Skip to main content
Log in

Cannabinoid CB1 antagonists and dopamine antagonists produce different effects on a task involving response allocation and effort-related choice in food-seeking behavior

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Cannabinoid CB1 antagonists/inverse agonists suppress food-motivated behaviors and are being evaluated as potential appetite suppressants. It has been suggested that the effects of CB1 antagonism on food motivation could be related to actions on mesolimbic dopamine (DA). If this were true, then the effects of interference with cannabinoid CB1 transmission should closely resemble the effects of interference with DA transmission.

Objective

To directly compare the effects of DA antagonists with those of CB1 antagonists/inverse agonists, the present studies employed a concurrent lever-pressing/chow-intake procedure. With this task, interference with DA transmission shifts choice behavior such that lever pressing for a preferred food is decreased but chow intake is increased.

Results

Rats treated with IP injections of the DA D1 antagonist SCH39166 (ecopipam; 0.05–0.2 mg/kg) or the D2 antagonist eticlopride (0.025–0.1 mg/kg) showed substantial decreases in lever pressing and concomitant increases in chow consumption. In contrast, IP administration of the CB1 neutral antagonist AM4113 (4.0–16.0 mg/kg) or the CB1 antagonist/inverse agonist AM251 (2.0–8.0 mg/kg) decreased operant responding for pellets, but there was no corresponding increase in chow intake.

Conclusions

These effects of CB1 antagonists/inverse agonists were similar to those produced by the appetite suppressant fenfluramine and by prefeeding. In contrast, low doses of DA antagonists leave primary food motivation intact, but shift behaviors toward food reinforcers that can be obtained with lower response costs. These results suggest that the effects of interference with CB1 transmission are readily distinguishable from those of reduced DA transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aberman JE, Salamone JD (1999) Nucleus accumbens dopamine depletions make rats more sensitive to high ratio requirements do not affect primary food reinforcement. Neuroscience 92:545–552

    Article  PubMed  CAS  Google Scholar 

  • Aberman JE, Ward SJ, Salamone JD (1998) Effects of dopamine antagonists and accumbens dopamine depletions on time-constrained progressive ratio performance. Pharmacol Biochem Behav 61:341–348

    Article  PubMed  CAS  Google Scholar 

  • Alburges ME, Hunt ME, McQuade RD, Wamsley JK (1992) D1-receptor antagonists: comparison of [3H]SCH39166 to [3H]SCH23390. J Chem Neuroanat 5:357–366

    Article  PubMed  CAS  Google Scholar 

  • Aparicio C (1998) Assessing haloperidol in rats with the barrier choice paradigm. Suma Psicol 5:1–20 (article in Spanish)

    Google Scholar 

  • Arnone M, Maruani J, Chaperon F, Thiébot M-H, Poncelet M, Soubrié P, Le Fur G (1997) Selective inhibition of sucrose and ethanol intake by SR 141716, an antagonist of central cannabinoid (CB1) receptors. Psychopharmacology 132:104–106

    Article  PubMed  CAS  Google Scholar 

  • Baldo BA, Kelley AE (2007) Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding. Psychopharmacology (Berl) 191:439–459

    Article  CAS  Google Scholar 

  • Baldo BA, Sadeghian K, Basso AM, Kelley AE (2002) Effects of selective dopamine D1 or D2 receptor blockade within nucleus accumbens subregions on ingestive behavior and associated motor activity. Behav Brain Res 137:165–177

    Article  PubMed  CAS  Google Scholar 

  • Berridge KC (2000) Measuring hedonic impact in animals and infants: microstructure of affective taste reactivity patterns. Neurosci Biobehav Rev 24:173–198

    Article  PubMed  CAS  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev 28:309–369

    Article  PubMed  CAS  Google Scholar 

  • Blundell JE (1987) Structure, process and mechanism: case studies in the psychopharmacology of feeding. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, vol 19. Plenum, New York, pp 123–182

    Google Scholar 

  • Clifton PG (1995) Effects of SCH39166 and domperidone on the meal patterning of male rats. Pharmacol Biochem Behav 52:265–270

    Article  PubMed  CAS  Google Scholar 

  • Clifton PG, Rusk IN, Cooper SJ (1991) Effects of dopamine D1 and dopamine D2 antagonists on the free feeding and drinking patterns of rats. Behav Neurosci 105:272–281

    Article  PubMed  CAS  Google Scholar 

  • Cohen C, Perrault G, Voltz C, Steinberg R, Soubrie P (2002) SR141716, a central cannabinoid (CB1) receptor antagonist, blocks the motivational and dopamine-releasing effects of nicotine in rats. Behav Pharmacol 13:451–463

    PubMed  CAS  Google Scholar 

  • Colombo G, Agabio R, Diaz G, Lobina C, Reali R, Gessa GL (1998) Appetite suppression and weight loss after the cannabinoid antagonist SR 141716. Life Sci 63:PL113–PL117

    Article  PubMed  CAS  Google Scholar 

  • Cousins MS, Salamone JD (1994) Nucleus accumbens dopamine depletions in rats affect relative response allocation in a novel cost/benefit procedure. Pharmacol Biochem Behav 49:85–91

    Article  PubMed  CAS  Google Scholar 

  • Cousins MS, Sokolowski JD, Salamone JD (1993) Different effects of nucleus accumbens and ventrolateral striatal dopamine depletions on instrumental response selection in the rat. Pharmacol Biochem Behav 46:943–951

    Article  PubMed  CAS  Google Scholar 

  • Cousins MS, Wei W, Salamone JD (1994) Pharmacological characterization of performance on a concurrent lever pressing/feeding choice procedure: effects of dopamine antagonist, cholinomimetic, sedative and stimulant drugs. Psychopharmacology 116:529–537

    Article  PubMed  CAS  Google Scholar 

  • Cousins MS, Atherton A, Turner L, Salamone JD (1996) Nucleus accumbens dopamine depletions alter relative response allocation in a T-maze cost/benefit task. Behav Brain Res 74:189–197

    Article  PubMed  CAS  Google Scholar 

  • Di Marzo V, Goparaju S, Wang L, Liu J, Batkai S, Jarai Z (2001) Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410:822–825

    Article  PubMed  Google Scholar 

  • Di Patrizio NV, Simansky KJ (2006) Differential roles for cannabinoid and mu-opioid signaling systems of the parabrachial nucleus in modulating intake of standard chow and high-fat/high-sucrose diet. Program No. 456.2. Neuroscience Meeting Planner. Society for Neuroscience, Atlanta (online)

  • Farrar AM, Pereira M, Velasco F, Hockemeyer J, Muller CE, Salamone JD (2007) Adenosine A(2A) receptor antagonism reverses the effects of dopamine receptor antagonism on instrumental output and effort-related choice in the rat: implications for studies of psychomotor slowing. Psychopharmacology 191:579–586

    Article  PubMed  CAS  Google Scholar 

  • Fibiger HC, Carter DA, Phillips AG (1976) Decreased intracranial self-stimulation after neuroleptics or 6-hydroxydopamine: evidence for mediation by motor deficits rather than by reduced reward. Psychopharmacology 47:21–27

    Article  PubMed  CAS  Google Scholar 

  • Freedland CS, Poston JS, Porrino LJ (2000) Effects of SR141716A, a central cannabinoid receptor antagonist, on food-maintained responding. Pharmacol Biochem Behav 67:265–270

    Article  PubMed  CAS  Google Scholar 

  • Gardner EL (2005) Endocannabinoid signaling system and brain reward: emphasis on dopamine. Pharmacol Biochem Behav 81:263–284

    Article  PubMed  CAS  Google Scholar 

  • Gardner EL, Lowinson JH (1991) Marijuana’s interaction with brain reward systems: update 1991. Pharmacol Biochem Behav 40:571–580

    Article  PubMed  CAS  Google Scholar 

  • Gardner A, Mallet PE (2006) Suppression of feeding, drinking, and locomotion by a putative cannabinoid receptor ‘silent antagonist’. Eur J Pharmacol 530:103–106

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S, Panksepp J (1996) Dissociations between appetitive and consummatory responses by phamacological manipulations of reward-relevant brain regions. Behav Neurosci 110:331–345

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S, Panksepp J (1999) The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Rev 31:6–41

    Article  PubMed  CAS  Google Scholar 

  • Jamshidi N, Taylor DA (2001) Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br J Pharmacol 134(6):1151–1154

    Article  PubMed  CAS  Google Scholar 

  • Kelley AE, Baldo BA, Pratt WE, Will MJ (2005) Corticostriatal–hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav 86:773–795

    Article  PubMed  CAS  Google Scholar 

  • Keppel G (1982) Design and analysis: a researchers handbook. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Kirkham TC, Williams CM, Fezza F, Di Marzo V (2002) Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol 136:550–557

    Article  PubMed  CAS  Google Scholar 

  • Koch M, Schmid A, Scnhnitzler HU (2000) Role of nucleus accumbens dopamine D1 and D2 receptors in instrumental and Pavlovian paradigms of conditioned reward. Psychopharmacology 152:67–73

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Riley SJ, Smith SC, Robbins TW (1978) Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi and olfactory tubercle on feeding, locomotor activity, and amphetamine anorexia in the rat. J Comp Physiol Psychol 92:917–927

    Article  PubMed  CAS  Google Scholar 

  • Ljungberg T (1987) Blockade by neuroleptics of water intake and operant responding in the rat: anhedonia, motor deficit or both? Pharmacol Biochem Behav 27:341–350

    Article  PubMed  CAS  Google Scholar 

  • Ljungberg T (1988) Scopolamine reverses haloperidol-attenuated lever pressing for water but not haloperidol-attenuated water intake in the rat. Pharmacol Biochem Behav 29:205–211

    Article  PubMed  CAS  Google Scholar 

  • Ljungberg T (1990) Differential attenuation of water intake and water-rewarded operant responding by repeated administration of haloperidol and SCH 23390 in the rat. Pharmacol Biochem Behav 35:111–115

    Article  PubMed  CAS  Google Scholar 

  • Martin-Iverson MT, Wilke D, Fibiger HC (1987) Effect of haloperidol and d-amphetamine on perceived quantitiy of food and tones. Psychopharmacology 93:374–381

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin PJ, Winston K, Swezey L, Wisniecki A, Aberman J, Tardif DJ, Betz AJ, Ishiwari K, Makriyannis A, Salamone JD (2003) The cannabinoid CB1 antagonists SR 141716A and AM 251 suppress food intake and food-reinforced behavior in a variety of tasks in rats. Behav Pharmacol 14:583–588

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin PJ, Winston KM, Limebeer CL, Parker LA, Makriyannis A, Salamone JD (2005) The cannabinoid CB1 antagonist AM251 produces food avoidance and behaviors associated with nausea but does not impair feeding efficiency in rats. Psychopharmacology 180:286–293

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin PJ, Qian L, Wood JT, Wisniecki A, Winston KM, Swezey LA, Makriyannis A, Salamone JD (2006) Suppression of food intake and food-reinforced behavior produced by the novel CB1 receptor antagonist/inverse agonist AM1387. Pharmacol Biochem Behav 83:396–402

    Article  PubMed  CAS  Google Scholar 

  • Melis T, Succu S, Sanna F, Boi A, Argiolas A, Melis MR (2007) The cannabinoid antagonist SR 141716A (Rimonabant) reduces the increase of extra-cellular dopamine release in the rat nucleus accumbens induced by a novel high palatable food. Neurosci Lett 419:231–235

    Article  PubMed  CAS  Google Scholar 

  • Nowend KL, Arizzi M, Carlson BB, Salamone JD (2001) D1 or D2 antagonism in nucleus accumbens core or dorsomedial shell suppresses lever pressing for food but leads to compensatory increases in chow consumption. Pharmacol Biochem Behav 69:373–382

    Article  PubMed  CAS  Google Scholar 

  • Pi-Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J; RIO-North America Study Group (2006) Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 295:761–775

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Rolls BJ, Kelly PH, Shaw SG, Wood RJ, Dale R (1974) The relative attenuation of self-stimulation, eating and drinking produced by dopamine-receptor blockade. Psychopharmacologia 38:219–230

    Article  PubMed  CAS  Google Scholar 

  • Rusk IN, Cooper SJ (1994) Parametric studies of selective D1 and D2 antagonists: effects on appetitive and feeding behavior. Behav Pharmacol 5:615–622

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD (1986) Different effects of haloperidol and extinction on instrumental behaviors. Psychopharmacology 88:18–23

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Correa M (2002) Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behav Brain Res 137:3–25

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Zigmond MJ, Stricker EM (1990) Characterization of the impaired feeding behavior in rats given haloperidol or dopamine-depleting brain lesions. Neuroscience 39:17–24

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Steinpreis RE, McCullough LD, Smith P, Grebel D, Mahan K (1991) Haloperidol and nucleus accumbens dopamine depletion suppress lever pressing for food but increase free food consumption in a novel food-choice procedure. Psychopharmacology 104:515–521

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Mahan K, Rogers S (1993) Ventrolateral striatal dopamine depletions impair feeding and food handling in rats. Pharmacol Biochem Behav 44:605–610

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Cousins MS, Bucher S (1994) Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behav Brain Res 65:221–229

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Cousins MS, Maio C, Champion M, Turski T, Kovach J (1996) Different behavioral effects of haloperidol, clozapine and thioridazine in an instrumental lever pressing/feeding procedure. Psychopharmacology 125:105–112

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Cousins MS, Snyder BJ (1997) Behavioral functions of nucleus accumbens dopamine: empirical and conceptual problems with the anhedonia hypothesis. Neurosci Biobehav Rev 21:341–359

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Aberman JE, Sokolowski JD, Cousins MS (1999) Nucleus accumbens dopamine and rate of responding: neurochemical and behavioral studies. Psychobiology 27:236–247

    CAS  Google Scholar 

  • Salamone JD, Arizzi M, Sandoval MD, Cervone KM, Aberman JE (2002) Dopamine antagonsts alter response allocation but do not suppress appetite for food in rats: contrast between the effects of SKF 83566, raclopride and fenfluramine on a concurrent choice task. Psychopharmacology 160:371–380

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Correa M, Mingote S, Weber SM (2003) Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse. J Pharmacol Exp Ther 305:1–8

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Correa M, Mingote SM, Weber SM (2005) Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine. Curr Opin Pharmacol 5:34–41

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Correa M, Mingote SM, Weber SM, Farrar AM (2006) Nucleus accumbens dopamine and the forebrain circuitry involved in behavioral activation and effort-related decision making: implications of understanding anergia and psychomotor slowing and depression. Curr Psychiatr Rev 2:267–280

    Article  Google Scholar 

  • Salamone JD, McLaughlin PJ, Sink K, Makriyannis A, Parker LA (2007a) Cannabinoid CB(1) receptor inverse agonists and neutral antagonists: effects on food intake, food-reinforced behavior and food aversions. Physiol Behav 91:383–388

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Correa M, Farrar A, Mingote SM (2007b) Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology 191:461–482

    Article  PubMed  CAS  Google Scholar 

  • Simiand J, Keane M, Keane PE, Soubrie P (1998) SR141716, a CB1 cannabinoid receptor antagonist, selectively reduces sweet food intake in marmoset. Behav Pharmacol 9:179–181

    PubMed  CAS  Google Scholar 

  • Sink KS, McLaughlin PJ, Wood JA, Brown C, Fan P, Vemuri VK, Pang Y, Olzewska T, Thakur GA, Makriyannis A, Parker LA, Salamone JD (2007) The novel cannabinoid CB(1) receptor neutral antagonist AM4113 suppresses food intake and food-reinforced behavior but does not induce signs of nausea in rats. Neuropsychopharmacology (in press)

  • Sokolowski JD, Salamone JD (1998) The role of nucleus accumbens dopamine in lever pressing and response allocation: effects of 6-OHDA injected into core and dorsomedial shell. Pharmacol Biochem Behav 59:557–566

    Article  PubMed  CAS  Google Scholar 

  • Soria-Gomez E, Matias I, Rueda-Orozco PE, Cisneros M, Petrosino S, Navarro L, Di Marzo V, Prospero-Garcia O (2007) Pharmacological enhancement of the endocannabinoid system in the nucleusaccumbens shell stimulates food intake and increases c-Fos expression in the hypothalamus. Br J Pharmacol 151(7):1109–1116

    Article  PubMed  CAS  Google Scholar 

  • Tallett AJ, Blundell JE, Rodgers RJ (2007) Grooming, scratching and feeding: role of response competition in acute anorectic response to rimonabant in male rats. Psychopharmacology 195(1):27–39

    Article  PubMed  CAS  Google Scholar 

  • Tanda G, Pontieri FE, Di Chiara G (1997) Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common μ1 opioid receptor mechanism. Science 276:2048–2050

    Article  PubMed  CAS  Google Scholar 

  • Thornton-Jones ZD, Vickers SP, Clifton PG (2005) The cannabinoid CB1 receptor antagonist SR141716A reduces appetitive and consummatory responses for food. Psychopharmacology 179:452–460

    Article  PubMed  CAS  Google Scholar 

  • Treit D, Berridge KC (1990) A comparison of benzodiazepine, serotonin, and dopamine agents in taste-reactivity paradigm. Pharmacol Biochem Behav 37:451–456

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U (1971) Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand Suppl 367:95–122

    PubMed  CAS  Google Scholar 

  • Ward SJ, Dykstra LA (2005) The role of CB1 receptors in sweet versus fat reinforcement: effect of CB1 receptor deletion, CB1 receptor antagonism (SR141716A) and CB1 receptor agonism (CP-55940). Behav Pharmacol 16:381–388

    Article  PubMed  CAS  Google Scholar 

  • Wenger T, Moldrich G, Furst S (2003) Neuromorphological background of cannabis addiction. Brain Res Bull 61:125–128

    Article  PubMed  CAS  Google Scholar 

  • Williams CM, Kirkham TC (1999) Anandamide induces overeating: mediation by central cannabinoid (CB1) receptors. Psychopharmacology 143:315–317

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant to J.S. and A.M. from the National Institute of Drug Abuse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Salamone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sink, K.S., Vemuri, V.K., Olszewska, T. et al. Cannabinoid CB1 antagonists and dopamine antagonists produce different effects on a task involving response allocation and effort-related choice in food-seeking behavior. Psychopharmacology 196, 565–574 (2008). https://doi.org/10.1007/s00213-007-0988-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-0988-4

Keywords

Navigation