depression and antidepressant action. Psychopharmacology 186, 351–361 (2006). https://doi.org/10.1007/s00213-005-0201-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0201-6

Keywords

Navigation