Skip to main content

Advertisement

Log in

Spontaneous brain activity observed with functional magnetic resonance imaging as a potential biomarker in neuropsychiatric disorders

  • Review
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

As functional magnetic resonance imaging (fMRI) studies have yielded increasing amounts of information about the brain’s spontaneous activity, they have revealed fMRI’s potential to locate changes in brain hemodynamics that are associated with neuropsychiatric disorders. In this paper, we review studies that support the notion that changes in brain spontaneous activity observed by fMRI can be used as potential biomarkers for diagnosis and treatment evaluation in neuropsychiatric disorders. We first review the methods used to study spontaneous activity from the perspectives of (1) the properties of local spontaneous activity, (2) the spatial pattern of spontaneous activity, and (3) the topological properties of brain networks. We also summarize the major findings associated with major neuropsychiatric disorders obtained using these methods. Then we review the pilot studies that have used spontaneous activity to discriminate patients from normal controls. Finally, we discuss current challenges and potential research directions to further elucidate the clinical use of spontaneous brain activity in neuropsychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3:e17

    Article  PubMed  CAS  Google Scholar 

  • Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26:63–72

    Article  PubMed  CAS  Google Scholar 

  • Allen G, Barnard H, McColl R, Hester AL, Fields JA, Weiner MF, Ringe WK, Lipton AM, Brooker M, McDonald E, Rubin CD, Cullum CM (2007) Reduced hippocampal functional connectivity in Alzheimer disease. Arch Neurol 64:1482–1487

    Article  PubMed  Google Scholar 

  • Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, Buckner RL (2007) Disruption of large-scale brain systems in advanced aging. Neuron 56:924–935

    Article  PubMed  CAS  Google Scholar 

  • Arthurs OJ, Boniface S (2002) How well do we understand the neural origins of the fMRI BOLD signal? Trends Neurosci 25:27–31

    Article  PubMed  CAS  Google Scholar 

  • Bai F, Zhang Z, Yu H, Shi Y, Yuan Y, Zhu W, Zhang X, Qian Y (2008) Default-mode network activity distinguishes amnestic type mild cognitive impairment from healthy aging: a combined structural and resting-state functional MRI study. Neurosci Lett 438:111–115

    Article  PubMed  CAS  Google Scholar 

  • Bai F, Watson DR, Yu H, Shi Y, Yuan Y, Zhang Z (2009) Abnormal resting-state functional connectivity of posterior cingulate cortex in amnestic type mild cognitive impairment. Brain Res 1302:167–174

    Article  PubMed  CAS  Google Scholar 

  • Bandettini PA, Bullmore E (2008) Endogenous oscillations and networks in functional magnetic resonance imaging. Hum Brain Mapp 29:737–739

    Article  PubMed  Google Scholar 

  • Bartels A, Zeki S (2005) The chronoarchitecture of the cerebral cortex. Philos Trans R Soc Lond B Biol Sci 360:733–750

    Article  PubMed  Google Scholar 

  • Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28:9239–9248

    Article  PubMed  CAS  Google Scholar 

  • Beckmann CF, Smith SM (2005) Tensorial extensions of independent component analysis for multisubject FMRI analysis. Neuroimage 25:294–311

    Article  PubMed  CAS  Google Scholar 

  • Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013

    Article  PubMed  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    Article  PubMed  CAS  Google Scholar 

  • Bluhm RL, Miller J, Lanius RA, Osuch EA, Boksman K, Neufeld RW, Theberge J, Schaefer B, Williamson P (2007) Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophr Bull 33:1004–1012

    Article  PubMed  Google Scholar 

  • Bluhm RL, Miller J, Lanius RA, Osuch EA, Boksman K, Neufeld RW, Theberge J, Schaefer B, Williamson PC (2009) Retrosplenial cortex connectivity in schizophrenia. Psychiatry Res 174:17–23

    Article  PubMed  Google Scholar 

  • Bonelli RM, Cummings JL (2007) Frontal-subcortical circuitry and behavior. Dialogues Clin Neurosci 9:141–151

    PubMed  Google Scholar 

  • Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJ (2009) Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 33:279–296

    Article  PubMed  Google Scholar 

  • Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38

    Article  PubMed  Google Scholar 

  • Bullmore E, Fadili J, Maxim V, Sendur L, Whitcher B, Suckling J, Brammer M, Breakspear M (2004) Wavelets and functional magnetic resonance imaging of the human brain. Neuroimage 23 Suppl 1:S234–S249

    Article  PubMed  Google Scholar 

  • Bunney WE, Bunney BG (2000) Evidence for a compromised dorsolateral prefrontal cortical parallel circuit in schizophrenia. Brain Res Brain Res Rev 31:138–146

    Article  PubMed  CAS  Google Scholar 

  • Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14:140–151

    Article  PubMed  CAS  Google Scholar 

  • Calhoun VD, Maciejewski PK, Pearlson GD, Kiehl KA (2008a) Temporal lobe and “default” hemodynamic brain modes discriminate between schizophrenia and bipolar disorder. Hum Brain Mapp 29:1265–1275

    Article  PubMed  Google Scholar 

  • Calhoun VD, Kiehl KA, Pearlson GD (2008b) Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Hum Brain Mapp 29:828–838

    Article  PubMed  Google Scholar 

  • Camchong J, MacDonald AW, III, Bell C, Mueller BA , Lim KO (2009) Altered functional and anatomical connectivity in schizophrenia. Schizophr Bull. doi:10.1093/schbul/sbp131

  • Castellanos FX, Margulies DS, Kelly C, Uddin LQ, Ghaffari M, Kirsch A, Shaw D, Shehzad Z, Di Martino A, Biswal B, Sonuga-Barke EJ, Rotrosen J, Adler LA, Milham MP (2008) Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol Psychiatry 63:332–337

    Article  PubMed  Google Scholar 

  • Catafau AM, Parellada E, Lomena FJ, Bernardo M, Pavia J, Ros D, Setoain J, Gonzalez-Monclus E (1994) Prefrontal and temporal blood flow in schizophrenia: resting and activation technetium-99 m-HMPAO SPECT patterns in young neuroleptic-naive patients with acute disease. J Nucl Med 35:935–941

    PubMed  CAS  Google Scholar 

  • Cherkassky VL, Kana RK, Keller TA, Just MA (2006) Functional connectivity in a baseline resting-state network in autism. Neuroreport 17:1687–1690

    Article  PubMed  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215

    Article  PubMed  CAS  Google Scholar 

  • Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am J Neuroradiol 22:1326–1333

    PubMed  CAS  Google Scholar 

  • Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103:13848–13853

    Article  PubMed  CAS  Google Scholar 

  • De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29:1359–1367

    Article  PubMed  Google Scholar 

  • Delbeuck X, Van der Linden M, Collette F (2003) Alzheimer’s disease as a disconnection syndrome? Neuropsychol Rev 13:79–92

    Article  PubMed  CAS  Google Scholar 

  • Greicius MD, Supekar K, Menon V, Dougherty, RF (2008) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex

  • Drevets WC, Price JL, Furey ML (2008) Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213:93–118

    Article  PubMed  Google Scholar 

  • Duff EP, Johnston LA, Xiong J, Fox PT, Mareels I, Egan GF (2008) The power of spectral density analysis for mapping endogenous BOLD signal fluctuations. Hum Brain Mapp 29:778–790

    Article  PubMed  Google Scholar 

  • Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94:018102

    Article  PubMed  CAS  Google Scholar 

  • Fair DA, Schlaggar BL, Cohen AL, Miezin FM, Dosenbach NU, Wenger KK, Fox MD, Snyder AZ, Raichle ME, Petersen SE (2007) A method for using blocked and event-related fMRI data to study “resting state” functional connectivity. Neuroimage 35:396–405

    Article  PubMed  Google Scholar 

  • Fleisher AS, Sherzai A, Taylor C, Langbaum JB, Chen K, Buxton RB (2009) Resting-state BOLD networks versus task-associated functional MRI for distinguishing Alzheimer’s disease risk groups. Neuroimage 47:1678–1690

    Article  PubMed  Google Scholar 

  • Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Review Neuroscience 8:700–711

    Article  CAS  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anti-correlated functional networks. Proc Natl Acad Sci U S A 102:9673–9678

    Article  PubMed  CAS  Google Scholar 

  • Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006a) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci U S A 103:10046–10051

    Article  PubMed  CAS  Google Scholar 

  • Fox MD, Snyder AZ, Zacks JM, Raichle ME (2006b) Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. Nat Neurosci 9:23–25

    Article  PubMed  CAS  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL, Raichle ME (2007) Intrinsic Fluctuations within Cortical Systems Account for Intertrial Variability in Human Behavior. Neuron 56:171–184

    Article  PubMed  CAS  Google Scholar 

  • Fransson P (2005) Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 26:15–29

    Article  PubMed  Google Scholar 

  • Fransson P, Skiold B, Horsch S, Nordell A, Blennow M, Lagercrantz H, Aden U (2007) Resting-state networks in the infant brain. Proc Natl Acad Sci U S A 104:15531–15536

    Article  PubMed  Google Scholar 

  • Friston KJ (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2:56–78

    Article  Google Scholar 

  • Friston KJ (1998) The disconnection hypothesis. Schizophr Res 30:115–125

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1993) Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13:5–14

    PubMed  CAS  Google Scholar 

  • Garrity AG, Pearlson GD, McKiernan K, Lloyd D, Kiehl KA, Calhoun VD (2007) Aberrant “default mode” functional connectivity in schizophrenia. Am J Psychiatry 164:450–457

    Article  PubMed  Google Scholar 

  • Gavrilescu M, Rossell S, Stuart GW, Shea TL, Innes-Brown H, Henshall K, McKay C, Sergejew AA, Copolov D, Egan GF (2010) Reduced connectivity of the auditory cortex in patients with auditory hallucinations: a resting state functional magnetic resonance imaging study. Psychol Med 40:1149–1158

    Article  PubMed  CAS  Google Scholar 

  • Gong G, He Y, Concha L, Lebel C, Gross DW, Evans AC, Beaulieu C (2009) Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex 19:524–536

    Article  PubMed  Google Scholar 

  • Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100:253–258

    Article  PubMed  CAS  Google Scholar 

  • Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 101:4637–4642

    Article  PubMed  CAS  Google Scholar 

  • Growdon JH, Selkoe DJ, Roses A, Trojanowski JQ, Davies P, Appel S (1998) Consensus report of the Working Group on Biological markers of Alzheimer’s disease. [Ronald and Nancy Reagan Institute of the Alzheimer’s Association and National Institute on Aging Working Group on Biological Markers of Alzheimer’s Disease]. Neurobiol Aging 19:109–116

    Article  Google Scholar 

  • Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the Structural Core of Human Cerebral Cortex. PLoS Biology 6:e159

    Article  PubMed  CAS  Google Scholar 

  • Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC (2002) Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp 15:247–262

    Article  PubMed  Google Scholar 

  • He Y, Zang Y, Jiang T, Liang M, Gong G (2004) Detecting functional connectivity of the cerebellum using low frequency fluctuations (LFFs). In: Barillot C, Haynor DR, Hellier P (eds) Medical Image Computing and Computer-Assisted Intervention MICCAI 2004, St Malo, France, vol 3217/2004. Springer, Berlin/Heidelberg, pp 907–915

    Google Scholar 

  • He BJ, Snyder AZ, Vincent JL, Epstein A, Shulman GL, Corbetta M (2007a) Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 53:905–918

    Article  PubMed  CAS  Google Scholar 

  • He Y, Chen ZJ, Evans AC (2007b) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17:2407–2419

    Article  PubMed  Google Scholar 

  • He Y, Wang L, Zang Y, Tian L, Zhang X, Li K, Jiang T (2007c) Regional coherence changes in the early stages of Alzheimer’s disease: a combined structural and resting-state functional MRI study. Neuroimage 35:488–500

    Article  PubMed  Google Scholar 

  • He Y, Chen Z, Evans A (2008) Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. J Neurosci 28:4756–4766

    Article  PubMed  CAS  Google Scholar 

  • Honey CJ, Kotter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci U S A 104:10240–10245

    Article  PubMed  CAS  Google Scholar 

  • Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P (2009) Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci U S A 106:2035–2040

    Article  PubMed  Google Scholar 

  • Hoptman MJ, D’Angelo D, Catalano D, Mauro CJ, Shehzad ZE, Kelly AM, Castellanos FX, Javitt DC, Milham MP (2009) Amygdalofrontal functional disconnectivity and aggression in schizophrenia. Schizophr Bull. doi:10.1093/schbul/sbp012

  • Hoptman MJ, Zuo XN, Butler PD, Javitt DC, D’Angelo D, Mauro CJ, Milham MP (2010) Amplitude of low-frequency oscillations in schizophrenia: a resting state fMRI study. Schizophr Res 117:13–20

    Article  PubMed  Google Scholar 

  • Hunter MD, Eickhoff SB, Miller TW, Farrow TF, Wilkinson ID, Woodruff PW (2006) Neural activity in speech-sensitive auditory cortex during silence. Proc Natl Acad Sci U S A 103:189–194

    Article  PubMed  CAS  Google Scholar 

  • Iturria-Medina Y, Sotero RC, Canales-Rodriguez EJ, Aleman-Gomez Y, Melie-Garcia L (2008) Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory. Neuroimage 40:1064–1076

    Article  PubMed  Google Scholar 

  • Jack CR Jr, Bernstein MA, Borowski BJ, Gunter JL, Fox NC, Thompson PM, Schuff N, Krueger G, Killiany RJ, Decarli CS, Dale AM, Carmichael OW, Tosun D, Weiner MW (2010) Update on the magnetic resonance imaging core of the Alzheimer’s disease neuroimaging initiative. Alzheimers Dement 6:212–220

    Article  PubMed  Google Scholar 

  • Jafri MJ, Pearlson GD, Stevens M, Calhoun VD (2008) A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage 39:1666–1681

    Article  PubMed  Google Scholar 

  • Jiang T, He Y, Zang Y, Weng X (2004) Modulation of functional connectivity during the resting state and the motor task. Hum Brain Mapp 22:63–71

    Article  PubMed  Google Scholar 

  • Just MA, Cherkassky VL, Keller TA, Minshew NJ (2004) Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 127:1811–1821

    Article  PubMed  Google Scholar 

  • Kahn I, Andrews-Hanna JR, Vincent JL, Snyder AZ, Buckner RL (2008) Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. J Neurophysiol 100:129–139

    Article  PubMed  Google Scholar 

  • Ke M, Zou R, Shen H, Huang X, Zhou Z, Liu Z, Xue Z, Hu D (2010) Bilateral functional asymmetry disparity in positive and negative schizophrenia revealed by resting-state fMRI. Psychiatry Res 182:30–39

    Article  PubMed  Google Scholar 

  • Kiviniemi V (2008) Endogenous brain fluctuations and diagnostic imaging. Hum Brain Mapp 29:810–817

    Article  PubMed  Google Scholar 

  • Kiviniemi V, Kantola JH, Jauhiainen J, Hyvarinen A, Tervonen O (2003) Independent component analysis of nondeterministic fMRI signal sources. Neuroimage 19:253–260

    Article  PubMed  Google Scholar 

  • Koch MA, Norris DG, Hund-Georgiadis M (2002) An investigation of functional and anatomical connectivity using magnetic resonance imaging. Neuroimage 16:241–250

    Article  PubMed  Google Scholar 

  • Levy AV, Gomez-Mont F, Volkow ND, Corona JF, Brodie JD, Cancro R (1992) Spatial low frequency pattern analysis in positron emission tomography: a study between normals and schizophrenics. J Nucl Med 33:287–295

    PubMed  CAS  Google Scholar 

  • Li SJ, Li Z, Wu G, Zhang MJ, Franczak M, Antuono PG (2002) Alzheimer Disease: evaluation of a functional MR imaging index as a marker. Radiology 225:253–259

    Article  PubMed  Google Scholar 

  • Liang M, Jiang T, Tian L, Liu B, Zhou Y, Liu H, Kuang F, Liu Z (2006a) An information-theoretic based method for constructing the complex brain functional network with fMRI and the analysis of small world property. In: Frangi AF, Delingette H (eds) MICCAI 2006 workshop proceedings, from statistical atlases to personalized models: understanding complex diseases in populations and individuals. Copenhagen, Denmark, pp 23–26

    Google Scholar 

  • Liang M, Zhou Y, Jiang T, Liu Z, Tian L, Liu H, Hao Y (2006b) Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport 17:209–213

    Article  PubMed  Google Scholar 

  • Liu H, Liu Z, Liang M, Hao Y, Tan L, Kuang F, Yi Y, Xu L, Jiang T (2006) Decreased regional homogeneity in schizophrenia: a resting state functional magnetic resonance imaging study. Neuroreport 17:19–22

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Liang M, Zhou Y, He Y, Hao Y, Song M, Yu C, Liu H, Liu Z, Jiang T (2008a) Disrupted small-world networks in schizophrenia. Brain 131:945–961

    Article  PubMed  Google Scholar 

  • Liu Y, Wang K, Yu C, He Y, Zhou Y, Liang M, Wang L, Jiang T (2008b) Regional homogeneity, functional connectivity and imaging markers of Alzheimer’s disease: a review of resting-state fMRI studies. Neuropsychologia 46:1648–1656

    Article  PubMed  Google Scholar 

  • Liu H, Kaneko Y, Ouyang X, Li L, Hao Y, Chen EY, Jiang T, Zhou Y, Liu, Z (2010) Schizophrenic patients and their unaffected siblings share increased resting-state connectivity in the task-negative network but not its anti-correlated task-positive network. Schizophr Bull. doi:10.1093/schbul/sbq074

  • Lowe MJ, Mock BJ, Sorenson JA (1998) Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 7:119–132

    Article  PubMed  CAS  Google Scholar 

  • Lowe MJ, Phillips MD, Lurito JT, Mattson D, Dzemidzic M, Mathews VP (2002) Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results. Radiology 224:184–192

    Article  PubMed  Google Scholar 

  • Lui S, Deng W, Huang X, Jiang L, Ma X, Chen H, Zhang T, Li X, Li D, Zou L, Tang H, Zhou XJ, Mechelli A, Collier DA, Sweeney JA, Li T, Gong Q (2009) Association of cerebral deficits with clinical symptoms in antipsychotic-naive first-episode schizophrenia: an optimized voxel-based morphometry and resting state functional connectivity study. Am J Psychiatry 166:196–205

    Article  PubMed  Google Scholar 

  • Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, Bullmore E (2010) Functional Connectivity and Brain Networks in Schizophrenia. J Neurosci 30:9477–9487

    PubMed  CAS  Google Scholar 

  • Mannell MV, Franco AR, Calhoun VD, Canive JM, Thoma RJ, Mayer AR (2010) Resting state and task-induced deactivation: A methodological comparison in patients with schizophrenia and healthy controls. Hum Brain Mapp 31:424–437

    PubMed  Google Scholar 

  • Masterman DL, Cummings JL (1997) Frontal-subcortical circuits: the anatomic basis of executive, social and motivated behaviors. J Psychopharmacol 11:107–114

    Article  PubMed  CAS  Google Scholar 

  • Maxim V, Sendur L, Fadili J, Suckling J, Gould R, Howard R, Bullmore E (2005) Fractional Gaussian noise, functional MRI and Alzheimer’s disease. Neuroimage 25:141–158

    Article  PubMed  Google Scholar 

  • Micheloyannis S, Pachou E, Stam CJ, Breakspear M, Bitsios P, Vourkas M, Erimaki S, Zervakis M (2006a) Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr Res 87:60–66

    Article  PubMed  Google Scholar 

  • Micheloyannis S, Pachou E, Stam CJ, Vourkas M, Erimaki S, Tsirka V (2006b) Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neurosci Lett 402:273–277

    Article  PubMed  CAS  Google Scholar 

  • Nir Y, Hasson U, Levy I, Yeshurun Y, Malach R (2006) Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation. Neuroimage 30:1313–1324

    Article  PubMed  Google Scholar 

  • Ongur D, Lundy M, Greenhouse I, Shinn AK, Menon V, Cohen BM, Renshaw PF (2010) Default mode network abnormalities in bipolar disorder and schizophrenia. Psychiatry Res 183:59–68

    Article  PubMed  Google Scholar 

  • Pascual-Marqui RD, Lehmann D, Koenig T, Kochi K, Merlo MC, Hell D, Koukkou M (1999) Low resolution brain electromagnetic tomography (LORETA) functional imaging in acute, neuroleptic-naive, first-episode, productive schizophrenia. Psychiatry Res 90:169–179

    Article  PubMed  CAS  Google Scholar 

  • Qi Z, Wu X, Wang Z, Zhang N, Dong H, Yao L, Li K (2009) Impairment and compensation coexist in amnestic MCI default mode network. Neuroimage 50:48–55

    Article  PubMed  Google Scholar 

  • Quigley M, Cordes D, Turski P, Moritz C, Haughton V, Seth R, Meyerand ME (2003) Role of the corpus callosum in functional connectivity. AJNR Am J Neuroradiol 24:208–212

    PubMed  Google Scholar 

  • Raichle ME (2010a) The brain’s dark energy. Sci Am 302:44–49

    Article  PubMed  Google Scholar 

  • Raichle ME (2010b) Two views of brain function. Trends Cogn Sci 14:180–190

    Article  PubMed  Google Scholar 

  • Rombouts SA, van Swieten JC, Pijnenburg YA, Goekoop R, Barkhof F, Scheltens P (2003) Loss of frontal fMRI activation in early frontotemporal dementia compared to early AD. Neurology 60:1904–1908

    PubMed  CAS  Google Scholar 

  • Rotarska-Jagiela A, van de Ven V, Oertel-Knochel V, Uhlhaas PJ, Vogeley K, Linden DE (2010) Resting-state functional network correlates of psychotic symptoms in schizophrenia. Schizophr Res 117:21–30

    Article  PubMed  Google Scholar 

  • Rubinov M, Knock SA, Stam CJ, Micheloyannis S, Harris AW, Williams LM, Breakspear M (2007) Small-world properties of nonlinear brain activity in schizophrenia. Hum Brain Mapp 30:403–416

    Article  Google Scholar 

  • Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15:1332–1342

    Article  PubMed  Google Scholar 

  • Salvador R, Martinez A, Pomarol-Clotet E, Sarro S, Suckling J, Bullmore E (2007) Frequency based mutual information measures between clusters of brain regions in functional magnetic resonance imaging. Neuroimage 35:83–88

    Article  PubMed  CAS  Google Scholar 

  • Salvador R, Martinez A, Pomarol-Clotet E, Gomar J, Vila F, Sarro S, Capdevila A, Bullmore E (2008) A simple view of the brain through a frequency-specific functional connectivity measure. Neuroimage 39:279–289

    Article  PubMed  CAS  Google Scholar 

  • Shaw LM, Korecka M, Clark CM, Lee VM, Trojanowski JQ (2007) Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics. Nat Rev Drug Discov 6:295–303

    Article  PubMed  CAS  Google Scholar 

  • Sheline YI, Raichle ME, Snyder AZ, Morris JC, Head D, Wang S, Mintun MA (2010) Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol Psychiatry 67:584–587

    Article  PubMed  CAS  Google Scholar 

  • Shen H, Wang L, Liu Y, Hu D (2010) Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI. Neuroimage 49:3110–3121

    Article  PubMed  Google Scholar 

  • Shi F, Liu Y, Jiang T, Zhou Y, Zhu W, Jiang J, Liu H, Liu Z (2007) Regional homogeneity and anatomical parcellation for fMRI image classification: application to schizophrenia and normal controls. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 10:136–143

    Google Scholar 

  • Skudlarski P, Jagannathan K, Anderson K, Stevens MC, Calhoun VD, Skudlarska BA, Pearlson G (2010) Brain connectivity is not only lower but different in schizophrenia: a combined anatomical and functional approach. Biol Psychiatry 68:61–69

    Article  PubMed  Google Scholar 

  • Song M, Liang M, Jiang T, Zhou Y, Liu Z (2006) Classification of schizophrenic patients with resting brain functional connectivity using an ensemble classifier. In: 9th MICCAI conference workshop (From statistical atlases to personalized models: understanding complex diseases in populations and individuals). Copenhagen, Denmark

  • Sonuga-Barke EJ, Castellanos FX (2007) Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neurosci Biobehav Rev 31:977–986

    Article  PubMed  Google Scholar 

  • Sorg C, Riedl V, Muhlau M, Calhoun VD, Eichele T, Laer L, Drzezga A, Forstl H, Kurz A, Zimmer C, Wohlschlager AM (2007) Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci U S A 104:18760–18765

    Article  PubMed  Google Scholar 

  • Sporns O (2006) Small-world connectivity, motif composition, and complexity of fractal neuronal connections. Biosystems 85:55–64

    Article  PubMed  Google Scholar 

  • Sporns O, Honey CJ (2006) Small worlds inside big brains. Proc Natl Acad Sci U S A 103:19219–19220

    Article  PubMed  CAS  Google Scholar 

  • Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuroinformatics 2:145–162

    Article  PubMed  Google Scholar 

  • Sporns O, Tononi G, Kotter R (2005) The human connectome: A structural description of the human brain. PLoS Comput Biol 1:e42

    Article  PubMed  CAS  Google Scholar 

  • Stam CJ (2004) Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? Neurosci Lett 355:25–28

    Article  PubMed  CAS  Google Scholar 

  • Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17:92–99

    Article  PubMed  CAS  Google Scholar 

  • Stein T, Moritz C, Quigley M, Cordes D, Haughton V, Meyerand E (2000) Functional connectivity in the thalamus and hippocampus studied with functional MR imaging. AJNR Am J Neuroradiol 21:1397–1401

    PubMed  CAS  Google Scholar 

  • Supekar K, Menon V, Rubin D, Musen M, Greicius MD (2008) Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol 4:e1000100

    Article  PubMed  CAS  Google Scholar 

  • Tekin S, Cummings JL (2002) Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update. J Psychosom Res 53:647–654

    Article  PubMed  Google Scholar 

  • Tononi G, Edelman GM, Sporns O (1998) Complexity and coherency: Integrating information in the brain. Trends in Cognitive Sciences 2:474–484

    Article  Google Scholar 

  • van de Ven VG, Formisano E, Prvulovic D, Roeder CH, Linden DE (2004) Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum Brain Mapp 22:165–178

    Article  PubMed  Google Scholar 

  • Vercammen A, Knegtering H, den Boer JA, Liemburg EJ, Aleman A (2010a) Auditory hallucinations in schizophrenia are associated with reduced functional connectivity of the temporo-parietal area. Biol Psychiatry 67:912–918

    Article  PubMed  Google Scholar 

  • Vercammen A, Knegtering H, Liemburg EJ, Boer JA, Aleman A (2010b) Functional connectivity of the temporo-parietal region in schizophrenia: effects of rTMS treatment of auditory hallucinations. J Psychiatr Res 44:725–731

    Article  PubMed  Google Scholar 

  • Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, Zempel JM, Snyder LH, Corbetta M, Raichle ME (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447:83–86

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Zhang Z (2007) Energy coding in biological neural networks. Cogn Neurodyn 1:203–212

    Article  PubMed  Google Scholar 

  • Wang K, Jiang T, Liang M, Wang L, Tian L, Zhang X, Li K, Liu Z (2006a) Discriminative analysis of early Alzheimer’s disease based on two intrinsically anti-correlated networks with resting-state fMRI. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 9:340–347

    Google Scholar 

  • Wang L, Zang Y, He Y, Liang M, Zhang X, Tian L, Wu T, Jiang T, Li K (2006b) Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage 31:496–504

    Article  PubMed  Google Scholar 

  • Wang K, Liang M, Wang L, Tian L, Zhang X, Li K, Jiang T (2007) Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study. Hum Brain Mapp 28:967–978

    Article  PubMed  Google Scholar 

  • Wang J, Wang L, Zang Y, Yang H, Tang H, Gong Q, Chen Z, Zhu C, He Y (2008a) Parcellation-dependent small-world brain functional networks: a resting-state fMRI study. Hum Brain Mapp 30:1511–1523

    Article  Google Scholar 

  • Wang K, Jiang T, Yu C, Tian L, Li J, Liu Y, Zhou Y, Xu L, Song M, Li K (2008b) Spontaneous activity associated with primary visual cortex: a resting-state FMRI study. Cereb Cortex 18:697–704

    Article  PubMed  Google Scholar 

  • Wang R, Zhang Z, Chen G (2008c) Energy function and energy evolution on neural population. IEEE Transactions on Neural Networks 19:535–538

    Article  PubMed  Google Scholar 

  • Wang R, Zhang Z, Chen G (2009) Energy coding and energy functions for local activities of brain. Neurocomputing 73:139–150

    Article  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    Article  PubMed  CAS  Google Scholar 

  • Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone SV, McCarley RW, Shenton ME, Green AI, Nieto-Castanon A, LaViolette P, Wojcik J, Gabrieli JD, Seidman LJ (2009) Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci U S A 106:1279–1284

    Article  PubMed  Google Scholar 

  • Williamson P (2007) Are anti-correlated networks in the brain relevant to schizophrenia? Schizophr Bull 33:994–1003

    Article  PubMed  Google Scholar 

  • Wink AM, Bernard F, Salvador R, Bullmore E, Suckling J (2006) Age and cholinergic effects on hemodynamics and functional coherence of human hippocampus. Neurobiol Aging 27:1395–1404

    Article  PubMed  CAS  Google Scholar 

  • Wink AM, Bullmore E, Barnes A, Bernard F, Suckling J (2008) Monofractal and multifractal dynamics of low frequency endogenous brain oscillations in functional MRI. Hum Brain Mapp 29:791–801

    Article  PubMed  Google Scholar 

  • Xu Y, Xu G, Wu G, Antuono P, Rowe DB, Li SJ (2008) The phase shift index for marking functional asynchrony in Alzheimer’s disease patients using fMRI. Magn Reson Imaging 26:379–392

    Article  PubMed  Google Scholar 

  • Yang H, Long XY, Yang Y, Yan H, Zhu CZ, Zhou XP, Zang YF, Gong QY (2007) Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. Neuroimage 36:144–152

    Article  PubMed  Google Scholar 

  • Zang Y, Jiang T, Lu Y, He Y, Tian L (2004) Regional homogeneity approach to fMRI data analysis. Neuroimage 22:394–400

    Article  PubMed  Google Scholar 

  • Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, Liang M, Tian LX, Jiang TZ, Wang YF (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29:83–91

    Article  PubMed  Google Scholar 

  • Zeki S, Shipp S (1988) The functional logic of cortical connections. Nature 335:311–317

    Article  PubMed  CAS  Google Scholar 

  • Zhang HY, Wang SJ, Xing J, Liu B, Ma ZL, Yang M, Zhang ZJ, Teng GJ (2009) Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer’s disease. Behav Brain Res 197:103–108

    Article  PubMed  Google Scholar 

  • Zhou Y, Liang M, Jiang T, Tian L, Liu Y, Liu Z, Liu H, Kuang F (2007a) Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI. Neurosci Lett 417:297–302

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Liang M, Tian L, Wang K, Hao Y, Liu H, Liu Z, Jiang T (2007b) Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr Res 97:194–205

    Article  PubMed  Google Scholar 

  • Zhou Y, Shu N, Liu Y, Song M, Hao Y, Liu H, Yu C, Liu Z, Jiang T (2008) Altered resting-state functional connectivity and anatomical connectivity of hippocampus in schizophrenia. Schizophr Res 100:120–132

    Article  PubMed  Google Scholar 

  • Zhou J, Greicius MD, Gennatas ED, Growdon ME, Jang JY, Rabinovici GD, Kramer JH, Weiner M, Miller BL, Seeley WW (2010) Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain 133:1352–1367

    Article  PubMed  Google Scholar 

  • Zou QH, Zhu CZ, Yang Y, Zuo XN, Long XY, Cao QJ, Wang YF, Zang YF (2008) An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods 172:137–141

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Rhoda E. and Edmund F. Perozzi for English language assistance. This work was supported by the Natural Science Foundation of China (Grant No. 30730035 and 30900487), the National High Technology Program (863) Grant No. 2009AA02Z302, and the National Key Basic Research and Development Program (973) (Grant No. 2007CB512304). The shorten version of this paper has been published in the 2nd International Conference on Cognitive Neurodynamics (ICCN’09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianzi Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Wang, K., Liu, Y. et al. Spontaneous brain activity observed with functional magnetic resonance imaging as a potential biomarker in neuropsychiatric disorders. Cogn Neurodyn 4, 275–294 (2010). https://doi.org/10.1007/s11571-010-9126-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-010-9126-9

Keywords

Navigation