Skip to main content
Log in

The acute effects of d-amphetamine and methamphetamine on attention and psychomotor performance

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

It is not clear how the deleterious effects of amphetamines on driving performance are mediated in terms of select cognitive processes.

Objectives

The current three separate experiments assessed the acute effects of an oral dose of either 0.42-mg/kg d-amphetamine, d,l-methamphetamine and d-methamphetamine on driving-related cognitive functions in a total of 60 healthy non-fatigued adults.

Materials and methods

Three separate repeated measures counterbalanced, double-blind, placebo-controlled designs were employed in which 20 volunteers completed two treatment conditions, either d-amphetamine, d,l-methamphetamine or d-methamphetamine and placebo. Performance was assessed on a range of attentional, psychomotor and perceptual speed tasks.

Results

Mean blood concentrations at 120-, 170- and 240-min postdrug administration were 83, 98 and 96 ng/ml, respectively, for d-amphetamine, 90, 95 and 105 ng/ml, respectively, for d,l-methamphetamine and 72, 67 and 59 ng/ml, respectively, for d-methamphetamine. The amphetamines, in general, improved various aspects of attention (Digit Vigilance, Digit Symbol Substitution Test and Movement Estimation Performance) with some evidence to suggest possible enhancement in psychomotor functioning (Tracking ability) and perceptual speed (Inspection Time).

Conclusions

The current series of studies primarily provides evidence of low-level amphetamine-related enhancement of function; however, it also provides evidence of less conservative movement estimation that might contribute to amphetamine-related road fatalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Angrist B, Corwin J, Bartlik B, Cooper T (1987) Early pharmacokinetics and clinical effects of oral d-amphetamine in normal subjects. Biol Psychiatry 22:1357–1368

    Article  PubMed  CAS  Google Scholar 

  • Asghar SJ, Tanay VAMI, Baker GB, Greenshaw A, Silverstone PH (2003) Relationship of plasma amphetamine levels to physiological, subjective, cognitive and biochemical measures in healthy volunteers. Hum Psychopharmacol 18:291–299

    Article  PubMed  CAS  Google Scholar 

  • Baddeley A, Logie R (1986) Dementia and working memory. Q J Exp Psychol 38:603–618

    CAS  Google Scholar 

  • Bakshi VP, Geyer MA, Taaid N, Swerdlow NR (1995) A comparison of the effects of amphetamine, strychnine and caffeine on prepulse inhibition and latent inhibition. Behav Pharmacol 6:801–809

    Article  PubMed  CAS  Google Scholar 

  • Barch DM, Carter CS (2005) Amphetamine improves cognitive function in medicated individuals with schizophrenia and in healthy volunteers. Schizophr Res 77(1):43–58

    Article  PubMed  Google Scholar 

  • Belleville JP, Dorey F, Bellville JW (1979) Effects of nefopam on visual tracking. Clin Pharmacol Ther 26(4):457–463

    PubMed  CAS  Google Scholar 

  • Blumenthal TD, Schicatano EJ, Chapman JG, Norris CM, Ergenzinger ER (1996) Prepulse effects on magnitude estimation of startle-eliciting stimuli and startle responses. Percept Psychophys 58(1):73–80

    PubMed  CAS  Google Scholar 

  • Brauer LH, Ambre J, de Wit H (1996) Acute tolerance to subjective but not cardiovascular effects of d-amphetamine in normal healthy men. J Clin Psychopharmacol 16(1):72–76

    Article  PubMed  CAS  Google Scholar 

  • Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A, Weinberger DR, Weisenfeld N, Malhotra AK, Eckelman WC, Pickar D (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci 94(6):2569–2574

    Article  PubMed  CAS  Google Scholar 

  • Cami J, Farre M, Mas M, Roset P, Poudevida S, Mas A, San L, de la Torre R (2000) Human pharmacology of 3,4-methylenedioxymeth-amphetamine (“Ecstasy”): psychomotor performance and subjective effects. J Clin Psychopharmacol 20(4):455–466

    Article  PubMed  CAS  Google Scholar 

  • Comer SD, Haney M, Foltin RW, Fischman MW (1996) Amphetamine self-administration by humans: modulation by contingencies associated with task performance. Psychopharmacology 127:39–46

    Article  PubMed  CAS  Google Scholar 

  • Comer SD, Hart CL, Ward AS, Haney M, Foltin RW, Fischman MW (2001) Effects of repeated oral methamphetamine administration in humans. Psychopharmacology 155:397–404

    Article  PubMed  CAS  Google Scholar 

  • de Wit H, Crean J, Richards JB (2000) Effects of d-amphetamine and ethanol on a measure of behavioural inhibition in humans. Behav Neurosci 114(4):830–837

    Article  PubMed  Google Scholar 

  • de Wit H, Enggasser JL, Richards JB (2002) Acute administration of d-amphetamine decreases impulsivity in healthy volunteers. Neuropsychopharmacology 27(5):813–825

    Article  PubMed  Google Scholar 

  • Deary IJ, Stough C (1996) Intelligence and inspection time: achievements, prospects, and problems. Am Psychol 51(6):599–608

    Article  Google Scholar 

  • Drevets WC, Gautier C, Price JC, Kupfer DJ, Kinahan PE, Grace AA, Price JL, Mathis CA (2001) Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol Psychiatry 49(2):81–96

    Article  PubMed  CAS  Google Scholar 

  • Drummer OH, Gerostamoulos J, Batziris H, Chu M, Caplehorn JRM, Robertson MD, Swann P (2003a) The incidence of drugs in drivers killed in Australian road traffic crashes. Forensic Sci Int 134:154–162

    Article  PubMed  Google Scholar 

  • Drummer OH, Gerostamoulos J, Batziris H, Chu M, Caplehorn J, Robertson MD, Swann P (2003b) The involvement of drugs in drivers of motor vehicles killed in Australian road traffic crashes. Accident Anal Prev 943:1–10

    Google Scholar 

  • Easterbrook JA (1959) The effect of emotion on cue utilization and the organisation of behaviour. Psychol Rev 66(3):183–201

    Article  PubMed  CAS  Google Scholar 

  • Feldman RS, Meyer JS, Quenzer LF (1997) Principles of neuropsychopharmacology, Sinauer, Sunderland, Massachusetts

  • Fillmore MT, Kelly TH, Martin CA (2005) Effects of d-amphetamine in human models of information processing and inhibitory control. Drug Alcohol Depend 77:151–159

    Article  PubMed  CAS  Google Scholar 

  • Fleming K, Bigelow LB, Weinberger DR, Goldberg TE (1995) Neuropsychological effects of amphetamine may correlate with personality characteristics. Psychopharmacol Bull 31(2):357–362

    PubMed  CAS  Google Scholar 

  • Foltin RW, Evans SM (1993) Performance effects of drugs of abuse: a methodological survey. Hum Psychopharmacol 8:9–19

    Article  Google Scholar 

  • Giovagnoli AR, Del Pesce M, Mascheroni S, Simonceli M, Laiacona M, Captitani E (1996) Trail making test: normative values from 287 normal adult controls. Ital J Neurol Sci 17(4):305–309

    Article  PubMed  CAS  Google Scholar 

  • Halliday R, Naylor H, Brandeis D, Callaway E, Yano L, Herzig K (1994) The effect of d-amphetamine, clonidine, and yohimbine on human information processing. Psychophysiology 31:331–337

    Article  PubMed  CAS  Google Scholar 

  • Hurst PM (1962) The effects of d-amphetamine on risk taking. Psychopharmacologia 3:283–290

    Article  PubMed  CAS  Google Scholar 

  • Hurst PM (1987) Amphetamines and driving. Alcohol Drugs Driv 3(1):13–16

    Google Scholar 

  • Hurst PM, Weidner MF, Radlow R (1967) The effects of amphetamines upon judgement and decisions. Psychopharmacologia 1(5):397–404

    Article  Google Scholar 

  • Hutchison KE, Swift R (1999) Effect of d-amphetamine on prepulse inhibition of the startle reflex in humans. Psychopharmacology 143:394–400

    Article  PubMed  CAS  Google Scholar 

  • Johnson BA, Ait-Daoud N, Wells LT (2000) Effects of isradipine, a dihydropyridine-class calcium channel antagonist, on d-methamphetamine-induced cognitive and physiological changes in humans. Neuropsychopharmacology 22(5):504–512

    Article  PubMed  CAS  Google Scholar 

  • Kelly TH, Foltin RW, Fischman MW (1991) The effects of repeated amphetamine exposure on multiple measures of human behaviour. Pharmacol Biochem Behav 38:417–426

    Article  PubMed  CAS  Google Scholar 

  • Kelly TH, Foltin RW, Emurian CS, Fischman MW (1993) Performance-based testing for drugs of abuse: dose and time profiles of marijuana, amphetamine, alcohol, and diazepam. J Anal Toxicol 17:264–272

    PubMed  CAS  Google Scholar 

  • Kennedy RS, Odenheimer RC, Baltzley DR, Dunlap WP, Wood CD (1990) Differential effects of scopolamine and amphetamine on microcomputer-based performance tests. Aviat Space Environ Med 61(7):615–621

    PubMed  CAS  Google Scholar 

  • Koelega HS (1993) Stimulant drugs and vigilance performance: a review. Psychopharmacology 111:1–16

    Article  PubMed  CAS  Google Scholar 

  • Kumari V, Corr PJ, Mulligan OF, Cotter PA, Checkley SA, Gray JA (1997) Effects of acute administration of d-amphetamine and haloperidol on procedural learning in man. Psychopharmacology 129:271–276

    Article  PubMed  CAS  Google Scholar 

  • Kumari V, Mulligan OF, Cotter PA, Poon L, Toone BK, Checkley SA, Gray JA (1998) Effects of single oral administrations of haloperidol and d-amphetamine on prepulse inhibition of the acoustic startle reflex in healthy male volunteers. Behav Pharmacol 9:567–576

    Article  PubMed  CAS  Google Scholar 

  • Kupietz SS, Bartlik B, Angrist B, Winsberg BG (1985) Psychostimulant plasma concentration and learning performance. J Clin Psychopharmacol 5(5):293–295

    Article  PubMed  CAS  Google Scholar 

  • Lamers CTJ, Ramaekers JG, Muntejewerff ND, Sikkema KL, Samyn N, Read NL, Brookhuis KA, Riedal WJ (2003) Dissociable effects of a single dose of ecstasy (MDMA) on psychomotor skills and attentional performance. J Psychopharmacol 17(4):379–387

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A, van Dyck CH, Rosenblatt W, Zea-Ponce Y, Zoghbi SS, Baldwin RM, Charney DS, Hoffer PB, Kung HF (1995) SPECT imaging of striatal dopamine release after amphetamine challenge. J Nucl Med 36(7):1182–1190

    PubMed  CAS  Google Scholar 

  • Logan BK (1996) Methamphetamine and driving impairment. J Forensic Sci 41(3):457–464

    PubMed  CAS  Google Scholar 

  • Logan BK (2002) Methamphetamine—effects on human performance and behaviour. Forensic Sci Rev 14(1/2):133–151

    Google Scholar 

  • Logan BK, Fligner CL, Haddix T (1998) Cause and manner of death in fatalities involving methamphetamine. J Forensic Sci 43(1):28–34

    PubMed  CAS  Google Scholar 

  • Magill RA, Waters WF, Bray GA, Volaufova J, Smith SR, Lieberman HR, McNevin N, Ryan DH (2003) Effects of tyrosine, phentermine, caffeine, d-amphetamine, and placebo on cognitive and motor performance deficits during sleep deprivation. Nutr Neurosci 6(4):237–246

    Article  PubMed  CAS  Google Scholar 

  • Mattay VS, Callicott JH, Bertolino A, Heaton I, Frank JA, Coppola R, Berman KF, Goldberg TE, Weinberger DR (2000) Effects of dextroamphetamine on cognitive performance and cortical activation. NeuroImage 12:268–275

    Article  PubMed  CAS  Google Scholar 

  • McKetin R, Ward PB, Catts SV, Mattick RP, Bell JR (1999) Changes in auditory selective attention and event-related potentials following oral administration of d-amphetamine in humans. Neuropsychopharmacology 21(3):380–390

    Article  PubMed  CAS  Google Scholar 

  • McNair DM, Lorr M, Droppleman LF (1992) Profile of mood states revised manual. Edits/Educational and Industrial Testing Service, San Diego, California

  • Mills KC, Parkman KM, Smith GA, Rosendahl F (1999) Prediction of driving performance through computerized testing: high-risk driver assessment and training. Transp Res Rec 1689:18–24

    Article  Google Scholar 

  • Mills KC, Spruill SE, Kanne RW, Parkman KM, Zhang Y (2001) The influence of stimulants, sedatives, and fatigue on tunnel vision: risk factors for driving and piloting. Hum Factors 43(2):310–327

    Article  PubMed  CAS  Google Scholar 

  • Moeller MR, Kraemer T (2002) Drugs of abuse monitoring in blood for control of driving under the influence of drugs. Ther Drug Monit 24:210–221

    Article  PubMed  CAS  Google Scholar 

  • Pickworth WB, Rohrer MS, Fant RV (1997) Effects of abused drugs on psychomotor performance. Exp Clin Psychopharmacol 5(3):235–241

    Article  PubMed  CAS  Google Scholar 

  • Rapoport JL, Buchsbaum MS, Weingertner H (1980) Dextroamphetamine: cognitive and behavioural effects in normal and hyperactive boys and normal adult males. Psychopharmacol Bull 16(1):21–23

    PubMed  CAS  Google Scholar 

  • Read NL, Ward NJ, Parkes AM (2000) The role of dynamic tests in assessing the fitness to drive of healthy and cognitively impaired elderly. J Traffic Med 28:34S–35S

    Google Scholar 

  • Silber BY, Papafotiou K, Croft RJ, Ogden E, Swann P, Stough C (2005) The effects of dexamphetamine on simulated driving performance. Psychopharmacology 179:536–543

    Article  PubMed  CAS  Google Scholar 

  • Solomon PR, Crider A, Winkelman JW, Turi A, Kamer RM, Kaplan LJ (1981) Disrupted latent inhibition in the rat with chronic amphetamine or haloperidol-induced supersensitivity: relationship to schizophrenic attention disorder. Biol Psychiatry 16:519–537

    PubMed  CAS  Google Scholar 

  • Swerdlow NR (1996) Cortico-striatal substrates of cognitive, motor and sensory gating: speculations and implications for psychological function and dysfunction. In: Panksepp J (ed) Advances in biological psychiatry, vol. 2. JAI, Greenwich, Conn, pp 179–208

    Google Scholar 

  • Swerdlow NR, Geyer MA (1998) Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia. Schizophr Bull 24(2):285–301

    PubMed  CAS  Google Scholar 

  • Swerdlow NR, Stephany N, Wasserman LC, Talledo J, Shoemaker J, Auerbach PP (2003) Amphetamine effects on prepulse inhibition across-species: replication and parametric extension. Neuropsychopharmacology 28:640–650

    Article  PubMed  CAS  Google Scholar 

  • Traffic Accident Commission (TAC), Victoria, Australia (2005) http://www.tacsafety.com.au/jsp/homepage/homejsp

  • Wachtel SR, de Wit H (1999) Subjective and behavioural effects of repeated d-amphetamine in humans. Behav Pharmacol 10:271–281

    Article  PubMed  CAS  Google Scholar 

  • Ward AS, Kelly TH, Foltin RW, Fischman MW (1997) Effects of d-amphetamine on task performance and social behaviour of humans in a residential laboratory. Exp Clin Psychopharmacol 5(2):130–136

    Article  PubMed  CAS  Google Scholar 

  • Ward N, Dye L, Dobson P, Read NL (2000) The effect of chronic cannabis consumption on time estimation and reproduction: implications for driving performance. In: Siedel H (ed) Proceedings of the ICADTS 2000 ICADTS, Stockhom

  • Wechsler D (1997) WAIS-III administration and scoring manual. The psychological cooperation, San Antonio, Texas

  • Weiner I, Lubow RE, Feldon J (1988) Disruption of latent inhibition by acute administration of low doses of amphetamine. Pharmacol Biochem Behav 30:871–878

    Article  PubMed  CAS  Google Scholar 

  • Wesnes KA, Simpson PM, Christmas L, Anand R, McClelland GR (1989) The effects of moclobemide on cognition. J Neural Transm Suppl 28:91–102

    PubMed  CAS  Google Scholar 

  • Williams LJ (1988) Tunnel vision or general interference? Cognitive load and attentional bias are both important. Am J Psychol 101(2):171–191

    Article  PubMed  CAS  Google Scholar 

  • Williams LJ (1995a) Peripheral target recognition and visual field narrowing in aviators and nonaviators. Int J Aviat Psychol 5(2):215–232

    Article  PubMed  CAS  Google Scholar 

  • Williams LJ (1995b) Visual field tunneling in aviators induced by memory demands. J Gen Psych 122(2):225–235

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was funded by a grant from VicRoads, Melbourne, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Y. Silber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silber, B.Y., Croft, R.J., Papafotiou, K. et al. The acute effects of d-amphetamine and methamphetamine on attention and psychomotor performance. Psychopharmacology 187, 154–169 (2006). https://doi.org/10.1007/s00213-006-0410-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0410-7

Keywords

Navigation