Skip to main content
Log in

Dysfunction of ventral striatal reward prediction in schizophrenic patients treated with typical, not atypical, neuroleptics

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rational

Clinical studies in patients with schizophrenia suggest that atypical neuroleptics are more effective than typical neuroleptics in reducing negative symptoms including apathy and anhedonia. Dysfunction of the dopaminergic reward system may contribute to negative symptoms in schizophrenia.

Objective

We used functional magnetic resonance imaging to assess the blood oxygen level dependency response in the ventral striatum of medicated schizophrenics and healthy control subjects during reward anticipation.

Methods

Twenty schizophrenics [ten medicated with typical (e.g., haloperidol) and ten with atypical (e.g., olanzapine and risperidone) neuroleptics] and ten age-matched healthy volunteers participated in an incentive monetary delay task in which visual cues predicted that a rapid response to a subsequent target stimulus would result either in monetary gain or no consequence.

Results

Healthy volunteers and schizophrenics treated with atypical neuroleptics showed ventral striatal activation in response to reward-indicating cues, but schizophrenics treated with typical neuroleptics did not. In patients treated with typical neuroleptics, decrease in activation of the left ventral striatum was correlated with the severity of negative symptoms.

Conclusions

Failure to activate the ventral striatum during reward anticipation was previously associated with the severity of negative symptoms in schizophrenia and was also found in schizophrenics treated with typical neuroleptics in this study. Significant blunting of ventral striatal activation was not observed in patients treated with atypical neuroleptics, which may reflect the improved efficacy of these drugs in treating negative symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akhondzadeh S (2001) The 5-HT hypothesis of schizophrenia. IDrugs 4:295–300

    PubMed  CAS  Google Scholar 

  • Andreasen NC (1990) Positive and negative symptoms: historical and conceptual aspects. Mod Probl Pharmacopsychiatry 24:1–42

    PubMed  CAS  Google Scholar 

  • Bertolino A, Caforio G, Blasi G, De CM, Latorre V, Petruzzella V, Altamura M, Nappi G, Papa S, Callicott JH, Mattay VS, Bellomo A, Scarabino T, Weinberger DR, Nardini M (2004) Interaction of COMT (Val(108/158)Met) genotype and olanzapine treatment on prefrontal cortical function in patients with schizophrenia. Am J Psychiatry 161:1798–1805

    Article  PubMed  Google Scholar 

  • Breiter HC, Aharon I, Kahneman D, Dale A, Shizgal P (2001) Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron 30:619–639

    Article  PubMed  CAS  Google Scholar 

  • Callicott JH, Mattay VS, Verchinski BA, Marenco S, Egan MF, Weinberger DR (2003) Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. Am J Psychiatry 160:2209–2215

    Article  PubMed  Google Scholar 

  • Cohen MS (1997) Parametric analysis of fMRI data using linear systems methods. Neuroimage 6:93–103

    Article  PubMed  CAS  Google Scholar 

  • Crespo-Facorro B, Paradiso S, Andreasen NC, O’Leary DS, Watkins GL, Ponto LL, Hichwa RD (2001) Neural mechanisms of anhedonia in schizophrenia: a PET study of response to unpleasant and pleasant odors. JAMA 286:427–435

    Article  PubMed  CAS  Google Scholar 

  • de Haan L, Lavalaye J, van BM, van NL, Booij J, van AT, Linszen D (2004) Subjective experience and dopamine D2 receptor occupancy in patients treated with antipsychotics: clinical implications. Can J Psychiatry 49:290–296

    PubMed  Google Scholar 

  • Farde L, Nordstrom AL, Wiesel FA, Pauli S, Halldin C, Sedvall G (1992) Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry 49:538–544

    PubMed  CAS  Google Scholar 

  • First MB, Spitzer RL, Gibbon M, Williams J (2001) Structured Clinical Interview for DSM-IV-TR axis I disorders, research version, patient edition with Psychotic Screen (SCID-I/P W/ PSY SCREEN). New York State Psychiatric Institute, New York

    Google Scholar 

  • Fox PT, Lancaster JL (2002) Opinion: mapping context and content: the BrainMap model. Nat Rev Neurosci 3:319–321

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RSJ (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210

    Article  Google Scholar 

  • Glick ID, Lemmens P, Vester-Blokland E (2001) Treatment of the symptoms of schizophrenia: a combined analysis of double-blind studies comparing risperidone with haloperidol and other antipsychotic agents. Int Clin Psychopharmacol 16:265–274

    Article  PubMed  CAS  Google Scholar 

  • Goldstein RZ, Volkow ND (2002) Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159:1642–1652

    Article  PubMed  Google Scholar 

  • Heinz A, Knable MB, Coppola R, Gorey JG, Jones DW, Lee KS, Weinberger DR (1998) Psychomotor slowing, negative symptoms and dopamine receptor availability—an IBZM SPECT study in neuroleptic-treated and drug-free schizophrenic patients. Schizophr Res 31:19–26

    Article  PubMed  CAS  Google Scholar 

  • Honey GD, Bullmore ET, Soni W, Varatheesan M, Williams SC, Sharma T (1999) Differences in frontal cortical activation by a working memory task after substitution of risperidone for typical antipsychotic drugs in patients with schizophrenia. Proc Natl Acad Sci U S A 96:13432–13437

    Article  PubMed  CAS  Google Scholar 

  • Juckel G, Schlagenhauf F, Koslowski M, Wustenberg T, Villringer A, Knutson B, Wrase J, Heinz A (2006) Dysfunction of ventral striatal reward prediction in schizophrenia. Neuroimage 29:409–416

    Article  PubMed  Google Scholar 

  • Kapur S, Seeman P (2001) Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics? A new hypothesis. Am J Psychiatry 158:360–369

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Barsoum SC, Seeman P (2000) Dopamine D(2) receptor blockade by haloperidol. (3)H-raclopride reveals much higher occupancy than EEDQ. Neuropsychopharmacology 23:595–598

    Article  PubMed  CAS  Google Scholar 

  • Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13:261–276

    PubMed  CAS  Google Scholar 

  • Knutson B, Adams CM, Fong GW, Hommer D (2001) Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 21:RC159

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Li Z, Kaneda Y, Ichikawa J (2003) Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 27:1159–1172

    Article  PubMed  CAS  Google Scholar 

  • Nielsen FA, Hansen LA (2002) Automatic anatomical labeling of Talairach coordinates and generation of volumes of interest via the BrainMap database. Neuroimage 16(2)

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Prosser ES, Csernansky JG, Kaplan J, Thiemann S, Becker TJ, Hollister LE (1987) Depression, parkinsonian symptoms, and negative symptoms in schizophrenics treated with neuroleptics. J Nerv Ment Dis 175:100–105

    Article  PubMed  CAS  Google Scholar 

  • Sawa A, Snyder SH (2003) Schizophrenia: neural mechanisms for novel therapies. Mol Med 9:3–9

    PubMed  Google Scholar 

  • Wise RA (1982) Neuroleptics and operant-behavior—the anhedonia hypothesis. Behav Brain Sci 5:39–53

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the German Research Foundation (Deutsche Forschungs-gemeinschaft, HE 2597/4-2) and by investigator-initiated trials funded by Janssen-Cilag Germany and Lilly Germany. We declare that the experiments comply with the current laws of the country in which they were performed. Georg Juckel and Florian Schlagenhauf contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Heinz.

Additional information

Georg Juckel and Florian Schlagenhauf contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juckel, G., Schlagenhauf, F., Koslowski, M. et al. Dysfunction of ventral striatal reward prediction in schizophrenic patients treated with typical, not atypical, neuroleptics. Psychopharmacology 187, 222–228 (2006). https://doi.org/10.1007/s00213-006-0405-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0405-4

Keywords

Navigation