Skip to main content

Advertisement

Log in

Neuroleptic drugs in the human brain

Clinical impact of persistence and region-specific distribution

  • SPECIAL ISSUE
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

After discontinuation of neuroleptic agents, their effects are still present for a long time. The exact underlaying mechanisms are still unclear. In two previous studies we measured the concentrations and region-specific distribution of haloperidol (Kornhuber et al. 1999) and levomepromazine (Kornhuber et al. 2006) in postmortem human brain tissues. The aim of the present paper is to compare the results of these two studies. Even after short-term treatment, haloperidol and levomepromazine concentrations reach high levels in human brain tissue. Haloperidol concentrations in brain tissue are 10–30 times higher than the optimum serum concentrations in the treatment of schizophrenia. The brain-to-blood concentration ratio of levomepromazine is about 10. The estimated elimination half-life of these drugs in brain tissue are 6.8 days (haloperidol), 7.9 days (levomepromazine) and 27.8 days for the metabolite desmethyl-levomepromazine, respectively. After two half-lives (about 2 weeks), a considerable amount of drug remains in brain tissue. Haloperidol concentrations appeared to be homogeneously distributed across different brain areas, whereas levomepromazine shows a region-specific distribution, with highest values in the basal ganglia. The persistence of neuroleptic drugs in the human brain might explain their prolonged effects and side effects. The region-specific distribution of levomepromazine may increase our understanding of both the preferential toxicity of neuroleptic drugs against basal ganglia structures and higher basal ganglia volumes in patients treated with neuroleptics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Addonizio G, Susman VL, Roth SD (1987) Neuroleptic malignant syndrome: review and analysis of 115 cases. Biol Psychiatry 22:1004–1020

    Article  PubMed  CAS  Google Scholar 

  • Afifi A-HM, Way EL (1968) Studies on the biologic disposition of methotrimeprazine. J Pharmacol Exp Ther 160:397–406

    PubMed  CAS  Google Scholar 

  • Bal A, Smialowska M (1987) The influence of some antidepressant drugs on the nuclear volume of rat cingulate cortex cells in culture. Neuroscience 22:671–674

    Article  PubMed  CAS  Google Scholar 

  • Bal-Klara A, Bird MM (1990) The effects of various antidepressant drugs on the fine-structure of neurons of the cingulate cortex in culture. Neuroscience 37:685–692

    Article  PubMed  CAS  Google Scholar 

  • Baldessarini RJ, Centorrino F, Flood JG, Volpicelli SA, Huston-Lyons D, Cohen BM (1993) Tissue concentrations of clozapine and its metabolites in the rat. Neuropsychopharmacology 9:117–124

    PubMed  CAS  Google Scholar 

  • Beal SL, Sheiner LB (1992) NONMEM Users Guides, NONMEM Project Group, San Francisco. University of California, San Francisco

    Google Scholar 

  • Britto MR, Wedlund PJ (1992) Cytochrome P-450 in the brain. Potential evolutionary and therapeutic relevance of localization of drug-metabolizing enzymes. Drug Metab Dispos 20:446–450

    PubMed  CAS  Google Scholar 

  • Campbell A, Baldessarini RJ, Teicher MH, Kula NS (1985) Prolonged antidopaminergic actions of single doses of butyrophenones in the rat. Psychopharmacology Berl 87:161–166

    Article  PubMed  CAS  Google Scholar 

  • Chakos MH, Liebermann JA, Alvir J, Bilder RM, Ashtari M (1995) Caudate nuclei volumes in schizophrenic patients treated with typical antipsychotics or clozapine. Lancet 345:456–457

    Article  PubMed  CAS  Google Scholar 

  • Chakos MH, Shirakawa O, Lieberman J, Lee H, Bilder R, Tamminga CA (1998) Striatal enlargement in rats chronically treated with neuroleptic. Biol Psychiatry 44:675–684

    Article  PubMed  CAS  Google Scholar 

  • Cohen BM, Tsuneizumi T, Baldessarini RJ, Campbell A, Babb SM (1992) Differences between antipsychotic drugs in persistence of brain levels and behavioral effects. Psychopharmacology Berl 108:338–344

    Article  PubMed  CAS  Google Scholar 

  • Dahl SG (1976) Pharmacokinetics of methotrimeprazine after single and multiple doses. Clin Pharmacol Ther 19:435–442

    PubMed  CAS  Google Scholar 

  • Dahl SG, Strandjord RE, Sigfusson S (1977) Pharmacokinetics and relative bioavailability of levomepromazine after repeated administration of tablets and syrup. Eur J Clin Pharmacol 11:305–310

    Article  PubMed  CAS  Google Scholar 

  • Daniel WA, Haduch A, Wojcikowski J (2005) Inhibition of rat liver CYP2D in vitro and after 1–day and long-term exposure to neuroleptics in vivo-possible involvement of different mechanisms. Eur Neuropsychopharmacol 15:103–110

    Article  PubMed  CAS  Google Scholar 

  • Daniel WA, Wójcikowski J (1997) Contribution of lysosomal trapping to the total tissue uptake of psychotropic drugs. Pharmacol Toxicol 80:62–68

    PubMed  CAS  Google Scholar 

  • Doraiswamy PM, Tupler LA, Krishnan KR (1995) Neuroleptic treatment and caudate plasticity [published erratum appears in Lancet 1995 May 13;345(8959):1250]. Lancet 345:734–735

    Article  PubMed  CAS  Google Scholar 

  • Ereshefsky L, Jann MW, Saklad SR, Davis CM (1986) Bioavailability of psychotropic drugs: historical perspective and pharmacokinetic overview. J Clin Psychiatry 47(Suppl):6–15

    PubMed  CAS  Google Scholar 

  • Farde L, Wiesel F-A, Halldin C, Sedvall G (1988) Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiatry 45:71–76

    PubMed  CAS  Google Scholar 

  • Gemperle AY, Enz A, Pozza MF, Luthi A, Olpe HR (2003) Effects of clozapine, haloperidol and iloperidone on neurotransmission and synaptic plasticity in prefrontal cortex and their accumulation in brain tissue: an in vitro study. Neuroscience 117:681–695

    Article  PubMed  CAS  Google Scholar 

  • Gsell W, Lange KW, Pfeuffer R, Heckers S, Heinsen H, Senitz D, et al. (1993) How to run a brain bank. A report from the Austro-German brain bank. J Neural Transm Suppl 39:31–70

    PubMed  CAS  Google Scholar 

  • Gunne LM, Haggstrom JE, Sjoquist B (1984) Association with persistent neuroleptic-induced dyskinesia of regional changes in brain GABA synthesis. Nature 309:347–349

    Article  PubMed  CAS  Google Scholar 

  • Gur RE, Maany V, Mozley PD, Swanson C, Bilker W, Gur RC (1998) Subcortical MRI volumes in neuroleptic-naive and treated patients with schizophrenia. Am J Psychiatry 155:1711–1717

    PubMed  CAS  Google Scholar 

  • Hals PA, Dahl SG (1994) Effect of levomepromazine and metabolites on debrisoquine hydroxylation in the rat. Pharmacol Toxicol 75:255–260

    PubMed  CAS  Google Scholar 

  • Hara E, Reinach PS, Wen Q, Iserovich P, Fischbarg J (1999) Fluoxetine inhibits K+ transport pathways (K+ efflux, Na+-K+-2Cl- cotransport, and Na+ pump) underlying volume regulation in corneal endothelial cells. J Membr Biol 171:75–85

    Article  PubMed  CAS  Google Scholar 

  • Heckers S, Heinsen H, Heinsen Y, Beckmann H (1991) Cortex, white matter, and basal ganglia in schizophrenia: a volumetric postmortem study. Biol Psychiatry 29:556–566

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann EK, Simonsen LO (1989) Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev 69:315–382

    PubMed  CAS  Google Scholar 

  • Hubbard JW, Ganes D, Midha KK (1987) Prolonged pharmacologic activity of neuroleptic drugs. Arch Gen Psychiatry 44:99–100

    PubMed  CAS  Google Scholar 

  • Janssen PAJ, Soudijn W, Wijngaarden I, Dresse A (1968) Pimozide, a chemically novel, highly potent and orally long-acting neuroleptic drug. III. Regional distribution of pimozide and of haloperidol in the dog brain. Arzneimittelforschung 18:282–287

    PubMed  CAS  Google Scholar 

  • Karson CN, Newton JEO, Livingston R, Jolly JB, Cooper TB, Sprigg J, et al. (1993) Human brain fluoxetine concentrations. J Neuropsychiatry Clin Neurosci 5:322–329

    PubMed  CAS  Google Scholar 

  • Kornhuber J, Quack G, Danysz W, Jellinger K, Danielczyk W, Gsell W, et al. (1995a) Therapeutic brain concentration of the NMDA receptor antagonist amantadine. Neuropharmacology 34:713–721

    Article  CAS  Google Scholar 

  • Kornhuber J, Retz W, Riederer P (1995b) Slow accumulation of psychotropic substances in the human brain. Relationship to therapeutic latency of neuroleptic and antidepressant drugs? J Neural Transm Suppl 46:311–319

    Google Scholar 

  • Kornhuber J, Riederer P, Reynolds GP, Beckmann H, Jellinger K, Gabriel E (1989) 3H-Spiperone binding sites in post-mortem brains from schizophrenic patients: relationship to neuroleptic drug treatment, abnormal movements, and positive symptoms. J Neural Transm 75:1–10

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J, Schultz A, Wiltfang J, Meineke I, Gleiter CH, Zöchling R, et al. (1999) Persistence of haloperidol in human brain tissue. Am J Psychiatry 156:885–890

    PubMed  CAS  Google Scholar 

  • Kornhuber J, Weigmann H, Rörich J, Wiltfang J, Bleich S, Meineke I et al. (2006) Region specific distribution of levomepromazine in the human brain. J Neural Transm 113:387–397

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J, Weller M (1994) Neuroleptic malignant syndrome. Curr Opin Neurol 7:353–357

    Article  PubMed  CAS  Google Scholar 

  • Korpi ER, Kleinman JE, Costakos DT, Linnoila M, Wyatt RJ (1984) Reduced haloperidol in the post-mortem brains of haloperidol-treated patients. Psychiatry Res 11:259–269

    Article  PubMed  CAS  Google Scholar 

  • Kropp S, Kern V, Lange K, Degner D, Hajak G, Kornhuber J, et al. (2005) Oxidative stress during treatment with first- and second-generation antipsychotics. J Neuropsychiatry Clin Neurosci 17:227–231

    PubMed  CAS  Google Scholar 

  • Laduron PM, Janssen PF, Leysen JE (1978) Spiperone: a ligand of choice for neuroleptic receptors. 2. Regional distribution and in vivo displacement of neuroleptic drugs. Biochem Pharmacol 27:317–321

    Article  PubMed  CAS  Google Scholar 

  • McEvoy JP, Hogarty GE, Steingard S (1991) Optimal dose of neuroleptic in acute schizophrenia. A controlled study of the neuroleptic threshold and higher haloperidol dose. Arch Gen Psychiatry 48:739–745

    PubMed  CAS  Google Scholar 

  • Meyer UA, Amrein R, Balant LP, Bertilsson L, Eichelbaum M, Guentert TW, et al. (1996a) Antidepressants and drug-metabolizing enzymes–expert group report. Acta Psychiatr Scand 93:71–79

    CAS  Google Scholar 

  • Meyer UA, Amrein R, Balant LP, Bertilsson L, Eichelbaum M, Guentert TW, et al. (1996b) Antidepressants and drug-metabolizing enzymes–expert group report. Acta Psychiatr Scand 93:71–79

    CAS  Google Scholar 

  • Norris PJ, Hardwick JP, Emson PC (1996) Regional distribution of cytochrome P450 2D1 in the rat central nervous system. J Comp Neurol 366:244–258

    Article  PubMed  CAS  Google Scholar 

  • Öhman R, Larsson M, Nilsson IM, Engel J, Carlsson A (1977) Neurometabolic and behavioural effects of haloperidol in relation to drug levels in serum and brain. Naunyn Schmiedebergs Arch Pharmacol 299:105–114

    Article  PubMed  Google Scholar 

  • Ravindranath V, Bhamre S, Bhagwat SV, Anandatheerthavarada HK, Shankar SK, Tirumalai PS (1995) Xenobiotic metabolism in brain. Toxicol Lett 82–83:633–638

    Article  PubMed  Google Scholar 

  • Schilter B, Omiecinski CJ (1993) Regional distribution and expression modulation of cytochrome P-450 and epoxide hydrolase mRNAs in the rat brain. Mol Pharmacol 44:990–996

    PubMed  CAS  Google Scholar 

  • Sklair-Tavron L, Shi WX, Lane SB, Harris HW, Bunney BS, Nestler EJ (1996) Chronic morphine induces visible changes in the morphology of mesolimbic dopamine neurons. Proc Natl Acad Sci USA 93:11202–11207

    Article  PubMed  CAS  Google Scholar 

  • Squires RF, Saederup E (1997) Clozapine and some other antipsychotic drugs may preferentially block the same subset of GABA(A) receptors. Neurochem Res 22:151–162

    Article  PubMed  CAS  Google Scholar 

  • Sunderland T, Cohen BM (1987) Blood to brain distribution of neuroleptics. Psychiatry Res 20:299–305

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga H, Kudo K, Imamura T, Jitsufuchi N, Ohtsuka Y, Ikeda N (1997) Plasma concentrations of antipsychotic drugs in psychiatric inpatients. Nippon Hoigaku Zasshi 51:417–422

    PubMed  CAS  Google Scholar 

  • Tsuneizumi T, Babb SM, Cohen BM (1992) Drug distribution between blood and brain as a determinant of antipsychotic drug effects. Biol Psychiatry 32:817–824

    Article  PubMed  CAS  Google Scholar 

  • Viguera AC, Baldessarini RJ, Hegarty JD, van Kammen DP, Tohen M (1997) Clinical risk following abrupt and gradual withdrawal of maintenance neuroleptic treatment. Arch Gen Psychiatry 54:49–55

    PubMed  CAS  Google Scholar 

  • Volavka J, Cooper TB, Czobor P, Meisner M (1995) Plasma haloperidol levels and clinical effects in schizophrenia and schizoaffective disorder. Arch Gen Psychiatry 52:837–845

    PubMed  CAS  Google Scholar 

  • Weigmann H, Hartter S, Fischer V, Dahmen N, Hiemke C (1999) Distribution of clozapine and desmethylclozapine between blood and brain in rats. Eur Neuropsychopharmacol 9:253–256

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Kornhuber MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kornhuber, J., Wiltfang, J., Riederer, P. et al. Neuroleptic drugs in the human brain. Eur Arch Psychiatry Clin Neurosci 256, 274–280 (2006). https://doi.org/10.1007/s00406-006-0661-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-006-0661-7

Key words

Navigation