Skip to main content
Log in

Translational Neuroimaging: Positron Emission Tomography Studies of Monoamine Oxidase

  • Review Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Positron emission tomography (PET) using radiotracers with high molecular specificity is an important scientific tool in studies of monoamine oxidase (MAO), an important enzyme in the regulation of the neurotransmitters dopamine, norepinephrine, and serotonin as well as the dietary amine, tyramine. MAO occurs in two different subtypes, MAO A and MAO B, which have different substrate and inhibitor specificity and which are different gene products. The highly variable subtype distribution with different species makes human studies of special value. MAO A and B can be imaged in the human brain and certain peripheral organs using PET and carbon-11 (half-life 20.4 minutes) labeled mechanism-based irreversible inhibitors, clorgyline and l-deprenyl, respectively. In this article we introduce MAO and describe the development of these radiotracers and their translation from preclinical studies to the investigation of variables affecting MAO in the human brain and peripheral organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Reference

  1. Hare MLC (1928) Tyramine oxidase. I. A new enzyme system in liver. Biochem J 22:968–979

    PubMed  CAS  Google Scholar 

  2. Shih JC, Chen K, Ridd MJ (1999) Monoamine oxidase: From genes to behavior. Ann Rev Neurosci 22:197–217

    Article  PubMed  CAS  Google Scholar 

  3. Johnston JP (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17:1285–1297

    Article  PubMed  CAS  Google Scholar 

  4. Knoll J, Magyar K (1972) Some puzzling effects of monoamine oxidase inhibitors. Adv Biochem Psychopharmacol 5:393–408

    PubMed  CAS  Google Scholar 

  5. Youdim MDH, Riederer P (1993) Dopamine metabolism and neurotransmission in primate brain in relationship to monoamine oxidase A and B inhibition. J Neural Transm 91:181–195

    Article  CAS  Google Scholar 

  6. Inoue H, Castagnoli K, Van Der Schyf C, Mabic S, Igarashi K, Castagnoli N Jr. (1999) Species-dependent differences in monoamine oxidase A and B-catalyzed oxidation of various C4 substituted 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinyl derivatives. J Pharmacol Exp Ther 291:856–864

    PubMed  CAS  Google Scholar 

  7. Saura J, Nadal E, van den Berg B et al. (1996) Localization of monoamine oxidases in human peripheral tissues. Life Sci 59:1341–1349

    Article  PubMed  CAS  Google Scholar 

  8. Cohen G, Kesler N (1999) Monoamine oxidase and mitochondrial respiration. J Neurochem 73:2310–2315

    Article  PubMed  CAS  Google Scholar 

  9. Vindis C, Seguelas MH, Lanier S et al. (2001) Dopamine induces ERK activation in renal tubule epithelial cells through H2O2 produced by monoamine oxidase. Kidney Int. 59:76–86

    Article  PubMed  CAS  Google Scholar 

  10. Pizzinat N, Copin N, Vindis C et al. (1999) Reactive oxygen species production by monoamine oxidases in intact cells. Naunyn-Schmiedeberg’s Arch Pharmacol 359:428–431

    Article  CAS  Google Scholar 

  11. Caldecott-Hazard S, Schneider LS (1992) Clinical and biochemical aspects of depressive disorders. III. Treatment and controversies. Synapse 10:141–168

    Article  PubMed  CAS  Google Scholar 

  12. Selikoff I, Robitzek E, Ornstein G (1952) Treatment of pulmonary tuberculosis with hydrazide derivatives of isonicotinic acid. JAMA 150:973–980

    CAS  Google Scholar 

  13. Crane GE (1956) Psychiatric side effects of iproniazide. Am J Psychiatry 112:494–497

    PubMed  CAS  Google Scholar 

  14. Zeller EA, Barsky J, Berman ER (1955) Amine oxidases. XI. Inhibition of monoamine oxidase by 1-isonicotinyl-2-isopropylhydrazine. J. Biol. Chem. 214:267–274

    PubMed  CAS  Google Scholar 

  15. Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: A review of supporting evidence. Am J Psychiatry 122:509–522

    PubMed  CAS  Google Scholar 

  16. Kopin I (1993) Monoamine oxidase (MAO). Relationship to foods, poisons, and medicines. Biogenic Amines 9:355–365

    CAS  Google Scholar 

  17. Birkmayer W, Riederer P (1984) Deprenyl prolongs the therapeutic efficacy of combined l-DOPA in Parkinson’s disease. Adv. Neurol. 40:475–481

    PubMed  CAS  Google Scholar 

  18. Langston JW, Ballard JW, Tetrud JW et al. (1983) Chronic parkinsonism in humans due to a product of meperidine analog synthesis. Science 219:979–980

    Article  PubMed  CAS  Google Scholar 

  19. Tetrud JW, Langston JW (1989) The effect of deprenyl (selegiline) on the natural history of Parkinson’s disease. Science 245:519–522

    Article  PubMed  CAS  Google Scholar 

  20. Parkinson’s Study Group (1989) Effect of deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 321:1364–1371

    Article  Google Scholar 

  21. Parkinson’s Study Group (1996) Effect of lazabemide on the progression of disability in early Parkinson’s disease. Ann. Neurol. 40:99–107

    Article  Google Scholar 

  22. Fowler JS, Volkow ND, Logan J et al. (1994) Slow recovery of human brain MAO B after l-deprenyl withdrawal. Synapse 18:86–93

    Article  PubMed  CAS  Google Scholar 

  23. Fowler JS, Fazzini E, Volkow ND (1996) Deprenyl and levodopa and Parkinson’s disease progression. Ann Neurol 40 267–268

    Article  PubMed  CAS  Google Scholar 

  24. Bach AWJ, Lan NC, Johnson DL (1988) cDNA cloning of human liver monoamine oxidase A and B: Molecular basis of differences in enzymatic properties. Proc Natl Acad Sci U S A 85:4934–4938

    Article  PubMed  CAS  Google Scholar 

  25. Collins FA, Murphey DL, Reiss AR et al. (1992) Clinical, biochemical and neuropsychiatric evaluation of a patient with a contiguous gene syndrome due to microdeletion Xp11.3 including the Norrie disease locus and monoamine oxidase (MAO A and MAO B) genes. Am J Med Genet 42:127–134

    Article  PubMed  CAS  Google Scholar 

  26. Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA (1993) Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262:578–80

    Article  PubMed  CAS  Google Scholar 

  27. Veenstra-Vander Weele J, Anderson GM, Cook EH Jr. (2000) Pharmacogenetics and the serotonin system: Initial studies and future directions. Eur. J. Pharmacol. 410:165–181

    Article  CAS  Google Scholar 

  28. Cases O, Seif I, Grimsby J et al. (1995) Aggressive behavior and altered amounts of serotonin and norepinephrine in mice lacking MAO A. Science 268:1763–1766

    Article  PubMed  CAS  Google Scholar 

  29. Chen K, Holschneider DP, Wu W, Rebrin I, Shih JC (2004) A spontaneous point mutation produces monoamine oxidase A/B knock-out mice with greatly elevated monoamines and anxiety-like behavior. J Biol Chem 279:39645–39652

    Article  PubMed  CAS  Google Scholar 

  30. Shih JC, Thompson RF, (1999) Monoamine oxidase in neuropsychiatry and behavior. Am J Hum Genet 65:593–598

    Article  PubMed  CAS  Google Scholar 

  31. Whitaker-Azmitia PM, Zhang X, Clarke C (1994) Effects of gestational exposure to monoamine oxidase inhibitors in rats: Preliminary behavioral and neurochemical studies. Neuropsychopharmacology 11:125–132

    PubMed  CAS  Google Scholar 

  32. Mejia JM, Ervin FR, Baker GB, Palmour RM (2002) Monoamine oxidase inhibition during brain development induces pathological aggressive behavior in mice. Biol Psychiatry 52:811–821

    Article  PubMed  CAS  Google Scholar 

  33. Sabol SZ, Hu S, Hamer D (1998) A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet 103:273–279

    Article  PubMed  CAS  Google Scholar 

  34. Caspi A, Sugden K, Moffitt TE et al. (2003) Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science 301:386–389

    Article  PubMed  CAS  Google Scholar 

  35. Chen K (2004) Organization of MAO A and MAO B promoters and regulation of gene expression. NeuroToxicology 25:31–36

    Article  PubMed  CAS  Google Scholar 

  36. Hamer D (2002) Genetics. Rethinking behavior genetics. Science 298:71–72

    Article  PubMed  CAS  Google Scholar 

  37. Fowler JS, MacGregor RR, Wolf AP et al. (1987) Mapping human brain monoamine oxidase A and B with 11C-labeled suicide inactivators and PET. Science 235:481–4857

    Article  PubMed  CAS  Google Scholar 

  38. Fowler JS, Logan J, Volkow ND, Wang GJ, MacGregor RR, Ding, YS (2002) Monoamine oxidase: Radiotracer development and human studies. Methods 27:263–277

    Article  PubMed  CAS  Google Scholar 

  39. Abeles RH, Maycock AL (1976) Suicide enzyme inactivators. Acc Chem Res 9:313–319

    Article  CAS  Google Scholar 

  40. MacGregor RR, Fowler JS, Wolf AP (1988) Synthesis of suicide inhibitors of monoamine oxidase: Carbon-11 labeled clorgyline, l-deprenyl and d-deprenyl. J Label Compd Radiopharm 25:1–9

    Article  CAS  Google Scholar 

  41. Fowler JS, Wolf AP, MacGregor RR et al. (1988) Mechanistic positron emission tomography studies demonstration of a deuterium isotope effect in the monoamine oxidase-catalyzed binding of [11C]l-deprenyl in living baboon brain. J Neurochem 51(5):1524–1534

    Article  PubMed  CAS  Google Scholar 

  42. Belleau B, Moran J (1963) Deuterium isotope effects in relation to the chemical mechanism of monoamine oxidase. Ann NY Acad Sci 107:822–839

    Article  PubMed  CAS  Google Scholar 

  43. Fowler JS, Wang GJ, Logan J et al. (1995) Selective reduction of radiotracer trapping by deuterium substitution: Comparison of carbon-11-l-deprenyl and carbon-11-deprenyl-D2 for MAO B mapping. J Nucl Med 36:1255–1262

    PubMed  CAS  Google Scholar 

  44. Fowler JS, Volkow ND, Logan J et al. (1993) Monoamine oxidase B (MAO B) inhibitor therapy in Parkinson’s disease: The degree and reversibility of human brain MAO B inhibition by Ro 19 6327. Neurology 43:984–1992

    Google Scholar 

  45. Logan J, Fowler JS, Volkow ND et al. (2000) Reproducibility of repeated measures of deuterium substituted [11C]l-deprenyl (and [11C]l-deprenyl-D2) binding in the human brain. Nucl Med Biol 27:43–49

    Article  PubMed  CAS  Google Scholar 

  46. Logan J (2000) Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl Med Biol 27(7):661–670

    Article  PubMed  CAS  Google Scholar 

  47. Fowler JS, Volkow ND, Logan J et al. (2001) Evidence that l-deprenyl treatment for one week does not inhibit MAO A or the dopamine transporter in the human brain. Life Sci 68:2759–2768

    Article  PubMed  CAS  Google Scholar 

  48. Fowler JS, Logan J, Ding YS et al. (2001) Non-MAO A binding of clorgyline in white matter in human brain. Neurochemistry 79:1039–1046

    Article  CAS  Google Scholar 

  49. Fowler JS, Logan J, Wang, G-J et al. (2003) Monoamine oxidase A imaging in peripheral organs in healthy human subjects. Synapse 49:178–187

    Article  PubMed  CAS  Google Scholar 

  50. Fowler JS, Logan, J, Wang G-J et al. (2002) PET imaging of monoamine oxidase B in peripheral organs in humans. J Nucl Med 43:1331–1338

    PubMed  CAS  Google Scholar 

  51. Fowler JS, Logan J, Wang G-J (2004) Comparison of the binding of the irreversible monoamine oxidase tracers, [(11)C]clorgyline and [(11)C]l-deprenyl in brain and peripheral organs in humans. Nucl Med Biol 31:313–319

    Article  PubMed  CAS  Google Scholar 

  52. Fowler JS, Volkow ND, Wang G-J et al. (1997) Age-related increases in brain MAO B in healthy human subjects. Neurobiol Aging 18:431–435

    Article  PubMed  CAS  Google Scholar 

  53. Fowler CJ, Wiberg A, Oreland L et al. (1980) The effect of age on the activity and molecular properties of human brain monoamine oxidase. J Neural Transm 49:1–20

    Article  PubMed  CAS  Google Scholar 

  54. Terry RD, DeTeresa R, Hansen LA (1987) Neocortical cell counts in normal human adult aging. Ann Neurol 21:530–539

    Article  PubMed  CAS  Google Scholar 

  55. Youdim MB, Bar Am O, Yogev-Falach M et al. (2005) Rasagiline: Neurodegeneration, neuroprotection, and mitochondrial permeability transition. J Neurosci Res 79:172–179

    Article  PubMed  CAS  Google Scholar 

  56. Buchsbaum MS, Coursey, RD, Murphy DL (1976) The biochemical high-risk paradigm: Behavioral and familial correlates of low platelet monoamine oxidase activity. Science Oct 15;194(4262):334–339 Review

    Article  Google Scholar 

  57. Fowler JS, Logan J, Wang GJ, Volkow ND (2003) Monoamine oxidase and cigarette smoking. NeuroToxicology 24(1):75–82 (Jan)Review

    Article  PubMed  CAS  Google Scholar 

  58. Oreland L, Fowler CJ, Schalling D (1981) Low platelet monoamine oxidase activity in cigarette smokers. Life Sci 29:2511–2518

    Article  PubMed  CAS  Google Scholar 

  59. Norman TR, Chamberlain KG, French MA (1987) Platelet monoamine oxidase: Low activity in cigarette smokers. Psychiatry Res 20:199–205 Mar

    Article  PubMed  CAS  Google Scholar 

  60. Berlin I, Said S, Spreux-Varocuax O et al. (1995) Monoamine oxidase A and B in heavy smokers. Biol Psychiatry 33:756–761

    Article  Google Scholar 

  61. Fowler JS, Volkow ND, Wang G-J et al. (1996) Brain MAO A inhibition in cigarette smokers. Proc Natl Acad Sci U S A 93:14065–14069

    Article  PubMed  CAS  Google Scholar 

  62. Fowler JS, Wang G-J, Volkow ND et al. (1996) Inhibition of monoamine oxidase B in the brains of smokers. Nature 379:733–736

    Article  PubMed  CAS  Google Scholar 

  63. Fowler JS, Wang G-J, Volkow ND et al. (2000) Maintenance of brain monoamine oxidase B inhibition in smokers after overnight cigarette abstinence. Am J Psychiatry 157:1864–1866

    Article  PubMed  CAS  Google Scholar 

  64. Fowler JS, Volkow ND, Logan J et al. (1998) An acute dose of nicotine does not inhibit MAO B in baboon brain in vivo. Life Sci 63PL:19–23

    Google Scholar 

  65. Fowler JS, Wang G-J, Volkow ND et al. (1999) Smoking a single cigarette does not produce a measurable reduction in brain MAO B in non-smokers. Nicotine Tob Res 1:325–329

    Article  PubMed  CAS  Google Scholar 

  66. Scott WK, Zhang F, Stajich JM et al. (2005) Family-based case-control study of cigarette smoking and Parkinson disease. Neurology 64(3):442–447

    PubMed  CAS  Google Scholar 

  67. Glassman AH, Helzer JE, Covey LS et al. (1990) Smoking, smoking cessation, and major depression. JAMA 264:1546–1549

    Article  PubMed  CAS  Google Scholar 

  68. Henningfield JE, Clayton R, Pollen W (1990) Involvement of tobacco in alcoholism and illicit drug use. Br J Addict 85:279–292

    Article  PubMed  CAS  Google Scholar 

  69. Hughes JR, Hatsukami DK, Mitchell JE et al. (1986) Prevalence of smoking among psychiatric outpatients. Am. J. Psychiatry 143:993–997

    PubMed  CAS  Google Scholar 

  70. George TP, Vessichio JC, Termine A (2003) A preliminary, placebo controlled trial of selegiline hydrochloride for smoking cessation. Biol Psychiatry 53:136–143

    Article  PubMed  CAS  Google Scholar 

  71. Khalil AA, Steyn S, Castagnoli N (2000) Isolation and characterization of monoamine oxidase inhibitor from tobacco leaves. Chem Res Toxicol 13:31–35

    Article  PubMed  CAS  Google Scholar 

  72. Castagnoli K, Petzer JB, Steyn SJ, van der Schyf CJ, Castagnoli N Jr. (2003) Inhibition of human MAO-A and MAO-B by a compound isolated from flue-cured tobacco leaves and its neuroprotective properties in the MPTP mouse model of neurodegeneration. Inflammopharmacology 11(2):183–188

    Article  PubMed  CAS  Google Scholar 

  73. Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A Jul;85(14):5274–5278

    Article  PubMed  Google Scholar 

  74. Schiffer WK, Azmoodeh M, Gerasimov M et al. (2003) Selegiline potentiates cocaine-induced increases in rodent nucleus accumbens dopamine. Synapse 48(1):35–38 Apr

    Article  PubMed  CAS  Google Scholar 

  75. Fowler JS, Logan J, Wang GJ et al. (2005) Comparison of monoamine oxidase A in peripheral organs in nonsmokers and smokers. J Nucl Med 46(9):1414–1420

    PubMed  CAS  Google Scholar 

  76. Haass M, Kubler W (1997) Nicotine and sympathetic neurotransmission. Cardiovasc Drugs Ther 10:657–665

    Article  PubMed  CAS  Google Scholar 

  77. Fowler JS, Logan J, Wang GJ et al. (2003) Low monoamine oxidase B in peripheral organs in smokers. Proc Natl Acad Sci U S A 100:11600–11605

    Article  PubMed  CAS  Google Scholar 

  78. Logan J, Fowler JS (2005) Evidence for reduced arterial plasma input, prolonged lung retention and reduced lung monoamine oxidase in smokers. Nucl Med Biol 32:521–529

    Article  PubMed  CAS  Google Scholar 

  79. Rose JE, Behm FM, Westman EC, Coleman RE (1999) Arterial nicotine kinetics during cigarette smoking and intravenous nicotine administration: Implications for addiction. Drug Alcohol Depend 56:99–107

    Article  PubMed  CAS  Google Scholar 

  80. Evans SM, Cone EJ, Henningfield JE (1996) Arterial and venous cocaine plasma concentrations in humans: Relationship of route of administration, cardiovascular effects and subjective effects. J Pharmacol Exp Ther 279:1345–1356

    PubMed  CAS  Google Scholar 

  81. Simpson GM, Shih JC, Chen K et al. (1999) Schizophrenia, monoamine oxidase and cigarette smoking. Neuropsychopharmacology 20:392–394

    Article  PubMed  CAS  Google Scholar 

  82. Fowler JS, Volkow ND, Wang, GJ, Ding YS, Dewey SL (1999) PET and drug research and development. J Nucl Med 40:1154–1163 Review

    PubMed  CAS  Google Scholar 

  83. Costa-Mallen P, Afsharinejad Z, Kelada SN et al. (2004) DNA sequence analysis of monoamine oxidase B gene coding and promoter regions in Parkinson’s disease cases and unrelated controls. Mov Disord 19:76–83

    Article  PubMed  Google Scholar 

  84. Adeghate E, Parvez H (2004) The effect of diabetes mellitus on the morphology and physiology of monoamine oxidase in the pancreas. NeuroToxicology 25:167–173

    Article  PubMed  CAS  Google Scholar 

  85. Orlefors H, Sundin A, Fasth KJ et al. (2003) Demonstration of high monoaminoxidase-A levels in neuroendocrine gastroenteropancreatic tumors in vitro and in vivo-tumor visualization using positron emission tomography with 11C-harmine. Nucl Med Biol 30:669–679

    Article  PubMed  CAS  Google Scholar 

  86. Ulus IH, Maher TJ, Wurtman RJ (2000) Characterization of phentermine and related compounds as monoamine oxidase (MAO) inhibitors. Biochem. Pharmacol. 59:1611–1621

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the United States Department of Energy (Office of Biological and Environmental Research; DE-AC02-98CH10886) and National Institutes of Health (National Institute for Biomedical Imaging and Bioengineering, EB2630 and National Institute on Drug Abuse, K 05 DA020001 and General Clinical Research Center, MO1RR10710).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna S. Fowler PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fowler, J.S., Logan, J., Volkow, N.D. et al. Translational Neuroimaging: Positron Emission Tomography Studies of Monoamine Oxidase. Mol Imaging Biol 7, 377–387 (2005). https://doi.org/10.1007/s11307-005-0016-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-005-0016-1

Key words

Navigation