Skip to main content
Log in

The effect of acute tryptophan depletion on the BOLD response during performance monitoring and response inhibition in healthy male volunteers

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Serotonin (5-HT) was implicated in both clinical and experimental studies in flexible, goal-directed behavior. However, the way in which 5-HT manipulations affect brain activation patterns underlying different subprocesses of cognitive flexibility remains largely unknown.

Objectives

The aim of this study was to investigate the effect of a transient lowering of 5-HT on brain activation during performance monitoring and response inhibition.

Materials and methods

We used acute tryptophan depletion (ATD), a well-known method to reduce central 5-HT, to investigate the effect of a transient lowering of 5-HT on the blood-oxygen-level dependent (BOLD) response in an event-related functional MRI study. Thirteen healthy male volunteers performed a modified Go/NoGo task in a counterbalanced, placebo-controlled, within-subject design.

Results

ATD significantly lowered plasma tryptophan but did not affect mood and cognitive performance. ATD decreased the BOLD response in the dorsomedial prefrontal cortex (BA 8) during performance monitoring. ATD did not affect the BOLD response during response inhibition.

Conclusions

This study provides more evidence for the suggested role of 5-HT in performance monitoring. Because ATD studies have revealed inconsistent effects of ATD on performance and on brain activation, it was suggested that gender and personality traits are important variables to take into account for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Anderson IM, Richell RA, Bradshaw CM (2003) The effects of acute tryptophan depletion on probabilistic choice. J Psychopharmacol 17(1):3–7

    Article  PubMed  CAS  Google Scholar 

  • Asahi SOY, Okada G, Yamawaki S, Yokota N (2004) Negative correlation between right prefrontal activity during response inhibition and impulsiveness: an fMRI study. Eur Arch Psychiatry Clin Neurosci 254:245–251

    PubMed  Google Scholar 

  • Beats BC, Sahakian BJ, Levy R (1996) Cognitive performance in tests sensitive to frontal dysfunction in the elderly depressed. Psychol Med 26:591–603

    Article  PubMed  CAS  Google Scholar 

  • Biggio G, Fadda F, Fanni P, Tagliamonte A, Gessa G (1974) Rapid depletion of serum tryptophan, brain tryptophan, serotonin and 5 hydroxyindolacetic by a tryptophan-free diet. Life Sci 14:1321–1329

    Article  PubMed  CAS  Google Scholar 

  • Booij L, Van der Does W, Benkelfat C, Bremner JD, Cowen PJ, Fava M, Gillin C, Leyton M, Moore P, Smith KA, Van der Kloot WA (2002) Predictors of mood response to acute tryptophan depletion. A reanalysis. Neuropsychopharmacology 27(5):852–861

    Article  PubMed  CAS  Google Scholar 

  • Bremner JD, Innis RB, Salomon RM, Staib LH, Ng CK, Miller HL, Bronen RA, Krystal JH, Duncan J, Rich D, Price LH, Malison R, Dey H, Soufer R, Charney DS (1997) Positron emission tomography measurement of cerebral metabolic correlates of tryptophan depletion-induced depressive relapse. Arch Gen Psychiatry 54(4):364–374

    PubMed  CAS  Google Scholar 

  • Clark L, Roiser JP, Cools R, Rubinsztein DC, Sahakian BJ, Robbins TW (2005) Stop signal response inhibition is not modulated by tryptophan depletion or the serotonin transporter polymorphism in healthy volunteers: implications of the 5-HT theory of impulsivity. Psychopharmacology (Berl) 182(4):570–578

    Article  CAS  Google Scholar 

  • Cools R, Clark L, Owen AM, Robbins TW (2002) Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. J Neurosci 22(11):4563–4567

    PubMed  CAS  Google Scholar 

  • Cools R, Blackwell A, Clark L, Menzies L, Cox S, Robbins TW (2005a) Tryptophan depletion disrupts the motivational guidance of goal-directed behavior as a function of trait impulsivity. Neuropsychopharmacology 30(7):1362–1373

    PubMed  CAS  Google Scholar 

  • Cools R, Calder AJ, Lawrence AD, Clark L, Bullmore E, Robbins TW (2005b) Individual differences in threat sensitivity predict serotonergic modulation of amygdala response to fearful faces. Psychopharmacology (Berl) 180(4):670–679

    Article  CAS  Google Scholar 

  • Crean J, Richards JB, de Wit H (2002) Effect of tryptophan depletion on impulsive behavior in men with or without a family of history of alcoholism. Behav Brain Res 136:349–357

    Article  PubMed  CAS  Google Scholar 

  • Durston S, Thomas KM, Worden, MS, Yang Y, Casey BJ (2002) The effect of preceding context in inhibition: an event-related fMRI study. Neuroimage 16:449–453

    Article  PubMed  CAS  Google Scholar 

  • Elliott R, Sahakian BJ, Herrod JJ, Robbins TW, Paykel ES (1997) Abnormal response to negative feedback in unipolar depression: evidence for diagnosis specific impairment. J Neurol Neurosurg Psychiatry 63:74–82

    PubMed  CAS  Google Scholar 

  • Evers EA, Cools R, Clark L, van der Veen FM, Jolles J, Sahakian BJ, Robbins TW (2005) Serotonergic modulation of prefrontal cortex during negative feedback in probabilistic reversal learning. Neuropsychopharmacology 30(6):1138–1147

    Article  PubMed  CAS  Google Scholar 

  • Fadda F (2000) Tryptophan-free diets: a physiological tool to study brain serotonin function. News Physiol Sci 15:260–264

    PubMed  CAS  Google Scholar 

  • Fallgatter AJ, Merrmann MJ, Roemmler J, Ehlis AC, Wagener A, Heidrich A, Ortega G, Zeng Y, Lesch KP (2004) Allelic variation of serotonin transporter function modulates the brain electrical response for error processing. Neuropsychopharmacology 29(8):1506–1511

    Article  PubMed  CAS  Google Scholar 

  • Garavan H, Ross TJ, Stein EA (1999) Right hemispheric dominance of inhibitory control: an event-related functional MRI study. Proc Natl Acad Sci U S A 96(14):8301–8306

    Article  PubMed  CAS  Google Scholar 

  • Garavan H, Ross TJ, Murphy K, Roche RAP, Stein EA (2002) Dissociable executive functions in the dynamic control of behavior: inhibition, error detection, and correction. Neuroimage 17:1820–1829

    Article  PubMed  CAS  Google Scholar 

  • Garavan H, Ross TJ, Kaufman J, Stein EA (2003) A midline dissociation between error-processing and response-conflict monitoring. Neuroimage 20:1132–1139

    Article  PubMed  CAS  Google Scholar 

  • Hariri AR, Drabant EM, Weinberger DR (2006) Imaging genetics: perspectives from studies of genetically driven variation in serotonin function and corticolimbic affective processing. Biol Psychiatry (in press)

  • Harmer CJ, Rogers RD, Tunbridge E, Cowen PJ, Goodwin GM (2003) Tryptophan depletion decreases the recognition of fear in female volunteers. Psychopharmacology (Berl) 167(4):411–417

    CAS  Google Scholar 

  • Harrison AA, Everitt BJ, Robbins TW (1997) Central 5-HT depletion enhances impulsive responding without affecting the accuracy of attentional performance: interactions with dopaminergic mechanisms. Psychopharmacology (Berl) 133(4):329–342

    Article  CAS  Google Scholar 

  • Harrison AA, Everitt BJ, Robbins TW (1999) Central serotonin depletion impairs both the acquisition and performance of a symmetrically reinforced go/no-go conditional visual discrimination. Behav Brain Res 100(1–2):99–112

    Article  PubMed  CAS  Google Scholar 

  • Horacek J, Zavesicka L, Tintera J, Dockery C, Platilova V, Kopecek M, Spaniel F, Bubenikova V, Hoschl C (2005) The effect of tryptophan depletion on brain activation measured by fMRI during the Stroop test in healthy volunteers. Physiol Res 54

  • Horn N, Dolan M, Elliott R, Deakin JFW, Woodruff PWR (2003) Response inhibition and impulsivity: an fMRI study. Neuropsychologia 41:1959–1966

    Article  PubMed  CAS  Google Scholar 

  • Hornung J (2003) The human raphe nuclei and the serotonergic system. J Chem Neuroanat 26:331-343

    Article  PubMed  CAS  Google Scholar 

  • Kaiser S, Unger J, Kiefer M, Markela J, Mundt C, Weisbrod M (2003) Executive control deficit in depression: event-related potentials in a Go/NoGo task. Psychiatry Res 122:169–184

    Article  PubMed  Google Scholar 

  • Kelly AMC, Hester R, Murphy K, Javitt DC, Foxe JJ, Garavan H (2004) Prefrontal-subcortical dissociation underlying inhibitory control revealed by event-related fMRI. Eur J Neurosci 19:3105–3112

    Article  PubMed  Google Scholar 

  • Kringelbach ML, Rolls ET (2003) Neural correlates of rapid reversal learning in a simple model of human social interaction. Neuroimage 20:1371–1383

    Article  PubMed  Google Scholar 

  • LeMarquand DG, Pihl RO, Young SN, Tremblay RE, Seguin JR, Palmour RM, Benkelfat C (1998) Tryptophan depletion, executive functions, and disinhibition in aggressive, adolescent males. Neuropsychopharmacology 19(4):333–341

    Article  PubMed  CAS  Google Scholar 

  • LeMarquand DG, Benkelfat C, Pihl RO, Palmour RM, Young SN (1999) Behavioral disinhibition induced by tryptophan depletion in nonalcoholic young men with multigenerational family histories of paternal alcoholism. Am J Psychiatry 156(11):1771–1779

    PubMed  CAS  Google Scholar 

  • Liddle PF, Kiehl KA, Smith AM (2001) Event-related fMRI study of response inhibition. Hum Brain Mapp 12:100–109

    Article  PubMed  CAS  Google Scholar 

  • McNair DM, Lorr DM, Droppelman LF (1988) Manual for the profile of mood states. Educational and Industrial Testing Service, San Diego, CA

  • Menon V, Adleman NE, White CD, Glover GH, Reass AL (2001) Error-related brain activation during a Go/NoGo response inhibition task. Hum Brain Mapp 12:131–143

    Article  PubMed  CAS  Google Scholar 

  • Morris JS, Smith KA, Cowen PJ, Friston KJ, Dolan RJ (1999) Covariation of activity in habenula and dorsal raphe nuclei following tryptophan depletion. Neuroimage 10:163–172

    Article  PubMed  CAS  Google Scholar 

  • Murphy FC, Michael A, Robbins TW, Sahakian BJ (2003) Neuropsychological impairment in patients with major depressive disorder: the effects of feedback on task performance. Psychol Med 33(3):455–467

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa S, Benkelfat C, Young SN, Leyton M, Mzengeza S, De Montigny C, Blier P, Diksic M (1997) Differences between males and females in rates of serotonin synthesis in human brain. Proc Natl Acad Sci U S A 94:5308–5313

    Article  PubMed  CAS  Google Scholar 

  • Park SB, McShane RH, Young AH, Sahakian BJ, Robbins TW, Cowen PJ (1994) Tryptophan depletion in normal volunteers produces selective impairments in learning and memory. Neuropharmacology 33(3–4):575–588

    Article  PubMed  CAS  Google Scholar 

  • Psychological Software Tools (2002) E-Prime. http://www.pstnet.com

  • Rabitt PMA (1966) Errors and error correction in choice reaction tasks. J Exp Psychol 71:264–272

    Article  PubMed  Google Scholar 

  • Remijnse P, Nielen MM, Uylings HB, Veltman DJ (2005) Neural correlates of a reversal learning task with an affectively neutral baseline: an event-related fMRI study. Neuroimage 26(2):609–618

    Article  PubMed  Google Scholar 

  • Riedel WJ, Klaassen T, Deutz NEP, van Someren A, van Praag HM (1999) Tryptophan depletion in normal volunteers produces selective impairment in memory consolidation. Psychopharmacology 141:362–369

    Article  PubMed  CAS  Google Scholar 

  • Riedel W, Klaassen T, Schmitt JA (2002) Tryptophan, mood, and cognitive function. Brain Behav Immun 16(5):581–589

    Article  PubMed  CAS  Google Scholar 

  • Risch S, Nemeroff CB (1992) Neurochemical alterations of serotonergic neuronal systems in depression. J Clin Psychiatry 53(Suppl):3–7

    PubMed  Google Scholar 

  • Robbins T (2005) Chemistry of the mind: neurochemical modulation of prefrontal cortical function. J Comp Neurol 493(1):140–146

    Article  PubMed  CAS  Google Scholar 

  • Rogers R, Blackhaw AJ, Middleton HC, Matthews K, Hawtin H, Crowley C, Hopwood A, Wallace C, Deakin JFW, Sahakian BJ, Robbins TW (1999) Tryptophan depletion impairs stimulus-reward learning while methylphenidate disrupts attentional control in healthy young adults: implications for the monoaminergic basis of impulsive behaviour. Psychopharmacology (Berl) 146:482–491

    Article  CAS  Google Scholar 

  • Rogers R, Tunbridge EM, Bhagwagar Z, Drevets WC, Sahakian BJ, Carter CS (2003) Tryptophan depletion alters decision-making of healthy volunteers through altered processing of reward cues. Neuropsychopharmacology 28(1):153–162

    Article  PubMed  CAS  Google Scholar 

  • Rubia K, Smith AB, Brammer MJ, Taylor E (2003) Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage 20:351–358

    Article  PubMed  Google Scholar 

  • Rubia K, Lee F, Cleare AJ, Tunstall N, Fu CHY, Brammer M, McGuire P (2005) Tryptophan depletion reduces right inferior prefrontal activation during response inhibition in fast, event-related fMRI. Psychopharmacology (Berl) 179(4):791–803

    Article  CAS  Google Scholar 

  • Smith KA, Morris JS, Friston KJ, Cowen PJ, Dolan RJ (1999) Brain mechanisms associated with depressive relapse and associated cognitive impairment following acute tryptophan depletion. Br J Psychiatry 174:525–529

    Article  PubMed  CAS  Google Scholar 

  • Talbot P, Watson DR, Barrett SL, Cooper SJ (2005) Rapid tryptophan depletion improves decision-making cognition in healthy humans without affecting reversal learning or set shifting. Neuropsychopharmacology (in press)

  • Talbot PS, Cooper SJ (2006) Anterior cingulate and subgenual prefrontal blood flow changes following tryptophan depletion in healthy males. Neuropsychopharmacology (in press)

  • Van der Veen FM, Evers EA, van Deursen JA, Deutz NE, Backes WH, Schmitt JA (2006) Acute tryptophan depletion reduces activation in the right hippocampus during encoding in an episodic memory task. Neuroimage (in press)

  • Van Eijk HM, Rooyakkers DR, Deutz NE (1993) Rapid routine in amino acids in plasma by high-performance liquid chromatography with a 2–3 microns spherisorb ODS ll column. J Chromatogr 620:143–148

    Article  PubMed  Google Scholar 

  • Volz K, Schubotz RI, von Cramon DY (2004) Why am I unsure? Internal and external attributions of uncertainty dissociated by fMRI. Neuroimage 21(3):848–857

    Article  PubMed  Google Scholar 

  • Volz K, Schubotz RI, von Cramon DY (2005) Variants of uncertainty in decision making and their neural correlates. Brain Res Bull 67(5):403–412

    Article  PubMed  Google Scholar 

  • Walderhaug E, Lunde H, Nordvik JE, Landro NI, Refsum H, Magnusson A (2002) Lowering of serotonin by rapid tryptophan depletion increases impulsiveness in normal individuals. Psychopharmacology (Berl) 164:385–391

    Article  CAS  Google Scholar 

  • Williams WA, Shoaf SE, Hommer D, Rawlings R, Linnoila M (1999) Effects of acute tryptophan depletion on plasma and cerebrospinal fluid tryptophan and 5-hydroxyindoleacetic acid in normal volunteers. J Neurochem 72:1641–1647

    Article  PubMed  CAS  Google Scholar 

  • Winstanley CA, Theobald DEH, Dalley JW, Glennon JC, Robbins TW (2004) 5-HT2a and 5-HT2c receptor antagonists have opposing effects on a measure of impulsivity: interactions with global 5-HT depletion. Psychopharmacology (Berl) 2004 176(3–4):376–385

    Article  CAS  Google Scholar 

  • Young SN, Leyton M (2002) The role of serotonin in human mood and social interaction. Insight from altered tryptophan levels. Pharmacol Biochem Behav 71(4):857–865

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a TOP grant (No. 912-02-050) from ZonMW-NWO. This study complies with the Dutch laws for human research and was approved by the Medical Ethics Committee of the Maastricht University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth A. T. Evers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evers, E.A.T., van der Veen, F.M., van Deursen, J.A. et al. The effect of acute tryptophan depletion on the BOLD response during performance monitoring and response inhibition in healthy male volunteers. Psychopharmacology 187, 200–208 (2006). https://doi.org/10.1007/s00213-006-0411-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0411-6

Keywords

Navigation