Skip to main content
Log in

Functional asymmetry and interhemispheric cooperation in the perception of emotions from facial expressions

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The present study used the redundant target paradigm on healthy subjects to investigate functional hemispheric asymmetries and interhemispheric cooperation in the perception of emotions from faces. In Experiment 1 participants responded to checkerboards presented either unilaterally to the left (LVF) or right visual half field (RVF), or simultaneously to both hemifields (BVF), while performing a pointing task for the control of eye movements. As previously reported (Miniussi et al. in J Cogn Neurosci 10:216–230, 1998), redundant stimulation led to shorter latencies for stimulus detection (bilateral gain or redundant target effect, RTE) that exceeded the limit for a probabilistic interpretation, thereby validating the pointing procedure and supporting interhemispheric cooperation. In Experiment 2 the same pointing procedure was used in a go/no-go task requiring subjects to respond when seeing a target emotional expression (happy or fearful, counterbalanced between blocks). Faster reaction times to unilateral LVF than RVF emotions, regardless of valence, indicate that the perception of positive and negative emotional faces is lateralized toward the right hemisphere. Simultaneous presentation of two congruent emotional faces, either happy or fearful, produced an RTE that cannot be explained by probability summation and suggests interhemispheric cooperation and neural summation. No such effect was present with BVF incongruent facial expressions. In Experiment 3 we studied whether the RTE for emotional faces depends on the physical identity between BVF stimuli, and we set a second BVF congruent condition in which there was only emotional but not physical or gender identity between stimuli (i.e. two different faces expressing the same emotion). The RTE and interhemispheric cooperation were present also in this second BVF congruent condition. This shows that emotional congruency is the sufficient condition for the RTE to take place in the intact brain and that the cerebral hemispheres can interact in spite of physical differences between stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig 9
Fig. 10
Fig. 11
Fig 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. In principle, the RTE and the violation of the inequality test in Experiment 3 might be consistent also with the interactive race model put forth by Mordkoff and Yantis (1991), and not only with neural coactivation and interhemispheric summation. Indeed, since both the BVF conditions in go trials were congruent (i.e. a BVF incongruent condition with one target and one non-target was lacking in this experiment), Experiment 3 introduced contingencies among stimulus events that were absent in Experiment 2 and that might have favoured the RTE and inequality violations. To test whether our participants were, in fact, sensitive to these contingencies, we performed a direct comparison of the mean RTs between identical conditions in Experiment 2 (free of biased contingencies) and 3 (i.e. LVF, RVF, and BVF congruent identity conditions). Thus, we conducted a 2×2×3 ANOVA with the between-subjects factor of experiment (Exp. 2 vs. Exp. 3) and the within-subjects factors of facial expression (happy vs. fearful) and stimulus condition (unilateral LVF, RVF, and BVF congruent identity). The results showed a significant main effect of facial expression [F(1,43)=45.51, P<0.0001] and stimulus condition [F(2,86)=30.99, P<0.0001]. Importantly, the main effect of experiment [F(1,43)=0.035, P>0.85] and the experiment × facial expression [F(1,43)=0.03, P>0.86], experiment × stimulus condition [F(2,86)=0.31, P>0.73] and experiment × facial expression × stimulus condition [F(2,86)=0.06, P>0.93] interactions were all non-significant, with the largest difference between comparable conditions in Experiment 2 and 3 equal to 5.44 ms. This clearly indicates that the potentially useful information in favour of an enhanced bilateral gain present in Experiment 3 was not actually used by our subjects who performed as in Experiment 2 free of biased contingencies. Thus, even in this third experiment, the RTE and the violation of the inequality test in both the BVF conditions is likely to be the result of neural coactivation and interhemispheric summation rather than of interactive separate activation.

References

  • Adolphs R (2002) Recognizing emotion from facial expressions: psychological and neurological mechanisms. Behav Cogn Neurosci Rev 1:21–61

    Article  PubMed  Google Scholar 

  • Adolphs R, Damasio H, Tranel D, Cooper G, Damasio AR (2000) A role for somatosensory cortices in the visual recognition of emotion as revealed by three-dimensional lesion mapping. J Neurosci 20:2683–2690

    PubMed  CAS  Google Scholar 

  • Adolphs R, Jansari A, Tranel D (2001) Hemispheric perception of emotional valence from facial expressions. Neuropsychology 15:516–524

    Article  PubMed  CAS  Google Scholar 

  • Baumeister RF, Bratslavsky E, Finkenauer C, Vohs KD (2001) Bad is stronger than good. Rev Gen Psychol 5:323–370

    Article  Google Scholar 

  • Billings LS, Harrison DW, Alden JD (1993) Age differences among women in the functional asymmetry for bias in facial affect perception. B Psychonomic Soc 31:317–320

    Google Scholar 

  • Bisiach E, Vallar G, Geminiani G (1989) Influence of response modality on perceptual awareness of contralesional visual stimuli. Brain 112:1627–1636

    Article  PubMed  Google Scholar 

  • Blonder LX, Bowers D, Heilman KM (1991) The role of the right hemisphere in emotional communication. Brain 114:1115–1127

    Article  PubMed  Google Scholar 

  • Borod JC (1992) Interhemispheric and intrahemispheric control of emotion: a focus on unilateral brain damage. J Consult Clin Psychol 60:339–348

    Article  PubMed  CAS  Google Scholar 

  • Borod JC (1993) Cerebral mechanisms underlying facial, prosodic, and lexical emotional expression: a review of neuropsychological studies and methodological issues. Neuropsychology 7:445–463

    Article  Google Scholar 

  • Borod JC, Koff E, Lorch MP, Nicholas M (1986) The expression and perception of facial emotion in brain-damaged patients. Neuropsychologia 24:169–180

    Article  PubMed  CAS  Google Scholar 

  • Borod JC, Obler LK, Erhan HM, Grunwald IS, Cicero BA, Welkowitz J, Santschi C, Agosti RM, Whalen JR (1998) Right hemisphere emotional perception: evidence across multiple channels. Neuropsychology 12:446–458

    Article  PubMed  CAS  Google Scholar 

  • Bowers D, Bauer RM, Coslett HB, Heilman KM (1985) Processing of faces by patients with unilateral hemisphere lesions. Brain Cogn 4:258–272

    Article  PubMed  CAS  Google Scholar 

  • Bryden MP (1982) Laterality: functional asymmetry in the intact brain. Academic, New York

    Google Scholar 

  • Bryden MP, Ley RG (1983) Right-hemispheric involvement in the perception and expression of emotion in normal humans. In: Heilman KM, Satz P (eds) Neuropsychology of human emotion. Guilford Press, New York, pp 6–44

    Google Scholar 

  • Canli T (1999) Hemispheric asymmetry in the experience of emotion: a perspective from functional imaging. Neuroscientist 5:201–207

    Article  Google Scholar 

  • Christman SD, Hackworth MD (1993) Equivalent perceptual asymmetries for free viewing of positive and negative emotional expressions in chimeric faces. Neuropsychologia 31:621–624

    Article  PubMed  CAS  Google Scholar 

  • Colonius H (1986) Measuring channel dependence in separate activation models. Percept Psychophys 40:251–255

    PubMed  CAS  Google Scholar 

  • Colonius H (1988) Modelling the redundant signal effect by specifying the hazard function. Percept Psychophys 43:604–606

    PubMed  CAS  Google Scholar 

  • Compton RJ, Feigenson K, Widick P (2005) Take it to the bridge: an interhemispheric processing advantage for emotional faces. Cogn Brain Res

  • Corballis MC (1995) Visual integration in the split brain. Neuropsychologia 33:937–959

    Article  PubMed  CAS  Google Scholar 

  • Corballis MC (1998) Interhemispheric neural summation in the absence of the corpus callosum. Brain 121:1795–1807

    Article  PubMed  Google Scholar 

  • Corballis MC (2002) Hemispheric interactions in simple reaction time. Neuropsychologia 40:423–434

    Article  PubMed  Google Scholar 

  • Corballis MC, Hamm JP, Barnett KJ, Corballis PM (2002) Paradoxical interhemispheric summation in the split brain. J Cogn Neurosci 14:1151–1157

    Article  PubMed  Google Scholar 

  • Corballis MC, Corballis PM, Fabri M (2003) Redundancy gain in simple reaction time following partial and complete callosotomy. Neuropsychologia 42:71–81

    Article  Google Scholar 

  • Crews WD, Harrison DW (1994) Cerebral asymmetry in facial affect perception by women: neuropsychological effects of depressive mood. Percept Motor Skill 79:1667–1679

    Google Scholar 

  • Davidson RJ (1993) Cerebral asymmetry and emotion: conceptual and methodological conundrums. Cogn Emot 7:115–138

    Article  Google Scholar 

  • Davidson RJ (1995) Cerebral asymmetry, emotion, and affective style. In: Davidson RJ, Hugdahl K (eds) Brain asymmetry. MIT Press, Cambridge, pp 361–387

    Google Scholar 

  • Davidson RJ, Hugdahl K (1995) Brain asymmetry. MIT Press, Cambridge

    Google Scholar 

  • DeKosky ST, Heilman KM, Bowers D, Valenstein E (1980) Recognition and discrimination of emotional faces and pictures. Brain Lang 9:206–214

    Article  PubMed  CAS  Google Scholar 

  • Dimond S, Beaumont G (1972) Processing in perceptual integration between and within the cerebral hemispheres. Brit J Psychol 63:509–514

    PubMed  CAS  Google Scholar 

  • Ducci L (1981) Reaction times in the recognition of facial expressions of emotion. Ital J Psychol 8:183–193

    Google Scholar 

  • Ekman P, Friesen W (1976) Pictures of facial affect. Consulting Psychologists Press, Palo Alto

    Google Scholar 

  • Fabre-Thorpe M, Delorme A, Marlot C, Thorpe S (2001) A limit to the speed of processing in ultra-rapid visual categorization of novel natural scenes. J Cogn Neurosci 13:171–180

    Article  PubMed  CAS  Google Scholar 

  • Feyereisen P, Malet C, Martin Y (1986) Is the faster processing of expressions of happiness modality-specific? In: Ellis HD, Jeeves MA, Newcombe F, Young A (eds) Aspects of face processing. Martinus Nijhoff, Boston, pp 349–355

    Google Scholar 

  • Forster B, Corballis MC (2000) Interhemispheric transfer of colour and shape information in the presence and absence of the corpus callosum. Neuropsychologia 38:32–45

    Article  PubMed  CAS  Google Scholar 

  • Fournier LR, Eriksen CW (1990) Coactivation in the perception of redundant targets. J Exp Psychol Hum Percept Perform 16:538–550

    Article  PubMed  CAS  Google Scholar 

  • Fried I, Mateer C, Ojemann G, Wohns R, Fedio P (1982) Organization of visuospatial functions in human cortex. Brain 105:349–371

    Article  PubMed  CAS  Google Scholar 

  • Gainotti G (1972) Emotional behaviour and hemispheric side of lesion. Cortex 8:41–55

    PubMed  CAS  Google Scholar 

  • Gainotti G (1984) Some methodological problems in the study of the relationships between emotions and cerebral dominance. J Clin Neuropsych 6:111–121

    Article  CAS  Google Scholar 

  • Gainotti G (2000) Neuropsychological theories of emotions. In: Borod J (ed) The neuropsychology of emotions. Oxford University Press, New York, pp 214–238

    Google Scholar 

  • Gainotti G (2001) Disorders of emotional behaviour. J Neurol 248:743–749

    Article  PubMed  CAS  Google Scholar 

  • Gazzaniga MS (2000) Cerebral specialization and interhemispheric communication. Does the corpus callosum enable the human condition? Brain 123:1293–1326

    Article  PubMed  Google Scholar 

  • de Gelder B, Pourtois G, van Raamsdonk M, Vroomen J, Weiskrantz L (2001) Unseen stimuli modulate conscious visual experience: evidence from inter-hemispheric summation. Neuroreport 12:385–391

    Article  PubMed  Google Scholar 

  • Grice GR, Canham L (1990) Redundancy phenomena are affected by response requirements. Percept Psychophys 48:209–213

    PubMed  CAS  Google Scholar 

  • Grice GR, Reed JM (1992) What makes targets redundant? Percept Psychophys 51:437–442

    PubMed  CAS  Google Scholar 

  • de Haan M, Nelson CA, Gunnar MR, Tout KA (1998) Hemispheric differences in brain activity related to the recognition of emotional expressions by 5-year-old children. Dev Neuropsychol 14:495–518

    Google Scholar 

  • Harrison DW, Corelczenko PM, Cook J (1990) Sex differences in the functional asymmetry for facial affect perception. Int J Neurosci 52:11–16

    Article  PubMed  CAS  Google Scholar 

  • Hasbrooke RE, Chiarello C (1998) Bihemispheric processing of redundant bilateral lexical information. Neuropsychology 12:78–94

    Article  PubMed  CAS  Google Scholar 

  • Hellige JB (1993) Hemispheric asymmetry: what’s right and what’s left. Harvard University Press, Cambridge

    Google Scholar 

  • Hoptman MJ, Davidson RJ (1994) How and why do the two cerebral hemispheres interact? Psychol Bull 116:195–219

    Article  PubMed  CAS  Google Scholar 

  • Hugdahl K, Iversen PM, Johnsen BH (1993) Laterality for facial expressions: does the sex of the subjects interact with the sex of the stimulus face? Cortex 29:325–331

    PubMed  CAS  Google Scholar 

  • Iacoboni M, Zaidel E (2003) Interhemispheric visuo-motor integration in humans: the effect of redundant targets. Eur J Neurosci 17:1981–1986

    Article  PubMed  Google Scholar 

  • Iacoboni M, Ptito A, Weekes NY, Zaidel E (2000) Parallel visuomotor processing in the split brain: cortico–subcortical interactions. Brain 123:759–769

    Article  PubMed  Google Scholar 

  • Jackson JH (1874) On the nature of the duality of the brain. Med Press Circ 1:41–44

    Google Scholar 

  • Jackson JH (1880) On affections of speech from disease of the brain. Brain 2:203–222

    Article  Google Scholar 

  • Johnston PJ, Katsikitis M, Carr VJ (2001) A generalized deficit can account for problems in facial emotion recognition in schizophrenia. Biol Psychol 58:203–227

    Article  PubMed  CAS  Google Scholar 

  • Kirita T, Endo M (1995) Happy-face advantage in recognizing facial expressions. Acta Psychol 89:149–163

    Article  Google Scholar 

  • Koivisto M (2000) Interhemispheric interaction in semantic categorization of pictures. Cognit Brain Res 9:45–51

    Article  CAS  Google Scholar 

  • Lane RD, Kivley LS, Du Bois MA, Shamasundara P, Schartz GE (1995) Levels of emotional awareness and the degree of right hemispheric dominance in the perception of facial emotion. Neuropsychologia 33:525–538

    Article  PubMed  CAS  Google Scholar 

  • Leppänen JM, Tenhunen M, Hietanen JK (2003) Faster choice-reaction times to positive than negative facial expressions. J Psychophysiol 17:113–123

    Article  Google Scholar 

  • Marks NL, Hellige JB (1999) Effects of bilateral stimulation and stimulus redundancy on interhemispheric interaction. Neuropsychology 13:475–487

    Article  PubMed  CAS  Google Scholar 

  • Marks NL, Hellige JB (2003) Interhemispheric interaction in bilateral redundancy gain: effects of stimulus format. Neuropsychology 17:578–593

    Article  PubMed  Google Scholar 

  • Marzi CA, Tassinari G, Aglioti S, Lutzemberger L (1986) Spatial summation across the vertical meridian in hemianopics: a test of blindsight. Neuropsychologia 24:749–758

    Article  PubMed  CAS  Google Scholar 

  • Marzi CA, Smania N, Martini MC, Gambina G, Tomelleri G, Palamara A, Alessandrini F, Prior M (1996) Implicit redundant-targets effect in visual extinction. Neuropsychologia 34:9–22

    Article  PubMed  CAS  Google Scholar 

  • Miller J (1982) Divided attention: evidence for coactivation with redundant signals. Cogn Psychol 14:247–279

    Article  CAS  PubMed  Google Scholar 

  • Miller J (1986) Timecourse of coactivation in bimodal divided attention. Percept Psychophys 40:331–343

    PubMed  CAS  Google Scholar 

  • Mills CK (1912a) The cerebral mechanism of emotional expression. T Coll Physician Philadelphia 34:381–390

    Google Scholar 

  • Mills CK (1912b) The cortical representation of emotion, with a discussion of some points in the general nervous mechanisms of expression in its relation to organic nervous disease and insanity. Proceedings of the American Medico-Psychological Association 19:297–300

    Google Scholar 

  • Miniussi C, Girelli M, Marzi CA (1998) Neural site of the redundant target effect: electrophysiological evidence. J Cogn Neurosci 10:216–230

    Article  PubMed  CAS  Google Scholar 

  • Mohr B, Pulvermüller F, Rayman J, Zaidel E (1994) Interhemispheric cooperation during lexical processing is mediated by the corpus callosum: evidence from split-brain. Neurosci Lett 181:17–21

    Article  PubMed  CAS  Google Scholar 

  • Mohr B, Pulvermüller F, Mittelstädt K, Rayman J (1996) Multiple simultaneous stimulus presentation facilitates lexical processing. Neuropsychologia 34:1003–1013

    Article  PubMed  CAS  Google Scholar 

  • Mohr B, Landgrebe A, Schweinberger SR (2002) Interhemispheric cooperation for familiar but not unfamiliar face perception. Neuropsychologia 40:1841–1848

    Article  PubMed  Google Scholar 

  • Mordkoff JT, Miller J (1993) Redundancy gains and coactivation with two different targets: the problem of target preferences and the effects of display frequency. Percept Psychophys 53:527–535

    PubMed  CAS  Google Scholar 

  • Mordkoff JT, Yantis S (1991) An interactive race model of divided attention. J Exp Psychol Hum Percep Perform 17:520–538

    Article  CAS  Google Scholar 

  • Mordkoff JT, Yantis S (1993) Dividing attention between color and shape: evidence of coactivation. Percept Psychophys 53:357–366

    PubMed  CAS  Google Scholar 

  • Morris RD, Hopkins WD (1993) Perception of human chimeric faces by chimpanzees: evidence for a right hemisphere advantage. Brain Cogn 21:111–122

    Article  PubMed  CAS  Google Scholar 

  • Noesselt T, Driver J, Heinze HJ, Dolan R (2005) Asymmetrical activation in the human brain during processing of fearful faces. Curr Biol 15:424–429

    Article  PubMed  CAS  Google Scholar 

  • Oatley KJ, Johnson-Laird PN (1987) Towards a cognitive theory of emotions. Cogn Emot 1:29–50

    Article  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Olk B, Hartje W (2001) The bilateral effect: callosal inhibition or intrahemispheric competition? Brain Cogn 45:317–324

    Article  PubMed  CAS  Google Scholar 

  • Panksepp J (1998) Affective neuroscience. Oxford University Press, New York

    Google Scholar 

  • Plutchik R (1980) Emotion: a psychoevolutionary synthesis. Harper and Row, New York

    Google Scholar 

  • Pulvermüller F, Mohr B (1996) The concept of transcortical cell assemblies: a key to the understanding of cortical lateralization and interhemispheric interaction. Neurosci Biobehav Rev 20:557–566

    Article  PubMed  Google Scholar 

  • Raab D (1962) Statistical facilitation on simple reaction times. T New York Acad Sci 24:574–590

    CAS  Google Scholar 

  • Ratcliff R (1979) Group reaction time distributions and an analysis of distribution statistics. Psychol Bull 86:446–461

    Article  PubMed  CAS  Google Scholar 

  • Ratinckx E, Brysbaert M (2002) Interhemispheric stroop-like interference in number comparison: evidence for strong interhemispheric integration of semantic number information. Neuropsychology 16:217–229

    Article  PubMed  Google Scholar 

  • Reuter-Lorenz PA, Nozawa G, Gazzaniga MS, Hughes HC (1994) Fate of neglected targets: a chronometric analysis of redundant target effects in the bisected brain. J Exp Psychol Hum Percep Perform 21:211–230

    Article  Google Scholar 

  • Roser M, Corballis MC (2002) Interhemispheric neural summation in the split brain with symmetrical and asymmetrical displays. Neuropsychologia 40:1300–1312

    Article  PubMed  Google Scholar 

  • Roser M, Corballis MC (2003) Interhemispheric neural summation in the split brain: effects of stimulus colour and task. Neuropsychologia 41:830–846

    Article  PubMed  Google Scholar 

  • Sackeim HA, Greenberg MS, Weiman AL, Gur RC, Hungerbuhler JP, Geschwind N (1982) Hemispheric asymmetry in the expression of positive and negative emotions: neurologic evidence. Arch Neurol 39:210–218

    PubMed  CAS  Google Scholar 

  • Savazzi S, Marzi CA (2002) Speeding up reaction time with invisible stimuli. Curr Biol 12:403–407

    Article  PubMed  CAS  Google Scholar 

  • Schwartz W (1989) A new model to explain the redundant-signal effect. Percept Psychophys 46:498–500

    PubMed  Google Scholar 

  • Schweinberger SR, Sommer W, Stiller RM (1994) Event-related potentials and models of performance asymmetries in face and word recognition. Neuropsychologia 32:175–191

    Article  PubMed  CAS  Google Scholar 

  • Schweinberger SR, Baird LM, Blümler M, Kaufmann JM, Mohr B (2003) Interhemispheric cooperation for face recognition but not for affective facial expressions. Neuropsychologia 41:407–414

    Article  PubMed  Google Scholar 

  • Sperry RW, Gazzaniga MS, Bogen JL (1969) Interhemispheric relationships: the neocortical commissures; syndromes of hemisphere disconnection. In: Vinker PJ, Bruyn GW (eds) Handbook of clinical neurology. North-Holland, Amsterdam, pp 273–290

    Google Scholar 

  • Stalans L, Wedding D (1985) Superiority of the left hemisphere in the recognition of emotional faces. Int J Neurosci 25:219–233

    Article  PubMed  CAS  Google Scholar 

  • Stanners RF, Byrd DM, Gabriel R (1985) The time it takes to identify facial expressions: effects of age gender of subject, sex of sender, and type of expressions. J Nonverbal Behav 9:201–213

    Article  Google Scholar 

  • Tomaiuolo F, Ptito M, Marzi CA, Paus T, Ptito A (1997) Blindsight in hemispherectomized patients as revealed by spatial summation across the vertical meridian. Brain 120:795–803

    Article  PubMed  Google Scholar 

  • Townsend JT, Ashby FG (1983) Stochastic modelling of elementary psychological processes. Cambridge University Press, Cambridge

    Google Scholar 

  • Ulrich R, Giray M (1986) Separate-activation models with variable base time: testability and checking of cross-channel dependency. Percept Psychophys 39:248–254

    PubMed  CAS  Google Scholar 

  • Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci (in press)

  • Zaidel E, Rayman J (1994) Interhemispheric control in the normal brain: evidence from redundant bilateral presentations. In: Umiltà C, Moscovitch M (eds) Attention and performance XV. Conscious and nonconscious information processing. The MIT Press, Cambridge, pp 477–504

    Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Ordine Mauriziano di Torino to M. Tamietto. We wish to warmly thank Silvia Savazzi for her valuable comments and help in computing the CDFs for the inequality test. Thanks are due to the anonymous Reviewer 1 for the helpful remarks and critiques. Thanks also to Sonia Cosentino and Emanuela Rocci for their support in testing and to Silvia Testa for help in data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Tamietto.

Additional information

This work was supported by a grant from the Ordine Mauriziano di Torino to M.Tamietto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamietto, M., Latini Corazzini, L., de Gelder, B. et al. Functional asymmetry and interhemispheric cooperation in the perception of emotions from facial expressions. Exp Brain Res 171, 389–404 (2006). https://doi.org/10.1007/s00221-005-0279-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0279-4

Keywords

Navigation