Skip to main content

Advertisement

Log in

Diffusion Tensor Imaging in Huntington’s disease reveals distinct patterns of white matter degeneration associated with motor and cognitive deficits

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

White matter (WM) degeneration is an important feature of Huntington’s disease (HD) neuropathology. To investigate WM degeneration we used Diffusion Tensor Imaging and Tract-Based Spatial Statistics to compare Fractional Anisotropy, Mean Diffusivity (MD), parallel diffusivity and perpendicular diffusivity (λ⊥) in WM throughout the whole brain in 17 clinically diagnosed HD patients and 16 matched controls. Significant WM diffusivity abnormalities were identified primarily in the corpus callosum (CC) and external/extreme capsules in HD patients compared to controls. Significant correlations were observed between motor symptoms and MD in the CC body, and between global cognitive impairment and λ⊥ in the CC genu. Probabilistic tractography from these regions revealed degeneration of functionally relevant interhemispheric WM tracts. Our findings suggest that WM degeneration within interhemispheric pathways plays an important role in the deterioration of cognitive and motor function in HD patients, and that improved understanding of WM pathology early in the disease is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HD:

Huntington’s disease

WM:

White matter

DTI:

Diffusion Tensor Imaging

TBSS:

Tract-Based Spatial Statistics

FA:

Fractional Anisotropy

λ⊥:

Perpendicular diffusivity

λ||:

Parallel diffusivity

MD:

Mean Diffusivity

ROI:

Region-of-interest

UHDRS:

Unified Huntington’s Disease Rating Scale

MMSE:

Mini Mental State Examination

BDI:

Beck Depression Inventory

CAG:

Cytosine-adenine-guanine

YSD:

Years since diagnosis

NART:

National Adult Reading Test

TR:

Repetition time

TE:

Echo time

FDT:

FMRIBs Diffusion Toolbox

References

  • Aylward, E. H., Anderson, N. B., Bylsma, F. W., Wagster, M. V., Barta, P. E., Sherr, M., et al. (1998). Frontal lobe volume in patients with Huntington’s disease. Neurology, 50(1), 252–8.

    PubMed  CAS  Google Scholar 

  • Bartzokis, G., & Tishler, T. A. (2000). MRI evaluation of basal ganglia ferritin iron and neurotoxicity in Alzheimer’s and Huntingon’s disease. Cellular and Molecular Biology (Noisy-le-grand), 46(4), 821–833.

    CAS  Google Scholar 

  • Bartzokis, G., Cummings, J., Perlman, S., Hance, D. B., & Mintz, J. (1999). Increased basal ganglia iron levels in Huntington disease. Archives of Neurology, 56(5), 569–74.

    Article  PubMed  CAS  Google Scholar 

  • Bartzokis, G., Lu, P. H., Tishler, T. A., Fong, S. M., Oluwadara, B., Finn, J. P., et al. (2007). Myelin breakdown and iron changes in Huntington’s disease: pathogenesis and treatment implications. Neurochemical Research, 32(10), 1655–64.

    Article  PubMed  CAS  Google Scholar 

  • Basser, P. J., & Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance. Series B, 111(3), 209–19.

    Article  PubMed  CAS  Google Scholar 

  • Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4, 561–71.

    PubMed  CAS  Google Scholar 

  • Beglinger, L. J., Nopoulos, P. C., Jorge, R. E., Langbehn, D. R., Mikos, A. E., Moser, D. J., et al. (2005). White matter volume and cognitive dysfunction in early Huntington’s disease. Cognitive and Behavioral Neurology, 18(2), 102–7.

    Article  PubMed  Google Scholar 

  • Behrens, T. E. J., Johansen-Berg, H., Woolrich, M. W., Smith, S. M., Wheeler-Kingshott, C. A. M., Boulby, P. A., et al. (2003). Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neuroscience, 6(7), 750–7.

    Article  PubMed  CAS  Google Scholar 

  • Blatter, D., Bigler, E., Gale, S., Johnson, S., Anderson, C., Burnett, B., et al. (1995). Quantitative volumetric analysis of brain MR: normative database spanning 5 decades of life. American Journal of Neuroradiology, 16(2), 241.

    PubMed  CAS  Google Scholar 

  • Bohanna, I., Georgiou-Karistianis, N., Hannan, A. J., & Egan, G. F. (2008). Magnetic resonance imaging as an approach towards identifying neuropathological biomarkers for Huntington’s disease. Brain Research Reviews, 58(1), 209–25.

    Article  PubMed  CAS  Google Scholar 

  • Ciarmiello, A., Cannella, M., Lastoria, S., Simonelli, M., Frati, L., Rubinsztein, D. C., et al. (2006). Brain White-Matter Volume Loss and Glucose Hypometabolism Precede the Clinical Symptoms of Huntington’s Disease, Journal of Nuclear Medicine (Vol. 47, pp. 215–222): Soc Nuclear Med.

  • Concha, L., Gross, D. W., Wheatley, B. M., & Beaulieu, C. (2006). Diffusion tensor imaging of time-dependent axonal and myelin degradation after corpus callosotomy in epilepsy patients. Neuroimage, 32(3), 1090–9.

    Article  PubMed  Google Scholar 

  • de la Monte, S. M., Vonsattel, J. P., & Richardson, E. P., Jr. (1988). Morphometric demonstration of atrophic changes in the cerebral cortex, white matter, and neostriatum in Huntington’s disease. Journal of Neuropathology and Experimental Neurology, 47(5), 516–25.

    Article  PubMed  Google Scholar 

  • Fennema-Notestine, C., Archibald, S. L., Jacobson, M. W., Corey-Bloom, J., Paulsen, J. S., Peavy, G. M., et al. (2004). In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease. Neurology, 63(6), 989–95.

    PubMed  CAS  Google Scholar 

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–98.

    Article  PubMed  CAS  Google Scholar 

  • Folstein, M. F., Robins, L. N., & Helzer, J. E. (1983). The mini-mental state examination. Archives of General Psychiatry, 40(7), 812.

    PubMed  CAS  Google Scholar 

  • Glenn, O. A., Henry, R. G., Berman, J. I., Chang, P. C., Miller, S. P., Vigneron, D. B., et al. (2003). DTI-based three-dimensional tractography detects differences in the pyramidal tracts of infants and children with congenital hemiparesis. Journal of Magnetic Resonance Imaging, 18(6), 641–8.

    Article  PubMed  Google Scholar 

  • Group, H. S. (1996). Unified Huntington’s disease rating scale: reliability and consistency. Huntington study group. Movement Disorders, 11(2), 136–42.

    Article  Google Scholar 

  • Halliday, G. M., McRitchie, D. A., Macdonald, V., Double, K. L., Trent, R. J., & McCusker, E. (1998). Regional specificity of brain atrophy in Huntington’s disease. Experimental Neurology, 154(2), 663–72.

    Article  PubMed  CAS  Google Scholar 

  • Jech, R., Klempir, J., Vymazal, J., Zidovska, J., Klempirova, O., Ruzicka, E., et al. (2007). Variation of selective gray and white matter atrophy in Huntington’s disease. Movement Disorders, 22(12), 1783–9.

    Article  PubMed  Google Scholar 

  • Johansen-Berg, H., Della-Maggiore, V., Behrens, T. E. J., Smith, S. M., & Paus, T. (2007). Integrity of white matter in the corpus callosum correlates with bimanual co-ordination skills. Neuroimage, 36, 16–21.

    Article  Google Scholar 

  • Kassubek, J., Bernhard Landwehrmeyer, G., Ecker, D., Juengling, F., Muche, R., Schuller, S., et al. (2004). Global cerebral atrophy in early stages of Huntington’s disease: quantitative MRI study. NeuroReport, 15(2), 363.

    Article  PubMed  Google Scholar 

  • Kloppel, S., Draganski, B., Golding, C. V., Chu, C., Nagy, Z., Cook, P. A., et al. (2008). White matter connections reflect changes in voluntary-guided saccades in pre-symptomatic Huntington’s disease. Brain, 131(Pt 1), 196–204.

    PubMed  Google Scholar 

  • Lee, W. C. M., Yoshihara, M., & Littleton, J. T. (2004). Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington’s disease. Proceedings of the National Academy of Science, 101(9), 3224–9.

    Article  CAS  Google Scholar 

  • Li, H., Li, S. H., Cheng, A. L., Mangiarini, L., Bates, G. P., & Li, X. J. (1999). Ultrastructural localization and progressive formation of neuropil aggregates in Huntington’s disease transgenic mice. Human Molecular Genetics, 8(7), 1227–36.

    Article  PubMed  CAS  Google Scholar 

  • Li, H., Li, S. H., Yu, Z. X., Shelbourne, P., & Li, X. J. (2001). Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington’s disease mice. The Journal of Neuroscience, 21(21), 8473.

    PubMed  CAS  Google Scholar 

  • Mann, D. M., Oliver, R., & Snowden, J. S. (1993). The topographic distribution of brain atrophy in Huntington’s disease and progressive supranuclear palsy. Acta Neuropathologica, 85(5), 553–9.

    Article  PubMed  CAS  Google Scholar 

  • Mascalchi, M., Lolli, F., Della Nave, R., Tessa, C., Petralli, R., Gavazzi, C., et al. (2004). Huntington disease: volumetric, diffusion-weighted, and magnetization transfer MR imaging of brain. Radiology, 232(3), 867–73.

    Article  PubMed  Google Scholar 

  • Mori, S., & Wakana, S. (2005). MRI atlas of human white matter.

  • Nelson, H. E., & Willison, J. (1982). National adult reading test (NART): Test manual. Windsor: Nfer-Nelson.

    Google Scholar 

  • Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: a primer with examples. Human Brain Mapping, 15(1), 1–25.

    Article  PubMed  Google Scholar 

  • Ota, M., Sato, N., Ohya, Y., Aoki, Y., Mizukami, K., Mori, T., et al. (2006). Relationship between diffusion tensor imaging and brain morphology in patients with myotonic dystrophy. Neuroscience Letters, 407(3), 234–9.

    Article  PubMed  CAS  Google Scholar 

  • Paulsen, J. S., Magnotta, V. A., Mikos, A. E., Paulson, H. L., Penziner, E., Andreasen, N. C., et al. (2006). Brain structure in preclinical Huntington’s disease. Biological Psychiatry, 59(1), 57–63.

    Article  PubMed  CAS  Google Scholar 

  • Paulsen, J. S., Langbehn, D. R., Stout, J. C., Aylward, E., Ross, C. A., Nance, M., et al. (2008). Detection of Huntington’s disease decades before diagnosis: the Predict-HD study. Journal of Neurology, Neurosurgery and Psychiatry, 79(8), 874–80.

    Article  CAS  Google Scholar 

  • Pierpaoli, C., Barnett, A., Pajevic, S., Chen, R., Penix, L. R., Virta, A., et al. (2001). Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. Neuroimage, 13(6 Pt 1), 1174–85.

    Article  PubMed  CAS  Google Scholar 

  • Reading, S. A., Yassa, M. A., Bakker, A., Dziorny, A. C., Gourley, L. M., Yallapragada, V., et al. (2005). Regional white matter change in pre-symptomatic Huntington’s disease: a diffusion tensor imaging study. Psychiatry Research, 140(1), 55–62.

    Article  PubMed  Google Scholar 

  • Rosas, H. D., Koroshetz, W. J., Chen, Y. I., Skeuse, C., Vangel, M., Cudkowicz, M. E., et al. (2003). Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology, 60(10), 1615–20.

    PubMed  CAS  Google Scholar 

  • Rosas, H. D., Hevelone, N. D., Zaleta, A. K., Greve, D. N., Salat, D. H., & Fischl, B. (2005). Regional cortical thinning in preclinical Huntington disease and its relationship to cognition. Neurology, 65(5), 745–7.

    Article  PubMed  CAS  Google Scholar 

  • Rosas, H. D., Tuch, D. S., Hevelone, N. D., Zaleta, A. K., Vangel, M., Hersch, S. M., et al. (2006). Diffusion tensor imaging in presymptomatic and early Huntington’s disease: Selective white matter pathology and its relationship to clinical measures. Movement Disorders, 21(9), 1317–25.

    Article  PubMed  Google Scholar 

  • Rosas, H. D., Salat, D. H., Lee, S. Y., Zaleta, A. K., Pappu, V., Fischl, B., et al. (2008). Cerebral cortex and the clinical expression of Huntington’s disease: complexity and heterogeneity. Brain, 131(Pt 4), 1057–68.

    Article  PubMed  Google Scholar 

  • Rosas, H. D., Lee, S. Y., Bender, A. C., Zaleta, A. K., Vangel, M., Yu, P., et al. (2009). Altered white matter microstructure in the corpus callosum in Huntington’s disease: implications for cortical “disconnection”. Neuroimage, 49(4), 2995–3004.

    Article  PubMed  Google Scholar 

  • Sapp, E., Penney, J., Young, A., Aronin, N., Vonsattel, J. P., & DiFiglia, M. (1999). Axonal transport of N-terminal huntingtin suggests early pathology of corticostriatal projections in Huntington disease. Journal of Neuropathology and Experimental Neurology, 58(2), 165–73.

    Article  PubMed  CAS  Google Scholar 

  • Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., et al. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage, 31(4), 1487–505.

    Article  PubMed  Google Scholar 

  • Song, S. K., Sun, S. W., Ju, W. K., Lin, S. J., Cross, A. H., & Neufeld, A. H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage, 20(3), 1714–22.

    Article  PubMed  Google Scholar 

  • Stoffers, D., Sheldon, S., Kuperman, J. M., Goldstein, J., Corey-Bloom, J., & Aron, A. R. (2010). Contrasting gray and white matter changes in preclinical Huntington disease: an MRI study. Neurology, 74(15), 1208–16.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, E. V., Rohlfing, T., & Pfefferbaum, A. (2008). Quantitative fiber tracking of lateral and interhemispheric white matter systems in normal aging: relations to timed performance. Neurobiology of Aging

  • Sun, S. W., Liang, H. F., Le, T. Q., Armstrong, R. C., Cross, A. H., & Song, S. K. (2006). Differential sensitivity of in vivo and ex vivo diffusion tensor imaging to evolving optic nerve injury in mice with retinal ischemia. Neuroimage, 32(3), 1195–204.

    Article  PubMed  Google Scholar 

  • Sydykova, D., Stahl, R., Dietrich, O., Ewers, M., Reiser, M. F., Schoenberg, S. O., et al. (2007). Fiber connections between the cerebral cortex and the corpus callosum in Alzheimer’s disease: a diffusion tensor imaging and voxel-based morphometry study. Cerebral Cortex, 17(10), 2276.

    Article  PubMed  Google Scholar 

  • Tabrizi, S. J., Langbehn, D. R., Leavitt, B. R., Roos, R. A., Durr, A., Craufurd, D., et al. (2009). Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol.

  • Tai, Y. F., Pavese, N., Gerhard, A., Tabrizi, S. J., Barker, R. A., Brooks, D. J., et al. (2007a). Imaging microglial activation in Huntington’s disease. Brain Research Bulletin, 72(2–3), 148–51.

    Article  PubMed  CAS  Google Scholar 

  • Tai, Y. F., Pavese, N., Gerhard, A., Tabrizi, S. J., Barker, R. A., Brooks, D. J., et al. (2007b). Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain, 130(7), 1759.

    Article  PubMed  Google Scholar 

  • Thieben, M. J., Duggins, A. J., Good, C. D., Gomes, L., Mahant, N., Richards, F., et al. (2002). The distribution of structural neuropathology in pre-clinical Huntington’s disease. Brain, 125(8), 1815.

    Article  PubMed  CAS  Google Scholar 

  • Wade, A., Jacobs, P., & Morton, A. J. (2008). Atrophy and degeneration in sciatic nerve of presymptomatic mice carrying the Huntington’s disease mutation. Brain Research, 1188, 61–8.

    Article  PubMed  CAS  Google Scholar 

  • Weaver, K. E., Richards, T. L., Liang, O., Laurino, M. Y., Samii, A., & Aylward, E. H. (2009). Longitudinal diffusion tensor imaging in Huntington’s Disease. Experimental Neurology, 216(2), 525–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by grant number 234247 from the National Health and Medical Research Council (Australia). We sincerely thank all participants for their time and effort. We also thank the Brain Research Institute (Austin Hospital) for the use of the 3T GE scanner. This study was carried out at School of Psychology, Psychiatry and Psychological Medicine, Monash University, Clayton, Victoria 3800, Australia. IB is supported by an Australian Rotary Health scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nellie Georgiou-Karistianis.

Electronic supplementary material

Below is the link to the electronic supplementary material

Supplementary Fig. 1

The ability of TBSS to identify the white matter tract skeleton in controls and both mild and moderate HD patients. The image clearly demonstrates the ability of the automated TBSS method to identify the major white matter pathways. (JPEG 128 kb)

High resolution image (TIFF 1907 kb)

Supplementary Fig. 2

Effect of using different thresholds on the group tract maps in HD patients, in (A) tracts from the ROI where MMSE and λ^ were correlated; and (B) tracts from the ROI where UHDRS and MD were correlated. Images show pathways present in between 5.9% (1/17) and 100% (17/17) of HD patients. A final threshold of 47% (8/17) was chosen to identify pathways that were common amongst individuals while still allowing the variability amongst individuals to be represented. (JPEG 3377 kb)

High resolution image (TIFF 9561 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohanna, I., Georgiou-Karistianis, N., Sritharan, A. et al. Diffusion Tensor Imaging in Huntington’s disease reveals distinct patterns of white matter degeneration associated with motor and cognitive deficits. Brain Imaging and Behavior 5, 171–180 (2011). https://doi.org/10.1007/s11682-011-9121-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-011-9121-8

Keywords

Navigation