Skip to main content

Advertisement

Log in

Chronic social defeat stress model: behavioral features, antidepressant action, and interaction with biological risk factors

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Chronic social defeat stress (CSDS) has been proposed as a model of depression. However, most CSDS studies rely only on the analysis of stress-induced social avoidance. Moreover, the predictive validity of the model has been poorly analyzed, let alone its interaction with biological risk factors.

Objectives

Here, we explore the validity of CSDS as a depression model. Further, the effect of decreased vesicular glutamate transporter 1 (VGLUT1), as a potential factor enhancing a depressive-like phenotype, was studied.

Methods

Mice were exposed to CSDS (10 days) followed by saline, venlafaxine, fluoxetine, or tianeptine treatment (30 days). The battery of behaviors included motor activity, memory, anxiety, social interaction, helplessness, and anhedonic-like behavior. Moreover, the behavioral effect of CSDS in VGLUT1 heterozygous (VGLUT1+/−) mice was studied, as well as the regulation of VGLUT1 mRNA.

Results

CSDS induced anhedonia, helplessness, hyperactivity, anxiety, social avoidance, and freezing, as well as downregulation of VGLUT1 mRNA in the amygdala. Repeated venlafaxine showed antidepressant-like activity and both venlafaxine and tianeptine behaved as effective anxiolytics. CSDS-induced social avoidance was reverted by tianeptine. Fluoxetine failed to revert most of the behavioral alterations. VGLUT1+/− mice showed an enhanced vulnerability to stress-induced social avoidance.

Conclusion

We suggest that CSDS is not a pure model of depression. Indeed, it addresses relevant aspects of anxiety-related disorders. Firstly, CSDS-induced anhedonia and social avoidance are not associated in this model. Moreover, CSDS might be affecting brain areas mainly involved in the processing of social behavior, such as the amygdala, where the glutamatergic mechanism could play a key role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ago Y, Takahashi K, Nakamura S, Hashimoto H, Baba A, Matsuda T (2007) Anxiety-like and exploratory behaviors of isolation-reared mice in the staircase test. J Pharmacol Sci 104:153–8

    Article  PubMed  CAS  Google Scholar 

  • Aleksandrovskiĭ IuA, Avedisova AS, Boev IV, Bukhanovkskiĭ AO, Voloshin VM, Tsygankov BD, Shamreĭ BK (2005) Efficacy and tolerability of coaxil (tianeptine) in the therapy of posttraumatic stress disorder. Zh Nevrol Psikhiatr Im S S Korsakova 105:24–9

    PubMed  Google Scholar 

  • Balschun D, Moechars D, Callaerts-Vegh Z, Vermaercke B, Van Acker N, Andries L, D’Hooge R (2010) Vesicular glutamate transporter VGLUT1 has a role in hippocampal long-term potentiation and spatial reversal learning. Cereb Cortex 20:684–93

    Article  PubMed  Google Scholar 

  • Berrocoso E, Rojas-Corrales MO, Micó JA (2004) Non-selective opioid receptor antagonism of the antidepressant-like effect of venlafaxine in the forced swimming test in mice. Neurosci Lett 363:25–8

    Article  PubMed  CAS  Google Scholar 

  • Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, Graham D, Tsankova NM, Bolanos CA, Rios M, Monteggia LM, Self DW, Nestler EJ (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311:864–8

    Article  PubMed  CAS  Google Scholar 

  • Besançon G, Servillat T, Albert E (1993) Drugs for stress. Encephale 19(Spec No 1):203–7

    PubMed  Google Scholar 

  • Bjorkqvist K (2001) Social defeat as a stressor in humans. Physiol Behav 73:435–42

    Article  PubMed  CAS  Google Scholar 

  • Brion S, Audrain S, de Bodinat C (1996) Major depressive episodes in patients over 70 years of age. Evaluation of the efficiency and acceptability of tianeptine and mianserin. Presse Med 25:461–8

    PubMed  CAS  Google Scholar 

  • Covington HE 3rd, Maze I, LaPlant QC, Vialou VF, Ohnishi YN, Berton O, Fass DM, Renthal W, Rush AJ 3rd, Wu EY, Ghose S, Krishnan V, Russo SJ, Tamminga C, Haggarty SJ, Nestler EJ (2009) Antidepressant actions of histone deacetylase inhibitors. J Neurosci 29:11451–60

    Article  PubMed  CAS  Google Scholar 

  • Davidson JR, DuPont RL, Hedges D, Haskins JT (1999) Efficacy, safety, and tolerability of venlafaxine extended release and buspirone in outpatients with generalized anxiety disorder. J Clin Psychiatry 60:528–35

    Article  PubMed  CAS  Google Scholar 

  • Denmark A, Tien D, Wong K, Chung A, Cachat J, Goodspeed J, Grimes C, Elegante M, Suciu C, Elkhayat S, Bartels B, Jackson A, Rosenberg M, Chung KM, Badani H, Kadri F, Roy S, Tan J, Gaikwad S, Stewart A, Zapolsky I, Gilder T, Kalueff AV (2010) The effects of chronic social defeat stress on mouse self-grooming behavior and its patterning. Behav Brain Res 208:553–9

    Article  PubMed  Google Scholar 

  • Dulawa SC, Hen R (2005) Recent advances in animal models of chronic antidepressant effects: the novelty-induced hypophagia test. Neurosci Biobehav Rev 29:771–83

    Article  PubMed  CAS  Google Scholar 

  • Elizalde N, Gil-Bea FJ, Ramirez MJ, Aisa B, Lasheras B, Del Rio J, Tordera RM (2008) Long-lasting behavioral effects and recognition memory deficit induced by chronic mild stress in mice: effect of antidepressant treatment. Psychopharmacology 199:1–14

    Article  PubMed  CAS  Google Scholar 

  • Elizalde N, Pastor PM, Garcia-García AL, Serres F, Venzala E, Huarte J, Ramírez MJ, Del Rio J, Sharp T, Tordera RM (2010) Regulation of markers of synaptic function in mouse models of depression: chronic mild stress and decreased expression of VGLUT1. J Neurochem 114:1302–14

    Google Scholar 

  • Fegley DB, Holmes A, Riordan T, Faber CA, Weiss JR, Ma S, Batkai S, Pacher P, Dobolyi A, Murphy A, Sleeman MW, Usdin TB (2008) Increased fear- and stress-related anxiety-like behavior in mice lacking tuberoinfundibular peptide of 39 residues. Genes Brain Behav 7:933–42

    Article  PubMed  CAS  Google Scholar 

  • Friedlander AH, Friedlander IK, Marder SR (2004) Posttraumatic stress disorder: psychopathology, medical management, and dental implications. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97:5–11

    Article  PubMed  Google Scholar 

  • Froger N, Palazzo E, Boni C, Hanoun N, Saurini F, Joubert C, Dutriez-Casteloot I, Enache M, Maccari S, Barden N, Cohen-Salmon C, Hamon M, Lanfumey L (2004) Neurochemical and behavioral alterations in glucocorticoid receptor-impaired transgenic mice after chronic mild stress. J Neurosci 24:2787–96

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Garcia AL, Elizalde N, Matrov D, Harro J, Wojcik SM, Venzala E, Ramírez MJ, Del Rio J, Tordera RM (2009) Increased vulnerability to depressive-like behavior of mice with decreased expression of VGLUT1. Biol Psychiatry 66:275–82

    Article  PubMed  CAS  Google Scholar 

  • Goodnick PJ, Goldstein BJ (1998) Selective serotonin reuptake inhibitors in affective disorders—II. Efficacy and quality of life. J Psychopharmacol 12:S21–54

    PubMed  CAS  Google Scholar 

  • Gupta RK (2009) Major depression: an illness with objective physical signs. World J Biol Psychiatry 10:196–201

    Article  PubMed  Google Scholar 

  • Hammen C (2005) Stress and depression. Annu Rev Clin Psychol 1:293–319

    Article  PubMed  Google Scholar 

  • Hicks BM, DiRago AC, Iacono WG, McGue M (2009) Gene–environment interplay in internalizing disorders: consistent findings across six environmental risk factors. J Child Psychol Psychiatry 50:1309–17

    Article  PubMed  Google Scholar 

  • Kawasaki T, Ago Y, Yano K, Araki R, Washida Y, Onoe H, Chaki S, Nakazato A, Hashimoto H, Baba A, Takuma K, Matsuda T (2011) Increased binding of cortical and hippocampal group II metabotropic glutamate receptors in isolation-reared mice. Neuropharmacology 60:397–404

    Article  PubMed  CAS  Google Scholar 

  • Kendler KS, Karkowski LM, Prescott CA (1998) Stressful life events and major depression: risk period, long-term contextual threat, and diagnostic specificity. J Nerv Ment Dis 186:661–9

    Article  PubMed  CAS  Google Scholar 

  • Kendler KS, Karkowski LM, Prescott CA (1999) The assessment of dependence in the study of stressful life events: validation using a twin design. Psychol Med 29:1455–60

    Article  PubMed  CAS  Google Scholar 

  • Kendler KS, Thornton LM, Gardner CO (2001) Genetic risk, number of previous depressive episodes, and stressful life events in predicting onset of major depression. Am J Psychiatry 158:582–6

    Article  PubMed  CAS  Google Scholar 

  • Kessler RC (1997) The effects of stressful life events on depression. Annu Rev Psychol 48:191–214

    Article  PubMed  CAS  Google Scholar 

  • Kessler H, Roth J, von Wietersheim J, Deighton RM, Traue HC (2007) Emotion recognition patterns in patients with panic disorder. Depress Anxiety 24:223–6

    Google Scholar 

  • Koolhaas JM, De Boer SF, De Rutter AJ, Meerlo P, Sgoifo A (1997) Social stress in rats and mice. Acta Physiol Scand Suppl 640:69–72

    PubMed  CAS  Google Scholar 

  • Krishnan V, Han MH, Graham DL, Berton O, Renthal W, Russo SJ, Laplant Q, Graham A, Lutter M, Lagace DC, Ghose S, Reister R, Tannous P, Green TA, Neve RL, Chakravarty S, Kumar A, Eisch AJ, Self DW, Lee FS, Tamminga CA, Cooper DC, Gershenfeld HK, Nestler EJ (2007) Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131:391–404

    Article  PubMed  CAS  Google Scholar 

  • Krishnan V, Berton O, Nestler E (2008) The use of animal models in psychiatric research and treatment. Am J Psychiatry 165:1109

    Google Scholar 

  • Kulkarni SK, Dhir A (2007) Effect of various classes of antidepressants in behavioral paradigms of despair. Prog Neuropsychopharmacol Biol Psychiatry 31:1248–54

    Article  PubMed  CAS  Google Scholar 

  • Lagace DC, Donovan MH, DeCarolis NA, Farnbauch LA, Malhotra S, Berton O, Nestler EJ, Krishnan V, Eisch AJ (2010) Adult hippocampal neurogenesis is functionally important for stress-induced social avoidance. Proc Natl Acad Sci USA 107:4436–41

    Article  PubMed  CAS  Google Scholar 

  • Lagerspetz K, Tirri R (1961) The induction of physiological tolerance to promazine in mice. Ann Med Exp Biol Fenn Suppl 5:1–24

    PubMed  Google Scholar 

  • Lucki I, Dalvi A, Mayorga AJ (2001) Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology 155:315–22

    Article  PubMed  CAS  Google Scholar 

  • Lutter M, Sakata I, Osborne-Lawrence S, Rovinsky SA, Anderson JG, Jung S, Birnbaum S, Yanagisawa M, Elmquist JK, Nestler EJ, Zigman JM (2008) The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress. Nat Neurosci 11:752–3

    Article  PubMed  CAS  Google Scholar 

  • Mazure CM, Bruce ML, Maciejewski PK, Jacobs SC (2000) Adverse life events and cognitive–personality characteristics in the prediction of major depression and antidepressant response. Am J Psychiatry 157:896–903

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS, Chattarji S, Diamond DM, Jay TM, Reagan LP, Svenningsson P, Fuchs E (2010) The neurobiological properties of tianeptine (Stablon): from monoamine hypothesis to glutamatergic modulation. Mol Psychiatry 15:237–49

    Article  PubMed  CAS  Google Scholar 

  • Miczek KA, Yap JJ, Covington HE 3rd (2008) Social stress, therapeutics and drug abuse: preclinical models of escalated and depressed intake. Pharmacol Ther 120:102–28

    Article  PubMed  CAS  Google Scholar 

  • Molteni R, Calabrese F, Maj PF, Olivier JD, Racagni G, Ellenbroek BA, Riva MA (2009) Altered expression and modulation of activity-regulated cytoskeletal associated protein (Arc)in serotonin transporter knockout rats. Eur Neuropsychopharmacol 19:898–904

    Article  PubMed  CAS  Google Scholar 

  • Monroe SM, Torres LD, Guillaumot J, Harkness KL, Roberts JE, Frank E, Kupfer D (2006) Life stress and the long-term treatment course of recurrent depression: III. Nonsevere life events predict recurrence for medicated patients over 3 years. J Consult Clin Psychol 74:112–20

    Article  PubMed  Google Scholar 

  • Nierenberg AA (2001) Do some antidepressants work faster than others? J Clin Psychiatry 62:22–5

    PubMed  CAS  Google Scholar 

  • Onder E, Tural U, Aker T (2006) A comparative study of fluoxetine, moclobemide, and tianeptine in the treatment of posttraumatic stress disorder following an earthquake. Eur Psychiatr 21:174–9

    Article  CAS  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–36

    Google Scholar 

  • Reznikov LR, Grillo CA, Piroli GG, Pasumarthi RK, Reagan LP, Fadel J (2007) Acute stress-mediated increases in extracellular glutamate levels in the rat amygdala: differential effects of antidepressant treatment. Eur J Neurosci 25:3109–14

    Article  PubMed  Google Scholar 

  • Rickels K, Pollack MH, Sheehan DV, Haskins JT (2000) Efficacy of extended-release venlafaxine in nondepressed outpatients with generalized anxiety disorder. Am J Psychiatry 157:968–74

    Article  PubMed  CAS  Google Scholar 

  • Robert G, Drapier D, Bentué-Ferrer D, Renault A, Reymann JM (2011) Acute and chronic anxiogenic-like response to fluoxetine in rats in the elevated plus-maze: modulation by stressful handling. Behav Brain Res 220:344–8

    Article  PubMed  CAS  Google Scholar 

  • Rohde P (2001) The relevance of hierarchies, territories, defeat for depression in humans: hypotheses and clinical predictions. J Affect Disord 65:221–30

    Article  PubMed  CAS  Google Scholar 

  • Rossi S, De Chiara V, Musella A, Kusayanagi H, Mataluni G, Bernardi G, Usiello A, Centonze D (2008) Chronic psychoemotional stress impairs cannabinoid-receptor-mediated control of GABA transmission in the striatum. J Neurosci 28:7284–92

    Article  PubMed  CAS  Google Scholar 

  • Rumyantseva GM, Stepanov AL (2008) Post-traumatic stress disorder in different types of stress (clinical features and treatment). Neurosci Behav Physiol 38:55–61

    Article  PubMed  CAS  Google Scholar 

  • Rygula R, Abumaria N, Flügge G, Hiemke C, Fuchs E, Rüther E, Havemann-Reinecke U (2006a) Citalopram counteracts depressive-like symptoms evoked by chronic social stress in rats. Behav Pharmacol 17:19–29

    Article  PubMed  CAS  Google Scholar 

  • Rygula R, Abumaria N, Domenici E, Hiemke C, Fuchs E (2006b) Effects of fluoxetine on behavioral deficits evoked by chronic social stress in rats. Behav Brain Res 174:188–92

    Article  PubMed  CAS  Google Scholar 

  • Schoevers RA, Van HL, Koppelmans V, Kool S, Dekker JJ (2008) Managing the patient with co-morbid depression and an anxiety disorder. Drugs 68:1621–34

    Article  PubMed  CAS  Google Scholar 

  • Seligman ME (1975) Helplessness: on depression, development, and death. W.H. Freeman, San Francisco

    Google Scholar 

  • Slattery DA, Uschold N, Magoni M, Bär J, Popoli M, Neumann ID, Reber SO (2012) Behavioural consequences of two chronic psychosocial stress paradigms: anxiety without depression. Psychoneuroendocrinology 37:702–14

    Article  PubMed  Google Scholar 

  • Svenningsson P, Bateup H, Qi H, Takamiya K, Huganir RL, Spedding M, Roth BL, McEwen BS, Greengard P (2008) Involvement of AMPA receptor phosphorylation in antidepressant actions with special reference to tianeptine. Genes Brain Behav 7:933–42

    Article  Google Scholar 

  • Tordera RM, Monge A, Del Río J, Lasheras B (2002) Antidepressant-like activity of VN2222, a serotonin reuptake inhibitor with high affinity at 5-HT1A receptors. Eur J Pharmacol 442:63–71

    Article  PubMed  CAS  Google Scholar 

  • Tordera RM, Totterdell S, Wojcik SM, Brose N, Elizalde N, Lasheras B, Del Rio J (2007) Enhanced anxiety, depressive-like behavior and impaired recognition memory in mice with reduced expression of the vesicular glutamate transporter 1 (VGLUT1). Eur J Neurosci 25:281–90

    Article  PubMed  CAS  Google Scholar 

  • Tordera RM, Garcia-García AL, Elizalde N, Segura V, Aso E, Venzala E, Ramírez MJ, Del Rio J (2011) Chronic stress and impaired glutamate function elicit a depressive-like phenotype and common changes in gene expression in the mouse frontal cortex. Eur Neuropsychopharmacol 21:23–32

    Article  PubMed  CAS  Google Scholar 

  • Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9:519–25

    Article  PubMed  CAS  Google Scholar 

  • Uezato A, Meador-Woodruff JH, McCullumsmith RE (2009) Vesicular glutamate transporter mRNA expression in the medial temporal lobe in major depressive disorder, bipolar disorder, and schizophrenia. Bipolar Disord 11:711–25

    Article  PubMed  CAS  Google Scholar 

  • Wagner KV, Wang XD, Liebl C, Scharf SH, Müller MB, Schmidt MV (2011) Pituitary glucocorticoid receptor deletion reduces vulnerability to chronic stress. Psychoneuroendocrinology 36:579–87

    Article  PubMed  CAS  Google Scholar 

  • Wallace DL, Han MH, Graham DL, Green TA, Vialou V, Iñiguez SD, Cao JL, Kirk A, Chakravarty S, Kumar A, Krishnan V, Neve RL, Cooper DC, Bolaños CA, Barrot M, McClung CA, Nestler EJ (2009) CREB regulation of nucleus accumbens excitability mediates social isolation-induced behavioral deficits. Nat Neurosci 12:200–9

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson MB, Xiao G, Kumar A, LaPlant Q, Renthal W, Sikder D, Kodadek TJ, Nestler EJ (2009) Imipramine treatment and resiliency exhibit similar chromatin regulation in the mouse nucleus accumbens in depression models. J Neurosci 29:7820–32

    Article  PubMed  CAS  Google Scholar 

  • Willner P (1991) Animal models as simulations of depression. Trends Pharmacol Sci 12:131–6

    Article  PubMed  CAS  Google Scholar 

  • Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioral–neurobiological concordance in the effects of CMS. Neuropsychobiology 52:90–110

    Article  PubMed  CAS  Google Scholar 

  • Wojcik SM, Rhee JS, Herzog E, Sigler A, Jahn R, Takamori S, Brose N, Rosenmund C (2004) An essential role for vesicular glutamate transporter 1 (VGLUT1)in postnatal development and control of quantal size. Proc Natl Acad Sci USA 101:7158–63

    Article  PubMed  CAS  Google Scholar 

  • Yan HC, Qu HD, Sun LR, Li SJ, Cao X, Fang YY, Jie W, Bean JC, Wu WK, Zhu XH, Gao TM (2010) Fuzi polysaccharide-1 produces antidepressant-like effects in mice. Int J Neuropsychopharmacol 13:623–33

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Ms. Sandra Lizaso and M.L. Muro for their excellent technical assistance. We are also very grateful to Dr. S. Wojcik (Gottingen, Germany) for the generous gift of the VGLUT1+/− mice. This work was supported by Laboratories Servier S.L., the Ministry of Science and Innovation (SAF2008-02217, Spanish Government), and a fellowship from the Spanish Government (Department of Education) to N. Elizalde.

Conflict of interest

All the authors report no biomedical financial interests or potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Tordera.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1S

Effect of social defeat stress in VGLUT1+/− and WT littermates on the weight gain (a), motor activity (b) and anxiety-like behavior in the elevated plus maze test (c) and in the novelty suppression of feeding test (e). Data show mean ± SEM (n = 18 mice/group) of the weight gain from the day 1 of the CSDS procedure (a) and mean ± SEM of the distance traveled during 30 min (b). In the measurement of anxiety behavior, data show mean ± SEM (n = 18 mice/group) of the time spent in open arms (c) in the elevated plus maze test. In the novelty suppression of feeding test, data show mean ± SEM of the time spent in the eating zone (d) (*p < 0.05, ** p < 0.01 vs. WT) (JPEG 138 kb)

High Resolution Image 1

(TIFF 101 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venzala, E., García-García, A.L., Elizalde, N. et al. Chronic social defeat stress model: behavioral features, antidepressant action, and interaction with biological risk factors. Psychopharmacology 224, 313–325 (2012). https://doi.org/10.1007/s00213-012-2754-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2754-5

Keywords

Navigation