Skip to main content

Advertisement

Log in

Turning it Upside Down: Areas of Preserved Cognitive Function in Schizophrenia

  • Review
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

Patients with schizophrenia demonstrate marked impairments on most clinical neuropsychological tests. These findings suggest that patients suffer from a generalized form of cognitive impairment, with little evidence of spared performance documented in several large meta-analytic reviews of the clinical literature. In contrast, we review evidence for relative sparing of aspects of attention, procedural memory, and emotional processing observed in studies that have employed experimental approaches adapted from the cognitive and affective neuroscience literature. These islands of preserved performance suggest that the cognitive deficits in schizophrenia are not as general as they appear to be when assayed with clinical neuropsychological methods. The apparent contradiction in findings across methods may offer important clues about the nature of cognitive impairment in schizophrenia. The documentation of preserved cognitive function in schizophrenia may serve to sharpen hypotheses about the biological mechanisms that are implicated in the illness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aleman, A., Hijman, R., de Haan, E. H., & Kahn, R. S. (1999). Memory impairment in schizophrenia: a meta-analysis. The American Journal of Psychiatry, 156, 1358–1366.

    PubMed  CAS  Google Scholar 

  • Ashby, F. G., Noble, S., Filoteo, J. V., Waldron, E. M., & Ell, S. W. (2003). Category learning deficits in Parkinson's disease. Neuropsychology, 17, 115–124. doi:10.1037/0894-4105.17.1.115.

    PubMed  Google Scholar 

  • Atallah, H. E., Frank, M. J., & O'Reilly, R. C. (2004). Hippocampus, cortex, and basal ganglia: insights from computational models of complementary learning systems. Neurobiology of Learning and Memory, 82, 253–267. doi:10.1016/j.nlm.2004.06.004.

    PubMed  Google Scholar 

  • Baddeley, A. D. (1986). Working memory. Oxford: UK.

    Google Scholar 

  • Barch, D. M., Carter, C. S., Arnsten, A., Buchanan, R. W., Cohen, J. D., Geyer, M., et al. (2009). Selecting Paradigms From Cognitive Neuroscience for Translation into Use in Clinical Trials: Proceedings of the Third CNTRICS Meeting. Schizophrenia Bulletin, 35, 109–114. doi:10.1093/schbul/sbn163.

    PubMed  Google Scholar 

  • Barch, D. M., Yodkovik, N., Sypher-Locke, H., & Hanewinkel, M. (2008). Intrinsic motivation in schizophrenia: relationships to cognitive function, depression, anxiety, and personality. Journal of Abnormal Psychology, 117, 776–787. doi:10.1037/a0013944.

    PubMed  Google Scholar 

  • Barch, D. M., & Smith, E. (2008). The cognitive neuroscience of working memory: relevance to CNTRICS and schizophrenia. Biological Psychiatry, 64, 11–17. doi:10.1016/j.biopsych.2008.03.003.

    PubMed  Google Scholar 

  • Barch, D. M. (2005). The relationships among cognition, motivation, and emotion in schizophrenia: How much and how little we know. Schizophrenia Bulletin, 31, 875–881. doi:10.1093/schbul/sbi040.

    PubMed  Google Scholar 

  • Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7–15. doi:10.1016/0010-0277(94)90018-3.

    PubMed  CAS  Google Scholar 

  • Beninger, R. J., Wasserman, J., Zanibbi, K., Charbonneau, D., Mangels, J., & Beninger, B. V. (2003). Typical and atypical antipsychotic medications differentially affect two nondeclarative memory tasks in schizophrenic patients: a double dissociation. Schizophrenia Research, 61, 281–292. doi:10.1016/S0920-9964(02)00315-8.

    PubMed  Google Scholar 

  • Bozikas, V. P., Kosmidis, M. H., Anezoulaki, D., Giannakou, M., & Karavatos, A. (2004). Relationship of affect recognition with psychopathology and cognitive performance in schizophrenia. Journal of the International Neuropsychological Society, 10(4), 549–558. doi:10.1017/S1355617704104074.

    PubMed  Google Scholar 

  • Bradley, M. M., Codispoti, M., Cuthbert, B. N., & Lang, P. J. (2001). Emotion and motivation I: defensive and appetitive reactions in picture processing. Emotion (Washington, D.C.), 1, 276–298.

    CAS  Google Scholar 

  • Bradley, M. M., Lang, P. J., & Cuthbert, B. N. (1993). Emotion, novelty, and the startle reflex: habituation in humans. Behavioral Neuroscience, 107, 970–980. doi:10.1037/0735-7044.107.6.970.

    PubMed  CAS  Google Scholar 

  • Buchsbaum, M. S., Haier, R. J., Potkin, S. G., Nuechterlein, K., Bracha, H. S., Katz, M., et al. (1992). Frontostriatal disorder of cerebral metabolism in never-medicated schizophrenics. Archives of General Psychiatry, 49, 935–942.

    PubMed  CAS  Google Scholar 

  • Bustillo, J. R., Thaker, G., Buchanan, R. W., Moran, M., Kirkpatrick, B., & Carpenter, W. T., Jr. (1997). Visual information-processing impairments in deficit and nondeficit schizophrenia. The American Journal of Psychiatry, 154, 647–654.

    PubMed  CAS  Google Scholar 

  • Bylsma, F. W., Brandt, J., & Strauss, M. E. (1990). Aspects of procedural memory are differentially impaired in Huntington's disease. Archives of Clinical Neuropsychology, 5, 287–297.

    PubMed  CAS  Google Scholar 

  • Carter, C. S., Robertson, L. C., Chaderjian, M. R., Celaya, L. J., & Nordahl, T. E. (1992). Attentional asymmetry in schizophrenia: controlled and automatic processes. Biological Psychiatry, 31, 909–918. doi:10.1016/0006-3223(92)90117-I.

    PubMed  CAS  Google Scholar 

  • Carter, C. S., Robertson, L. C., Chaderjian, M. R., O'Shora-Celaya, L., & Nordahl, T. E. (1994). Attentional asymmetry in schizophrenia: the role of illness subtype and symptomatology. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 18, 661–683. doi:10.1016/0278-5846(94)90075-2.

    CAS  Google Scholar 

  • Cautin, R. L. (2008). David Shakow and schizophrenia research at Worcester State Hospital: the roots of the scientist-practitioner model. Journal of the History of the Behavioral Sciences, 44, 219–237. doi:10.1002/jhbs.20312.

    PubMed  Google Scholar 

  • Cepeda, C., Wu, N., André, V. M., Cummings, D. M., & Levine, M. S. (2007). The corticostriatal pathway in Huntington's disease. Progress in Neurobiology, 81, 253–271. doi:10.1016/j.pneurobio.2006.11.001.

    PubMed  CAS  Google Scholar 

  • Chapman, L. J., Chapman, J. P., & Raulin, M. L. (1976). Scales for physical and social anhedonia. Journal of Abnormal Psychology, 85, 374–382. doi:10.1037/0021-843X.85.4.374.

    PubMed  CAS  Google Scholar 

  • Chen, J., Lipska, B. K., & Weinberger, D. R. (2006). Genetic mouse models of schizophrenia: from hypothesis-based to susceptibility gene-based models. Biological Psychiatry, 59, 1180–1188. doi:10.1016/j.biopsych.2006.02.024.

    PubMed  CAS  Google Scholar 

  • Cohen, J. D., Barch, D. M., Carter, C., & Servan-Schreiber, D. (1999). Context-processing deficits in schizophrenia: converging evidence from three theoretically motivated cognitive tasks. Journal of Abnormal Psychology, 108, 120–133. doi:10.1037/0021-843X.108.1.120.

    PubMed  CAS  Google Scholar 

  • Cohen, A.S., & Minor, K.S. (2009). Emotional Experience in Schizophrenia patients revisited: Meta-analysis of laboratory studies. Schizophrenia Bulletin.

  • Corlett, P. R., Murray, G. K., Honey, G. D., Aitken, M. R., Shanks, D. R., Robbins, T. W., et al. (2007). Disrupted prediction-error signal in psychosis: evidence for an associative account of delusions. Brain, 130, 2387–2400. doi:10.1093/brain/awm173.

    PubMed  CAS  Google Scholar 

  • Curtis, C. E., Lebow, B., Lake, D. S., Katsanis, J., & Iacono, W. G. (1999). Acoustic startle reflex in schizophrenia patients and their first-degree relatives: evidence of normal emotional modulation. Psychophysiology, 36, 469–475. doi:10.1017/S0048577299980757.

    PubMed  CAS  Google Scholar 

  • Danion, J. M., Meulemans, T., Kauffmann-Muller, F., & Vermaat, H. (2001). Intact implicit learning in schizophrenia. The American Journal of Psychiatry, 158, 944–948.

    PubMed  CAS  Google Scholar 

  • de Gelder, B., Vroomen, J., de Jong, S. J., Masthoff, E. D., Trompenaars, F. J., & Hodiamont, P. (2005). Multisensory integration of emotional faces and voices in schizophrenics. Schizophrenia Research, 72, 195–203. doi:10.1016/j.schres.2004.02.013.

    PubMed  Google Scholar 

  • de Jong, J. J., Hodiamont, P. P., Van den Stock, J., & de Gelder, B. (2009). Audiovisual emotion recognition in schizophrenia: reduced integration of facial and vocal affect. Schizophrenia Research, 107, 286–293.

    PubMed  CAS  Google Scholar 

  • Dickinson, D., Ramsey, M. E., & Gold, J. M. (2007). Overlooking the obvious: a meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Archives of General Psychiatry, 64, 532–542. doi:10.1001/archpsyc.64.5.532.

    PubMed  Google Scholar 

  • Edwards, J., Jackson, H. J., & Pattison, P. E. (2002). Emotion recognition via facial expression and affective prosody in schizophrenia: A methodological review. Clinical Psychology Review, 22, 789–832. doi:10.1016/S0272-7358(02)00130-7.

    PubMed  Google Scholar 

  • Edwards, J., Pattison, P. E., Jackson, H. J., & Wales, R. J. (2001). Facial affect and affective prosody recognition in first-episode schizophrenia. Schizophrenia Research, 48(2), 235–253. doi:10.1016/S0920-9964(00)00099-2.

    PubMed  CAS  Google Scholar 

  • Egan, M. F., Goldberg, T. E., Gscheidle, T., Weirich, M., Rawlings, R., Hyde, T. M., et al. (2001). Relative risk for cognitive impairments in siblings of patients with schizophrenia. Biological Psychiatry, 50, 98–107. doi:10.1016/S0006-3223(01)01133-7.

    PubMed  CAS  Google Scholar 

  • Elahipanah, A., Christensen, B. K., & Reingold, E. M. (2008). Visual selective attention among persons with schizophrenia: The distractor ratio effect. Schizophrenia Research, 105, 61–67. doi:10.1016/j.schres.2008.05.001.

    PubMed  Google Scholar 

  • Epstein, J., Stern, E., & Silbersweig, D. (1999). Mesolimbic activity associated with psychosis in schizophrenia: Symptom-specific PET studies. In J. F. McGinty (Ed.), Advancing from the ventral striatum to the extended amygdala: Implications for neuropsychiatry and drug use: In honor of Lennart Heimer (pp. 562–574). New York, NY: New York Academy of Sciences.

    Google Scholar 

  • Exner, C., Boucsein, K., Degner, D., & Irle, E. (2006). State-dependent implicit learning deficit in schizophrenia: evidence from 20-month follow-up. Psychiatry Research, 142, 39–52. doi:10.1016/j.psychres.2005.09.019.

    PubMed  Google Scholar 

  • Farkas, M., Polgar, P., Kelemen, O., Rethelyi, J., Bitter, I., Myers, C. E., et al. (2008). Associative learning in deficit and nondeficit schizophrenia. Neuroreport, 19, 55–58. doi:10.1097/WNR.0b013e3282f2dff6.

    PubMed  Google Scholar 

  • Fear, C., Sharp, H., & Healy, D. (1996). Cognitive processes in delusional disorders. The British Journal of Psychiatry, 168, 61–67. doi:10.1192/bjp. 168.1.61.

    PubMed  CAS  Google Scholar 

  • Foerde, K., Poldrack, R. A., Khan, B. J., Sabb, F. W., Bookheimer, S. Y., Bilder, R. M., et al. (2008). Selective corticostriatal dysfunction in schizophrenia: examination of motor and cognitive skill learning. Neuropsychology, 22, 100–109. doi:10.1037/0894-4105.22.1.100.

    PubMed  Google Scholar 

  • Foussias, G., & Remington, G.(2008). Negative Symptoms in Schizophrenia: Avolition and Occam's Razor. Schizophrenia Bulletin.

  • Frank, M. J., Moustafa, A. A., Haughey, H. M., Curran, T., & Hutchison, K. E. (2007). Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning. Proceedings of the National Academy of Sciences of the United States of America, 104, 16311–16316. doi:10.1073/pnas.0706111104.

    PubMed  CAS  Google Scholar 

  • Frank, M. J., & O'Reilly, R. C. (2006). A mechanistic account of striatal dopamine function in cognition: Psychopharmacological studies with cabergoline and haloperidol. Behavioral Neuroscience, 120, 497–517. doi:10.1037/0735-7044.120.3.497.

    PubMed  CAS  Google Scholar 

  • Frank, M. J., Seeberger, L. C., & O'Reilly, R. C. (2004). By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science, 306, 1940–1943. doi:10.1126/science.1102941.

    PubMed  CAS  Google Scholar 

  • Fricchione, G., Sedler, M. J., & Shukla, S. (1986). Aprosodia in eight schizophrenic patients. American Journal of Psychiatry, 143, 1457–9145.

    PubMed  CAS  Google Scholar 

  • Fuller, R. L., Luck, S. J., Braun, E. L., Robinson, B. M., McMahon, R. P., & Gold, J. M. (2006). Impaired control of visual attention in schizophrenia. Journal of Abnormal Psychology, 115, 266–275. doi:10.1037/0021-843X.115.2.266.

    PubMed  Google Scholar 

  • Gabrieli, J. D., Stebbins, G. T., Singh, J., Willingham, D. B., & Goetz, C. G. (1997). Intact mirror-tracing and impaired rotary-pursuit skill learning in patients with Huntington's disease: evidence for dissociable memory systems in skill learning. Neuropsychology, 11, 272–281. doi:10.1037/0894-4105.11.2.272.

    PubMed  CAS  Google Scholar 

  • Gluck, M. A., Shohamy, D., & Myers, C. (2002). How do people solve the "weather prediction" task?: individual variability in strategies for probabilistic category learning. Learning & Memory (Cold Spring Harbor, N.Y.), 9, 408–418. doi:10.1101/lm.45202.

    Google Scholar 

  • Gold, J. M., Bish, J. A., Iannone, V. N., Hobart, M. P., Queern, C. A., & Buchanan, R. W. (2000). Effects of contextual processing on visual conditional associative learning in schizophrenia. Biological Psychiatry, 48, 406–414. doi:10.1016/S0006-3223(00)00930-6.

    PubMed  CAS  Google Scholar 

  • Gold, J. M., Waltz, J. A., Prentice, K. J., Morris, S. E., & Heerey, E. A. (2008). Reward Processing in Schizophrenia: A Deficit in the Representation of Value. Schizophrenia Bulletin, 34, 835–847. doi:10.1093/schbul/sbn068.

    PubMed  Google Scholar 

  • Gold, J. M. (2004). Cognitive deficits as treatment targets in schizophrenia. Schizophrenia Research, 72, 21–28. doi:10.1016/j.schres.2004.09.008.

    PubMed  Google Scholar 

  • Gold, J. M., Fuller, R. L., Robinson, B. M., Braun, E. L., & Luck, S. J. (2007). Impaired top-down control of visual search in schizophrenia. Schizophrenia Research, 94, 148–155. doi:10.1016/j.schres.2007.04.023.

    PubMed  Google Scholar 

  • Gold, J. M., Fuller, R. L., Robinson, B. M., McMahon, R. P., Braun, E. L., & Luck, S. J. (2006). Intact attentional control of working memory encoding in schizophrenia. Journal of Abnormal Psychology, 115, 658–673. doi:10.1037/0021-843X.115.4.658.

    PubMed  Google Scholar 

  • Gold, J. M., Randolph, C., Coppola, R., Carpenter, C. J., Goldberg, T. E., & Weinberger, D. R. (1992). Visual orienting in schizophrenia. Schizophrenia Research, 7, 203–209. doi:10.1016/0920-9964(92)90013-U.

    PubMed  CAS  Google Scholar 

  • Goldberg, E., & Bilder, R. M. (1987). The frontal lobes and hierarchic organization of cognitive control. In E. Perecman (Ed.), The Frontal Lobes Revisited (pp. 159–187). New York: IRBN Press.

    Google Scholar 

  • Goldberg, T. E., Torrey, E. F., Gold, J. M., Ragland, J. D., Bigelow, L. B., & Weinberger, D. R. (1993). Learning and memory in monozygotic twins discordant for schizophrenia. Psychological Medicine, 23, 71–85.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, T. E., Weinberger, D. R., Berman, K. F., Pliskin, N. H., & Podd, M. H. (1987). Further evidence for dementia of the prefrontal type in schizophrenia? A controlled study of teaching the Wisconsin Card Sorting Test. Archives of General Psychiatry, 44, 1008–1014.

    PubMed  CAS  Google Scholar 

  • Gouzoulis-Mayfrank, E., Balke, M., Hajsamou, S., Ruhrmann, S., Schultze-Lutter, F., Daumann, J., et al. (2007). Orienting of attention in unmedicated patients with schizophrenia, prodromal subjects and healthy relatives. Schizophrenia Research, 97, 35–42. doi:10.1016/j.schres.2007.06.028.

    PubMed  Google Scholar 

  • Gouzoulis-Mayfrank, E., Heekeren, K., Voss, T., Moerth, D., Thelen, B., & Meincke, U. (2004). Blunted inhibition of return in schizophrenia-evidence from a longitudinal study. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 28, 389–396. doi:10.1016/j.pnpbp.2003.11.010.

    Google Scholar 

  • Green, M. F., Kern, R. S., Braff, D. L., & Mintz, J. (2000). Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the "right stuff"? Schizophrenia Bulletin, 26, 119–136.

    PubMed  CAS  Google Scholar 

  • Gur, R. E., Cowell, P. E., Latshaw, A., Turetsky, B. I., Grossman, R. I., Arnold, S. E., et al. (2000). Reduced dorsal and orbital prefrontal gray matter volumes in schizophrenia. Archives of General Psychiatry, 57, 761–768. doi:10.1001/archpsyc.57.8.761.

    PubMed  CAS  Google Scholar 

  • Gur, R. E., Turetsky, B. I., Cowell, P. E., Finkelman, C., Maany, V., Grossman, R. I., et al. (2000). Temporolimbic volume reductions in schizophrenia. Archives of General Psychiatry, 57, 769–775. doi:10.1001/archpsyc.57.8.769.

    PubMed  CAS  Google Scholar 

  • Harris, M. S., Reilly, J. L., Keshavan, M. S., & Sweeney, J. A. (2006). Longitudinal studies of antisaccades in antipsychotic-naive first-episode schizophrenia. Psychological Medicine, 36, 485–494. doi:10.1017/S0033291705006756.

    PubMed  Google Scholar 

  • Heckers, S. (2001). Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus, 11, 520–528. doi:10.1002/hipo.1068.

    PubMed  CAS  Google Scholar 

  • Heerey, E. A., Bell-Warren, K. R., & Gold, J. M. (2008). Decision-Making Impairments in the Context of Intact Reward Sensitivity in Schizophrenia. Biological Psychiatry, 64, 62–69. doi:10.1016/j.biopsych.2008.02.015.

    PubMed  Google Scholar 

  • Heerey, E. A., & Gold, J. M. (2007). Patients with schizophrenia demonstrate dissociation between affective experience and motivated behavior. Journal of Abnormal Psychology, 116, 268–278. doi:10.1037/0021-843X.116.2.268.

    PubMed  Google Scholar 

  • Heinrichs, R. W., & Zakzanis, K. K. (1998). Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology, 12, 426–445. doi:10.1037/0894-4105.12.3.426.

    PubMed  CAS  Google Scholar 

  • Henry, J. D., & Crawford, J. R. (2005). A meta-analytic review of verbal fluency deficits in schizophrenia relative to other neurocognitive deficits. Cognitive Neuropsychiatry, 10, 1–33. doi:10.1080/13546800344000309.

    PubMed  Google Scholar 

  • Herbener, E. S. (2008). Emotional memory in schizophrenia. Schizophrenia Bulletin, 34, 875–887. doi:10.1093/schbul/sbn081.

    PubMed  Google Scholar 

  • Herbener, E.S. (2009). Impairment in Long-Term Retention of Preference Conditioning in Schizophrenia. Biological Psychiatry.

  • Herbener, E. S., Rosen, C., & Khine, T. (2007). Failure of Positive but Not Negative Emotional Valence to Enhance Memory in Schizophrenia. Journal of Abnormal Psychology, 116, 43–55. doi:10.1037/0021-843X.116.1.43.

    PubMed  Google Scholar 

  • Hogarty, G. E., Flesher, S., Ulrich, R., Carter, M., Greenwald, D., Pogue-Geile, M., et al. (2004). Cognitive enhancement therapy for schizophrenia: effects of a 2-year randomized trial on cognition and behavior. Archives of General Psychiatry, 61, 866–876. doi:10.1001/archpsyc.61.9.866.

    PubMed  Google Scholar 

  • Hooker, C., & Park, S. (2002). Emotion processing and its relationship to social functioning in schizophrenia patients. Psychiatry Research, 112, 41–50.

    PubMed  Google Scholar 

  • Horan, W. P., Green, M. F., Knowlton, B. J., Wynn, J. K., Mintz, J., & Nuechterlein, K. H. (2008). Impaired implicit learning in schizophrenia. Neuropsychology, 22, 606–617. doi:10.1037/a0012602.

    PubMed  Google Scholar 

  • Horan, W. P., Green, M. F., Kring, A. M., & Nuechterlein, K. H. (2006). Does Anhedonia in Schizophrenia Reflect Faulty Memory for Subjectively Experienced Emotions? Journal of Abnormal Psychology, 115, 496–508. doi:10.1037/0021-843X.115.3.496.

    PubMed  Google Scholar 

  • Hutton, S. B., & Ettinger, U. (2006). The antisaccade task as a research tool in psychopathology: a critical review. Psychophysiology, 43, 302–313. doi:10.1111/j.1469-8986.2006.00403.x.

    PubMed  Google Scholar 

  • Kemali, D., Maj, M., Galderisi, S., Monteleone, P., & Mucci, A. (1987). Conditional associative learning in drug-free schizophrenic patients. Neuropsychobiology, 17, 30–34. doi:10.1159/000118337.

    PubMed  CAS  Google Scholar 

  • Keri, S., Kelemen, O., Benedek, G., & Janka, Z. (2001). Intact prototype learning in schizophrenia. Schizophrenia Research, 52, 261–264. doi:10.1016/S0920-9964(00)00092-X.

    PubMed  CAS  Google Scholar 

  • Keri, S., Kelemen, O., Szekeres, G., Bagoczky, N., Erdelyi, R., Antal, A., et al. (2000). Schizophrenics know more than they can tell: probabilistic classification learning in schizophrenia. Psychological Medicine, 30, 149–155. doi:10.1017/S0033291799001403.

    PubMed  CAS  Google Scholar 

  • Keri, S., Nagy, O., Kelemen, O., Myers, C. E., & Gluck, M. A. (2005). Dissociation between medial temporal lobe and basal ganglia memory systems in schizophrenia. Schizophrenia Research, 77, 321–328. doi:10.1016/j.schres.2005.03.024.

    PubMed  Google Scholar 

  • Kern, R. S., Green, M. F., & Wallace, C. J. (1997). Declarative and procedural learning in schizophrenia: A test of the integrity of divergent memory systems. Cognitive Neuropsychiatry, 2, 39–50. doi:10.1080/135468097396405.

    Google Scholar 

  • Kerns, J. G., Nuechterlein, K. H., Braver, T. S., & Barch, D. M. (2008). Executive functioning component mechanisms and schizophrenia. Biological Psychiatry, 64, 26–33. doi:10.1016/j.biopsych.2008.04.027.

    PubMed  Google Scholar 

  • Klein, T. A., Neumann, J., Reuter, M., Hennig, J., von Cramon, D. Y., & Ullsperger, M. (2007). Genetically determined differences in learning from errors. Science, 318, 1642–1645. doi:10.1126/science.1145044.

    PubMed  CAS  Google Scholar 

  • Knowlton, B. J., Mangels, J. A., & Squire, L. R. (1996). A neostriatal habit learning system in humans. Science, 273, 1399–1402. doi:10.1126/science.273.5280.1399.

    PubMed  CAS  Google Scholar 

  • Knowlton, B. J., Squire, L. R., & Gluck, M. A. (1994). Probabilistic classification learning in amnesia. Learning & Memory (Cold Spring Harbor, N.Y.), 1, 106–120.

    CAS  Google Scholar 

  • Kodama, S., Fukuzako, H., Fukuzako, T., Kiura, T., Nozoe, S., Hashiguchi, T., et al. (2001). Aberrant brain activation following motor skill learning in schizophrenic patients as shown by functional magnetic resonance imaging. Psychological Medicine, 31, 1079–1088. doi:10.1017/S0033291701004196.

    PubMed  CAS  Google Scholar 

  • Kohler, C. G., Bilker, W., Hagendoorn, M., Gur, R. E., & Gur, R. C. (2000). Emotion recognition deficit in schizophrenia: association with symptomatology and cognition. Biological Psychiatry, 48, 127–136.

    PubMed  CAS  Google Scholar 

  • Kopp, B., Mattler, U., & Rist, F. (1994). Selective attention and response competition in schizophrenic patients. Psychiatry Research, 53, 129–139. doi:10.1016/0165-1781(94)90104-X.

    PubMed  CAS  Google Scholar 

  • Kopp, B., & Rist, F. (1994). Error-correcting behavior in schizophrenic patients. Schizophrenia Research, 13, 11–22. doi:10.1016/0920-9964(94)90056-6.

    PubMed  CAS  Google Scholar 

  • Kopp, B., & Rist, F. (1999). An event-related brain potential substrate of disturbed response monitoring in paranoid schizophrenic patients. Journal of Abnormal Psychology, 108, 337–346. doi:10.1037/0021-843X.108.2.337.

    PubMed  CAS  Google Scholar 

  • Kring, A. M., & Moran, E. K. (2008). Emotional response deficits in schizophrenia: insights from affective science. Schizophrenia Bulletin, 34, 819–834. doi:10.1093/schbul/sbn071.

    PubMed  Google Scholar 

  • Kumari, V., Gray, J. A., Honey, G. D., Soni, W., Bullmore, E. T., Williams, S. C., et al. (2002). Procedural learning in schizophrenia: a functional magnetic resonance imaging investigation. Schizophrenia Research, 57, 97–107. doi:10.1016/S0920-9964(01)00270-5.

    PubMed  Google Scholar 

  • Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1990). Emotion, attention, and the startle reflex. Psychological Review, 97, 377–395. doi:10.1037/0033-295X.97.3.377.

    PubMed  CAS  Google Scholar 

  • Laurens, K. R., Ngan, E. T., Bates, A. T., Kiehl, K. A., & Liddle, P. F. (2003). Rostral anterior cingulate cortex dysfunction during error processing in schizophrenia. Brain, 126, 610–622. doi:10.1093/brain/awg056.

    PubMed  Google Scholar 

  • Lee, J., & Park, S. (2005). Working memory impairments in schizophrenia: a meta-analysis. Journal of Abnormal Psychology, 114, 599–611. doi:10.1037/0021-843X.114.4.599.

    PubMed  Google Scholar 

  • Li, W., Zhou, Y., Jentsch, J. D., Brown, R. A., Tian, X., Ehninger, D., et al. (2007). Specific developmental disruption of disrupted-in-schizophrenia-1 function results in schizophrenia-related phenotypes in mice. Proceedings of the National Academy of Sciences of the United States of America, 104, 18280–18285. doi:10.1073/pnas.0706900104.

    PubMed  CAS  Google Scholar 

  • Lipska, B. K., Lerman, D. N., Khaing, Z. Z., & Weinberger, D. R. (2003). The neonatal ventral hippocampal lesion model of schizophrenia: effects on dopamine and GABA mRNA markers in the rat midbrain. The European Journal of Neuroscience, 18, 3097–3104. doi:10.1111/j.1460-9568.2003.03047.x.

    PubMed  Google Scholar 

  • Luck, S. J., & Gold, J. M. (2008). The construct of attention in schizophrenia. Biological Psychiatry, 64, 34–39. doi:10.1016/j.biopsych.2008.02.014.

    PubMed  Google Scholar 

  • Luck, S. J., & Vecera, S. P. (2002). Attention. In H. Pashler & S. Yantis (Eds.), Stevens' Handbook of Experimental Psychology: Vol. 1. Sensation and Perception (3rd ed., pp. 235–286). New York: Wiley.

    Google Scholar 

  • Luck, S. J., Fuller, R. L., Braun, E. L., Robinson, B., Summerfelt, A., & Gold, J. M. (2006). The speed of visual attention in schizophrenia: electrophysiological and behavioral evidence. Schizophrenia Research, 85, 174–195. doi:10.1016/j.schres.2006.03.040.

    PubMed  Google Scholar 

  • Maier, W., Franke, P., Kopp, B., Hardt, J., Hain, C., & Rist, F. (1994). Reaction time paradigms in subjects at risk for schizophrenia. Schizophrenia Research, 13, 35–43. doi:10.1016/0920-9964(94)90058-2.

    PubMed  CAS  Google Scholar 

  • Manoach, D. S., Cain, M. S., Vangel, M. G., Khurana, A., Goff, D. C., & Stickgold, R. (2004). A failure of sleep-dependent procedural learning in chronic, medicated schizophrenia. Biological Psychiatry, 56, 951–956. doi:10.1016/j.biopsych.2004.09.012.

    PubMed  Google Scholar 

  • Martin, F., Baudouin, J. Y., Tiberghien, G., & Franck, N. (2005). Processing emotional expression and facial identity in schizophrenia. Psychiatry Research, 30(134), 43–53.

    Google Scholar 

  • Maruff, P., Danckert, J., Pantelis, C., & Currie, J. (1998). Saccadic and attentional abnormalities in patients with schizophrenia. Psychological Medicine, 28, 1091–1100. doi:10.1017/S0033291798007132.

    PubMed  CAS  Google Scholar 

  • Mathalon, D. H., Fedor, M., Faustman, W. O., Gray, M., Askari, N., & Ford, J. M. (2002). Response-monitoring dysfunction in schizophrenia: an event-related brain potential study. Journal of Abnormal Psychology, 111, 22–41. doi:10.1037/0021-843X.111.1.22.

    PubMed  Google Scholar 

  • Mathews, J. R., & Barch, D. M. (2004). Episodic memory for emotional and nonemotional words in schizophrenia. Cognition and Emotion, 18(6), 721–740. doi:10.1080/02699930341000284.

    Google Scholar 

  • Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Research. Brain Research Reviews, 31, 236–250. doi:10.1016/S0165-0173(99)00040-5.

    PubMed  CAS  Google Scholar 

  • Mirsky, A. F., Ingraham, L. J., & Kugelmass, S. (1995). Neuropsychological assessment of attention and its pathology in the Israeli cohort. Schizophrenia Bulletin, 21, 193–204.

    PubMed  CAS  Google Scholar 

  • Morris, S. E., Heerey, E. A., Gold, J. M., & Holroyd, C. B. (2008). Learning-related changes in brain activity following errors and performance feedback in schizophrenia. Schizophrenia Research, 99, 274–285. doi:10.1016/j.schres.2007.08.027.

    PubMed  Google Scholar 

  • Mueser, K. T., Penn, D. L., Blanchard, J. J., & Bellack, A. S. (1997). Affect recognition in schizophrenia: a synthesis of findings across three studies. Psychiatry, 60, 301–308.

    PubMed  CAS  Google Scholar 

  • Murphy, D., & Cutting, J. (1990). Prosodic comprehension and expression in schizophrenia. Journal of Neurology, Neurosurgery, and Psychiatry, 53, 727–730. doi:10.1136/jnnp. 53.9.727.

    PubMed  CAS  Google Scholar 

  • Murray, G. K., Corlett, P. R., Clark, L., Pessiglione, M., Blackwell, A. D., Honey, G., et al. (2007). Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Molecular Psychiatry, 13, 267–276. doi:10.1038/sj.mp. 4002058.

    Google Scholar 

  • Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: evidence from performance measures. Cognitive Psychology, 19, 1–32. doi:10.1016/0010-0285(87)90002-8.

    Google Scholar 

  • Oie, M., Rund, B. R., & Sundet, K. (1998). Covert visual attention in patients with early-onset schizophrenia. Schizophrenia Research, 34, 195–205. doi:10.1016/S0920-9964(98)00092-9.

    PubMed  CAS  Google Scholar 

  • Paquet, F., Soucy, J. P., Stip, E., Levesque, M., Elie, A., & Bedard, M. A. (2004). Comparison between olanzapine and haloperidol on procedural learning and the relationship with striatal D2 receptor occupancy in schizophrenia. The Journal of Neuropsychiatry and Clinical Neurosciences, 16, 47–56. doi:10.1176/appi.neuropsych.16.1.47.

    PubMed  CAS  Google Scholar 

  • Pardo, P. J., Knesevich, M. A., Vogler, G. P., Pardo, J. V., Towne, B., Cloninger, C. R., et al. (2000). Genetic and state variables of neurocognitive dysfunction in schizophrenia: a twin study. Schizophrenia Bulletin, 26, 459–477.

    PubMed  CAS  Google Scholar 

  • Pedersen, A., Siegmund, A., Ohrmann, P., Rist, F., Rothermundt, M., Suslow, T., et al. (2008). Reduced implicit and explicit sequence learning in first-episode schizophrenia. Neuropsychologia, 46, 186–195. doi:10.1016/j.neuropsychologia.2007.07.021.

    PubMed  Google Scholar 

  • Perry, W., Light, G. A., Davis, H., & Braff, D. L. (2000). Schizophrenia patients demonstrate a dissociation on declarative and non-declarative memory tests. Schizophrenia Research, 46, 167–174. doi:10.1016/S0920-9964(99)00229-7.

    PubMed  CAS  Google Scholar 

  • Pessiglione, M., Seymour, B., Flandin, G., Dolan, R. J., & Frith, C. D. (2006). Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature, 442, 1042–1045. doi:10.1038/nature05051.

    PubMed  CAS  Google Scholar 

  • Phillips, W. A., & Silverstein, S. M. (2003). Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. The Behavioral and Brain Sciences, 26, 65–82.

    PubMed  Google Scholar 

  • Polgar, P., Farkas, M., Nagy, O., Kelemen, O., Rethelyi, J., Bitter, I., et al. (2008). How to find the way out from four rooms? The learning of "chaining" associations may shed light on the neuropsychology of the deficit syndrome of schizophrenia. Schizophrenia Research, 99, 200–207. doi:10.1016/j.schres.2007.06.027.

    PubMed  Google Scholar 

  • Polli, F. E., Barton, J. J., Vangel, M., Goff, D. C., Iguchi, L., & Manoach, D. S. (2006). Schizophrenia patients show intact immediate error-related performance adjustments on an antisaccade task. Schizophrenia Research, 82, 191–201. doi:10.1016/j.schres.2005.10.003.

    PubMed  Google Scholar 

  • Posner, M. I. (1980). Orienting of attention. The Quarterly Journal of Experimental Psychology, 32, 3–25. doi:10.1080/00335558008248231.

    PubMed  CAS  Google Scholar 

  • Posner, M. I., Early, T. S., Reiman, E., Pardo, P. J., & Dhawan, M. (1988). Asymmetries in hemispheric control of attention in schizophrenia. Archives of General Psychiatry, 45, 814–821.

    PubMed  CAS  Google Scholar 

  • Radant, A. D., Dobie, D. J., Calkins, M. E., Olincy, A., Braff, D. L., Cadenhead, K. S., et al. (2007). Successful multi-site measurement of antisaccade performance deficits in schizophrenia. Schizophrenia Research, 89, 320–329. doi:10.1016/j.schres.2006.08.010.

    PubMed  Google Scholar 

  • Reichenberg, A., & Harvey, P. D. (2007). Neuropsychological, impairments in schizophrenia: Integration of performance-based and brain imaging findings. Psychological Bulletin, 133, 833–858. doi:10.1037/0033-2909.133.5.833.

    PubMed  Google Scholar 

  • Reiss, J. P., Campbell, D. W., Leslie, W. D., Paulus, M. P., Ryner, L. N., Polimeni, J. O., et al. (2006). Deficit in schizophrenia to recruit the striatum in implicit learning: a functional magnetic resonance imaging investigation. Schizophrenia Research, 87, 127–137. doi:10.1016/j.schres.2006.04.027.

    PubMed  Google Scholar 

  • Rubin, P., Holm, S., Friberg, L., Videbech, P., Andersen, H. S., Bendsen, B. B., et al. (1991). Altered modulation of prefrontal and subcortical brain activity in newly diagnosed schizophrenia and schizophreniform disorder: A regional cerebral blood flow study. Archives of General Psychiatry, 48, 987–995.

    PubMed  CAS  Google Scholar 

  • Rushe, T. M., Woodruff, P. W., Murray, R. M., & Morris, R. G. (1999). Episodic memory and learning in patients with chronic schizophrenia. Schizophrenia Research, 35, 85–96. doi:10.1016/S0920-9964(98)00117-0.

    PubMed  CAS  Google Scholar 

  • Saint-Cyr, J. A., Taylor, A. E., & Lang, A. E. (1988). Procedural learning and neostriatal dysfunction in man. Brain, 111, 941–959. doi:10.1093/brain/111.4.941.

    PubMed  Google Scholar 

  • Salem, J. E., Kring, A. M., & Kerr, S. L. (1996). More evidence for generalized poor performance in facial emotion perception in schizophrenia. Journal of Abnormal Psychology, 105, 480–483.

    PubMed  CAS  Google Scholar 

  • Sapir, A., Henik, A., Dobrusin, M., & Hochman, E. Y. (2001). Attentional asymmetry in schizophrenia: disengagement and inhibition of return deficits. Neuropsychology, 15, 361–370. doi:10.1037/0894-4105.15.3.361.

    PubMed  CAS  Google Scholar 

  • Saykin, A. J., Shtasel, D. L., Gur, R. E., Kester, D. B., Mozley, L. H., Stafiniak, P., et al. (1994). Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia. Archives of General Psychiatry, 51, 124–131.

    PubMed  CAS  Google Scholar 

  • Scherer, H., Bedard, M. A., Stip, E., Paquet, F., Richer, F., Beriault, M., et al. (2004). Procedural learning in schizophrenia can reflect the pharmacologic properties of the antipsychotic treatments. Cognitive and Behavioral Neurology, 17, 32–40. doi:10.1097/00146965-200403000-00004.

    PubMed  Google Scholar 

  • Scherer, H., Stip, E., Paquet, F., & Bedard, M. A. (2003). Mild procedural learning disturbances in neuroleptic-naive patients with schizophrenia. The Journal of Neuropsychiatry and Clinical Neurosciences, 15, 58–63. doi:10.1176/appi.neuropsych.15.1.58.

    PubMed  Google Scholar 

  • Schlenker, R., Cohen, R., & Hopmann, G. (1995). Affective modulation of the startle reflex in schizophrenic patients. European Archives of Psychiatry and Clinical Neuroscience, 245, 309–318. doi:10.1007/BF02191873.

    PubMed  CAS  Google Scholar 

  • Schwartz, B. L., Howard, D. V., Howard, J. H., Jr., Hovaguimian, A., & Deutsch, S. I. (2003). Implicit learning of visuospatial sequences in schizophrenia. Neuropsychology, 17, 517–533. doi:10.1037/0894-4105.17.3.517.

    PubMed  Google Scholar 

  • Seger, C. A. (1994). Implicit learning. Psychological Bulletin, 115, 163–196. doi:10.1037/0033-2909.115.2.163.

    PubMed  CAS  Google Scholar 

  • Servan-Schreiber, D., Cohen, J. D., & Steingard, S. (1996). Schizophrenic deficits in the processing of context: A test of a theoretical model. Archives of General Psychiatry, 53, 1105–1112.

    PubMed  CAS  Google Scholar 

  • Shakow, D. (1972). The Worcester State Hospital Research on schizophrenia(1927–1946). Journal of Abnormal Psychology, 80, 67–110. doi:10.1037/h0033412.

    PubMed  CAS  Google Scholar 

  • Shohamy, D., Myers, C. E., Grossman, S., Sage, J., & Gluck, M. A. (2005). The role of dopamine in cognitive sequence learning: evidence from Parkinson's disease. Behavioural Brain Research, 156, 191–199. doi:10.1016/j.bbr.2004.05.023.

    PubMed  CAS  Google Scholar 

  • Siegert, R. J., Taylor, K. D., Weatherall, M., & Abernethy, D. A. (2006). Is implicit sequence learning impaired in Parkinson's disease? A meta-analysis. Neuropsychology, 20, 490–495. doi:10.1037/0894-4105.20.4.490.

    PubMed  Google Scholar 

  • Smith, Y., Raju, D., Nanda, B., Pare, J. F., Galvan, A., & Wichmann, T. (2009). The thalamostriatal systems: anatomical and functional organization in normal and parkinsonian states. Brain Research Bulletin, 78, 60–68. doi:10.1016/j.brainresbull.2008.08.015.

    PubMed  CAS  Google Scholar 

  • Stevens, A., Schwarz, J., Schwarz, B., Ruf, I., Kolter, T., & Czekalla, J. (2002). Implicit and explicit learning in schizophrenics treated with olanzapine and with classic neuroleptics. Psychopharmacology, 160, 299–306. doi:10.1007/s00213-001-0974-1.

    PubMed  CAS  Google Scholar 

  • Strauss, G. P., Allen, D. N., Duke, L. A., Ross, S. A., & Schwartz, J. (2008). Automatic affective processing impairments in patients with deficit syndrome schizophrenia. Schizophrenia Research, 102, 76–87. doi:10.1016/j.schres.2008.01.014.

    PubMed  Google Scholar 

  • Strauss, M. E., Novakovic, T., Tien, A. Y., Bylsma, F., & Pearlson, G. D. (1991). Disengagement of attention in schizophrenia. Psychiatry Research, 37, 139–146. doi:10.1016/0165-1781(91)90071-V.

    PubMed  CAS  Google Scholar 

  • Suslow, T., Droste, T., & Roestel, C. (2005). Automatic processing of facial emotion in schizophrenia with and without affective negative symptoms. Cognitive Neuropsychiatry, 10, 35–56. doi:10.1080/13546800344000318.

    PubMed  Google Scholar 

  • Suslow, T. S., Roestel, C., & Arolt, V. (2003). Affective priming in schizophrenia and without affective negative symptoms. European Archives of Psychiatry and Clinical Neuroscience, 253, 292–300. doi:10.1007/s00406-003-0443-4.

    PubMed  Google Scholar 

  • Suslow, T. S., Roestel, C., Droste, T., & Arolt, V. (2003). Automatic processing of verbal emotion stimuli in schizophrenia. Psychiatry Research, 120, 131–144. doi:10.1016/S0165-1781(03)00173-2.

    PubMed  Google Scholar 

  • Takano, K., Ito, M., Kobayashi, K., Sonobe, N., Kurosu, S., Mori, Y., et al. (2002). Procedural memory in schizophrenia assessed using a mirror reading task. Psychiatry Research, 109, 303–307. doi:10.1016/S0165-1781(02)00021-5.

    PubMed  Google Scholar 

  • Volz, M., Hamm, A. O., Kirsch, P., & Rey, E. R. (2003). Temporal course of emotional startle modulation in schizophrenia patients. International Journal of Psychophysiology, 49, 123–137. doi:10.1016/S0167-8760(03)00100-4.

    PubMed  Google Scholar 

  • Waltz, J. A., Frank, M. J., Robinson, B. M., & Gold, J. M. (2007). Selective reinforcement learning deficits in schizophrenia support predictions from computational models of striatal-cortical dysfunction. Biological Psychiatry, 62, 756–764. doi:10.1016/j.biopsych.2006.09.042.

    PubMed  Google Scholar 

  • Waltz, J.A., Schweitzer, J.B., Gold, J.M., Kurup, P.K., Ross, T.J., Jo Salmeron, B., et al. (2008). Patients with Schizophrenia have a Reduced Neural Response to Both Unpredictable and Predictable Primary Reinforcers. Neuropsychopharmacology.

  • Wechsler, D. (1997). Wechsler Adult Intelligence Scale-Third Edition. San Antonio, TX: The Psychological Corporation.

    Google Scholar 

  • Weickert, T. W., Goldberg, T. E., Callicott, J. H., Chen, Q., Apud, J. A., Das, S., et al. (2009). Neural correlates of probabilistic category learning in patients with schizophrenia. The Journal of Neuroscience, 29, 1244–1254. doi:10.1523/JNEUROSCI.4341-08.2009.

    PubMed  CAS  Google Scholar 

  • Weickert, T. W., Terrazas, A., Bigelow, L. B., Malley, J. D., Hyde, T., Egan, M. F., et al. (2002). Habit and skill learning in schizophrenia: evidence of normal striatal processing with abnormal cortical input. Learning & Memory (Cold Spring Harbor, N.Y.), 9, 430–442. doi:10.1101/lm.49102.

    Google Scholar 

  • Weinberger, D. R., Berman, K. F., Suddath, R., & Torrey, E. F. (1992). Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. The American Journal of Psychiatry, 149, 890–897.

    PubMed  CAS  Google Scholar 

  • Wexler, B. E., Hawkins, K. A., Rounsaville, B., Anderson, M., Sernyak, M. J., & Green, M. F. (1997). Normal neurocognitive performance after extended practice in patients with schizophrenia. Schizophrenia Research, 26, 173–180. doi:10.1016/S0920-9964(97)00053-4.

    PubMed  CAS  Google Scholar 

  • Wigal, S. B., Swanson, J. M., & Potkin, S. G. (1997). Lateralized attentional deficits in drug-free and medicated schizophrenic patients. Neuropsychologia, 35, 1519–1525. doi:10.1016/S0028-3932(97)00087-0.

    PubMed  CAS  Google Scholar 

  • Yoon, J. H., Minzenberg, M. J., Ursu, S., Ryan Walter, B. S., Wendelken, C., Ragland, J. D., et al. (2008). Association of dorsolateral prefrontal cortex dysfunction with disrupted coordinated brain activity in schizophrenia: relationship with impaired cognition, behavioral disorganization, and global function. The American Journal of Psychiatry, 165, 1006–1014. doi:10.1176/appi.ajp. 2008.07060945.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Gold.

Additional information

Supported, in part, by USPHS Grants MH080066, MH065034, MH72647, P30 MH068580 from the National Institute of Mental Health, USA (Dr. Gold).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gold, J.M., Hahn, B., Strauss, G.P. et al. Turning it Upside Down: Areas of Preserved Cognitive Function in Schizophrenia. Neuropsychol Rev 19, 294–311 (2009). https://doi.org/10.1007/s11065-009-9098-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-009-9098-x

Keywords

Navigation