Skip to main content

Advertisement

Log in

Impact of repetitive transcranial magnetic stimulation of the parietal cortex on metabolic brain activity: a 14C-2DG tracing study in the cat

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Transcranial magnetic stimulation (TMS) is increasingly utilized in clinical neurology and neuroscience. However, detailed knowledge of the impact and specificity of the effects of TMS on brain activity remains unresolved. We have used 14C-labeled deoxyglucose (14C-2DG) mapping during repetitive TMS (rTMS) of the posterior and inferior parietal cortex in anesthetized cats to study, with exquisite spatial resolution, the local and distant effects of rTMS on brain activity. High-frequency rTMS decreases metabolic activity at the primary site of stimulation with respect to homologue areas in the unstimulated hemisphere. In addition, rTMS induces specific distant effects on cortical and subcortical regions known to receive substantial efferent projections from the stimulated cortex. The magnitude of this distal impact is correlated with the strength of the anatomical projections. Thus, in the anesthetized animal, the impact of rTMS is upon a distributed network of structures connected to the primary site of application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abramson BP, Chalupa LM (1985) The laminar distribution of cortical connections with the tecto- and cortico-recipient zones in the cat’s lateral posterior nucleus. Neuroscience 15:81–95

    Article  Google Scholar 

  • Ahmed B, Anderson JC, Douglas RJ, Martin KA, Nelson JC (1994) Polyneuronal innervation of spiny stellate neurons in cat visual cortex. J Comp Neurol 341:39–49

    Article  Google Scholar 

  • Albus K, Beckmann R (1980) Second and third visual areas of the cat: interindividual variability in retinotopic arrangement and cortical location J Physiol 299:247–276

    Google Scholar 

  • Amassian VE, Quirk G J, Stewart M (1990) A comparision of corticospinal activation by magnetic coil and electrical stimulation of monkey motor cortex. Electroen Clin Neuro 77:390–401

    Google Scholar 

  • Araki S, Kawano A, Seldon HL, Shepherd RK, Funasaka S, Clark GM (2000) Effects of intracochlear factors on spiral ganglion cells and auditory brain stem response after long-term electrical stimulation in deafened kittens. Otolaryng Head Neck 122:425–433

    Google Scholar 

  • Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm (2003) Subthreshold high-frequency TMS of human primary motor cortex modulates interconnected frontal motor areas as detected by interleaved fMRI-TMS. Neuroimage 20:1685–96

    Article  Google Scholar 

  • Bohning DE, Pecheny AP, Epstein CM, Speer AM, Vincent DJ, Dannels W, George MS (1997). Mapping transcranial magnetic stimulation (TMS) fields in vivo with MRI. Neuroreport 8:2535–8

    Google Scholar 

  • Buhl EH, Singer W (1989) The callosal projection in cat visual cortex as revealed by a combination of retrograde tracing and intracellular injection. Exp Brain Res 75:470–476

    Article  Google Scholar 

  • Civardi C, Cantello R, Asselman P, Rothwell JC (2001) Transcranial magnetic stimulation can be used to test connections to primary motor areas from frontal and medial cortex in humans. Neuroimage 14:1444–53

    Article  Google Scholar 

  • Einstein G (1996) Reciprocal projections of cat extrastriate cortex: I. Distribution and morphology of neurons projecting from posterior medial lateral suprasylvian sulcus to area 17. J Comp Neurol 376:518–529

    Google Scholar 

  • Fierro B., Brighina F, Oliveri M., Piazza A, La Bua V, Buffa D, Bisiach E (2000) Contralateral neglect induced by right posterior parietal rTMS in healthy subjects. Neuroreport 11:1519–21

    CAS  PubMed  Google Scholar 

  • Fox P, Ingham R, George MS, Mayberg HS, Ingham J, Roby J, Martin C, Jerabek P (1997) Imaging human intra-cerebral connectivity by PET during TMS. Neuroreport 8:2787–2791

    Article  Google Scholar 

  • Galuske RA, Schmidt KE, Goebel R, Lomber SG, Payne BR (2002) The role of feedback in shaping neural representations in cat visual cortex. Proc Natl Acad Sci USA 99:17083–17088

    Article  Google Scholar 

  • George MS, Bellmaker RH (2000) Transcranial magnetic stimulation in neuropsychiatry. American Psychiatric, Washington DC

  • Gonzalez-Lima F (1992) Brain imaging of auditory functions in cats: studies with fluoroxyglucose autoradiography and cytochrome oxidase histochemistry. In: Gonzalez-Lima F, Finkenstaedt T, Scheich H (eds) Advances in metabolic mapping techniques for brain imaging of behavioral and learning functions. Kluwer, Dordrecht, pp 39–109

  • Grant S, Shipp S (1991) Visuotopic organization of the lateral suprasylvian area and of an adjacent area of the ectosylvian gyrus of cat cortex: a physiological and connectional study. Vis Neurosci 6:315–338

    Google Scholar 

  • Harting J, Updyke B, Lieshout DP (1992) Corticotectal projections in the cat: anterograde transport studies of twenty-five cortical areas. J Comp Neurol 324:379–414

    Google Scholar 

  • Hilgetag CC, Theoret H, Pascual-Leone A (2001) Enhanced visual spatial attention ipsilateral to rTMS-induced “virtual lesions” of human parietal cortex. Nature Neurosci 4:953–957

    Article  Google Scholar 

  • Kanaseki T, Sprague JM (1974) Anatomical organization of pretectal nuclei and tectal laminae in the cat. J Comp Neurol 158:319–337

    Google Scholar 

  • Kobayashi M, Pascual-Leone A (2003) Transcranial magnetic stimulation in neurology. Lancet Neurol 2:145–156

    Article  Google Scholar 

  • Lee L, Siebner HR, Rowe JB, Rizzo V, Rothwell JC, Frackowiak RS, Friston KJ (2003) Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. J Neurosci 23:5308–18

    Google Scholar 

  • Lisanby SH, Gutman D, Luber B, Schroeder C, Sackeim HA (2001) Sham TMS: intracerebral measurement of the induced electrical field and the induction of motor-evoked potentials. Biol Psychiat 49:460–463

    Article  Google Scholar 

  • Lomber S, Payne BR (1996) Removal of two halves restores the whole—reversal of visual hemineglect during bilateral cortical or collicular inactivation in the cat. Vis Neurosci 1143–1156

  • Lowel L (2002) 2-deosyglucose architecture of the cat primary visual cortex. In: Payne BR, Peters A (eds) The cat primary visual cortex. Academic, San Diego, CA, pp 167–189

  • Luft AR, Kaelin-Lang A, Hauserc TK, Cohen LG, Thakorc NV, Hanley DF (2001) Transcranial magnetic stimulation in the rat. Exp Brain Res 140:112–21

    Article  Google Scholar 

  • Mort DJ, Malhotra P, Mannan SK, Rorden C, Pambakian A, Kennard C, Husain M (2003) The anatomy of visual neglect. Brain 126:1986–97

    Article  Google Scholar 

  • Oliveri M, Rossini PM, Pasqualetti P, Traversa R, Cicinelli P, Palmieri MG, Tomaiuolo F, Caltagirone C (1999) Interhemispheric asymmetries in the perception of unimanual and bimanual cutaneous stimuli. A study using transcranial magnetic stimulation. Brain 122:1721–9

    Article  PubMed  Google Scholar 

  • Oliveri M, Rossini PM, Cicinelli P, Traversa R, Pasqualetti P, Filippi MM, Caltagirone C (2000) Neurophysiological evaluation of tactile space perception deficits through transcranial magnetic stimulation. Brain Res Protoc 5:25–9

    Article  Google Scholar 

  • Oliveri M, Bisiach E, Brighina F, Piazza A, La Bua V, Buffa D, Fierro B (2001) rTMS of the unaffected hemisphere transiently reduces contralesional visuospatial hemineglect. Neurology 57:1338–1340

    CAS  PubMed  Google Scholar 

  • Palmer LA, Rosenquist AC, Tusa RJ (1978) The retinotopic organization of lateral suprasylvian visual areas in the cat. J Comp Neurol 2:237–256

    Article  Google Scholar 

  • Pascual-Leone A, Gomez-Tortosa E, Grafman J, Always D, Nichelli P, Hallett M (1994) Induction of visual extinction by rapid-rate transcranial magnetic stimulation of parietal lobe. Neurology 3:494–8

    Google Scholar 

  • Pascual-Leone A, Davey N, Wassermann EM, Rothwell J, Puri, BK (2001) Handbook of transcranial magnetic stimulation. Arnold, London

  • Paus T (1999) Imaging the brain before, during, and after transcranial magnetic stimulation. Neuropsychologia 37:219–224

    Article  Google Scholar 

  • Paus T, Jech R, Thompson CJ, Comeau R., Peters T, Evans AC (1997) Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J Neurosci 3178–3184

    Google Scholar 

  • Paus T, Jech R, Thompson CJ, Comeau R, Peters T, Evans AC (1998) Dose-dependent reduction of cerebral blood flow during rapid-rate transcranial magnetic stimulation of the human sensorimotor cortex. J Neurophysiol 1102–1107

  • Paus T, Castro-Alamancos MA, Petrides M (2001) Cortico-cortical connectivity of the human mid-dorsolateral frontal cortex and its modulation by repetitive transcranial magnetic stimulation. Eur J Neurosci 14:1405–1411

    Article  Google Scholar 

  • Payne BR (1990) Representation of the ipsilateral visual field in the transition zone between areas 17 and 18 of the cat’s cerebral cortex. Vis Neurosci 4:445–474

    Google Scholar 

  • Payne BR (1994) Neuronal interactions in cat visual cortex mediated by the corpus callosum. Behav Brain Res 64:55–64

    Article  Google Scholar 

  • Payne BR, Lomber SG (1999) A method to assess the functional impact of cerebral connections on target populations of neurons. J Neurosci Meth 86:195–208

    Article  Google Scholar 

  • Payne BR, Lomber SG (2002) The use of cooling deactivation to reveal the neural bases of lesion-induced plasticity of the developing and mature cerebral cortex. In: Lomber SG, Galuske RAW (eds) Virtual lesions: examining cortical function with reversible deactivation. Oxford University Press, Oxford, pp 163–188

  • Payne BR, Lomber SG (2003) Quantitative analyses of principal and secondary compound parieto-occipital feedback pathways in cat. Exp Brain Res 152:420–433

    Google Scholar 

  • Payne BR, Siwek DF, Lomber SG (1991) Complex transcallosal interactions in visual cortex. Vis Neurosci 6:283–289

    Google Scholar 

  • Payne BR, Lomber SG, Geeraerts S, Van der Gucht E, Vandenbussche E (1996) Reversible visual hemineglect. Proc Natl Acad Sci USA 93:290–4

    Article  Google Scholar 

  • Payne BR, Lomber SG, Rushmore RJ, Pascual-Leone A (2003) Cancellation of visuo-parietal lesion-induced spatial neglect. Exp Brain Res 150:395–398

    Google Scholar 

  • Peters A, Payne BR (1993) Numerical relationships between geniculo-cortical afferents and pyramidal cell modules in cat primary visual cortex. Cereb Cortex 3:69–78

    Google Scholar 

  • Peters A, Payne BR, Budd J (1994) A numerical analysis of the geniculocortical input to striate cortex in the monkey. Cereb Cortex 4:215–229

    Google Scholar 

  • Raczkowski D, Rosenquist AC (1983) Connections of the multiple visual cortical areas with the lateral posterior-pulvinar complex and adjacent thalamic nuclei in the cat. J Neurosci 3:1912–1942

    Google Scholar 

  • Robertson EM, Theoret H, Pascual-Leone A (2003) Studies in cognition: the problems solved and created by transcranial magnetic stimulation. J Cognitive Neurosci 15:948–960

    Article  Google Scholar 

  • Roth BJ, Saypol JM, Hallett M, Cohen LG (1991) A theoretical calculation of the electric field induced in the cortex during magnetic stimulation. Electroen Clin Neuro 81:47–56

    CAS  Google Scholar 

  • Scannell JW, Burns GA, Hilgetag CC, O’Neil MA, Young MP (1999) The connectional organization of the cortico-thalamic system of the cat. Cereb Cortex 9:277–299

    Article  Google Scholar 

  • Schoppmann A, Stryker MP (1981) Physiological evidence that the 2-deoxyglucose method reveals orientation columns in cat visual cortex. Nature 293:574–576

    Article  Google Scholar 

  • Schurmann M, Nikouline VV, Soljanlahti S, Ollikainen M, Basar E, Ilmoniemi RJ (2001) EEG responses to combined somatosensory and transcranial magnetic stimulation. Clin Neurophysiol 112:19–24

    Article  PubMed  Google Scholar 

  • Shapiro HM, Greenberg JH, Reivich M, Ashmead G, Sokoloff L (1978) Local cerebral glucose uptake in awake and halothane-anesthetized primates. Anesthesiology 48:97–103

    Google Scholar 

  • Siebner, HR, Willoch F, Peller M, Auer C, Boecker H, Conrad B, Bartenstein P (1998) Imaging brain activation induced by long trains of repetitive transcranial magnetic stimulation. Neuroreport 9:943–948

    Google Scholar 

  • Siebner H, Peller M, Bartenstein P, Willoch F, Rossmeier C, Schwaiger M, Conrad B (2001) Activation of frontal premotor areas during suprathreshold transcranial magnetic stimulation of the left primary sensorimotor cortex: a glucose metabolic PET study. Hum Brain Mapp 12:157–167

    Article  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    CAS  PubMed  Google Scholar 

  • Strafella AP, Paus T, Barrett J, Dagher A (2001) Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 21:RC157

    Google Scholar 

  • Symonds L, Rosenquist AC (1984) Laminar origins of visual corticocortical connections in the cat. J Comp Neurol 229:39–47

    Article  Google Scholar 

  • Tommerdahl, M, Whitsel BL, Favorov, OV, Metz CB, O’Quinn BL (1999) Responses of contralateral SI and SII in cat to same-site cutaneous flutter versus vibration. J Neurophysiol 82:1982–1992

    Google Scholar 

  • Toop J, Burke RE, Dum BP, O’Donovan MJ, Smith CB (1982) 2-deoxyglucose autoradiography of single motor units: labeling of individual acutely active muscle fibers. J Neurosci Meth 5:283–289

    Article  Google Scholar 

  • Tusa RJ, Rosenquist AC, Palmer LA (1981) Multiple cortical visual areas: Visual field topography in the cat. In: Woolsey CN (ed) Cortical sensory organization: multiple visual areas. Humana, Clifton, NJ, pp 1–31

  • Updyke BV (1981) Projections from visual areas of the middle suprasylvian sulcus onto the lateral posterior complex and adjacent thalamic nuclei in the cat. J Comp Neurol 201:477–506

    Google Scholar 

  • Vanduffel W, Vandenbussche E, Singer W, Orban GA (1995) Metabolic mapping of visual areas in the behaving cat: a [14C]2-deoxyglucose study. J Comp Neurol 354:161–180

    Article  Google Scholar 

  • Vanduffel W, Payne BR, Lomber SG, Orban GA (1997) Functional impact of cerebral connections. Proc Natl Acad Sci USA 94:7617–7620

    Article  Google Scholar 

  • Vuilleumier P, Hester D, Assal G, Regli F (1996) Unilateral spatial neglect recovery after sequential strokes. Neurology 1:184–189

    Google Scholar 

  • Walsh V, Pascual-Leone A (2003) Neurochronometrics of mind: TMS in cognitive science. MIT Press, Cambridge, MA

    Google Scholar 

  • Weissman JD, Epstein CM, Davey KR (1992) Magnetic brain stimulation and brain size: relevance to animal studies. Electroen Clin Neuro 85:215–219

    Google Scholar 

Download references

Acknowledgements

Sadly, since the initial submission of this manuscript, Prof. Bertram Payne passed away, and this paper is dedicated to his memory. The experimental work at Boston University School of Medicine was supported by NS32137 and NS47754 (BRP), and the personnel were supported by: “La Caixa” (Spain) and the Spanish Ministry of Science and Technology (AV-C); NS44624 (RJR); NSF (SGL); K24 RR018875, the National Alliance for Research in Schizophrenia and Depression and the Goldberg Fund (APL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Valero-Cabré.

Additional information

B.R. Payne has passed away since this paper was completed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valero-Cabré, A., Payne, B.R., Rushmore, J. et al. Impact of repetitive transcranial magnetic stimulation of the parietal cortex on metabolic brain activity: a 14C-2DG tracing study in the cat. Exp Brain Res 163, 1–12 (2005). https://doi.org/10.1007/s00221-004-2140-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-2140-6

Keywords

Navigation