Skip to main content

Advertisement

Log in

Altered structural connectivity in ADHD: a network based analysis

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Attention deficit/hyperactivity disorder (ADHD) is increasingly being viewed as a dysfunction of distributed brain networks rather than focal abnormalities. Here we investigated the structural brain network differences in children and adolescents with ADHD and healthy controls, using graph theory metrics to describe the anatomic networks and connectivity patterns, and the Network Based Statistic (NBS) to isolate the network components that differ between the two groups. Using DWI high-angular resolution diffusion imaging (‘HARDI’), whole brain tractography was conducted on 21 ADHD-combined type boys (m 13.3 ± 1.9 yrs) and 21 typically developing boys (m 14.8 ± 2.1 yrs). This study presents a comprehensive structural network investigation in ADHD covering a range of commonly used methodologies, including both streamline and probabilistic tractography, tensor and constrained spherical deconvolution (CSD) models, as well as different edge weighting methods at a range of densities and t-thresholds. Using graph metrics, ADHD was associated with local neighbourhoods that were more modular and interconnected than controls, where there was a decrease in the global, long-range connections, indicating reduced communication between local, specialised networks in ADHD. ADHD presented with a sub-network of stronger connectivity encompassing bilateral frontostriatal connections as well as left occipital, temporal, and parietal regions, of which the white matter microstructure was associated with ADHD symptom severity. Probabilistic tractography using CSD and the Hagmann weighting method produced that highest stability and most robust network differences across t-thresholds. It demonstrates topological organisation disruption in distributed neural networks in ADHD, supportive of the theory of maturation delay in ADHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal of Neuroscience, 26(1), 63–72. doi:10.1523/JNEUROSCI.3874-05.2006.

    Article  CAS  PubMed  Google Scholar 

  • Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2008). Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12(1), 26–41. doi:10.1016/j.media.2007.06.004.

    Article  CAS  PubMed  Google Scholar 

  • Bastiani, M., Shah, N. J., Goebel, R., & Roebroeck, A. (2012). Human cortical connectome reconstruction from diffusion weighted MRI: the effect of tractography algorithm. NeuroImage, 62(3), 1732–1749. doi:10.1016/j.neuroimage.2012.06.002.

    Article  PubMed  Google Scholar 

  • Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10). doi:10.1088/1742-5468/2008/10/P10008.

  • Bullmore, E., & Sporns, O. (2012). The economy of brain network organization. Nature reviews. Neuroscience, 13(5), 336–349. doi:10.1038/nrn3214.

    CAS  PubMed  Google Scholar 

  • Cao, Q., Shu, N., An, L., Wang, P., Sun, L., Xia, M.-R., et al. (2013). Probabilistic diffusion tractography and graph theory analysis reveal abnormal white matter structural connectivity networks in drug-naive boys with attention deficit/hyperactivity disorder. Journal of Neuroscience, 33(26), 10676–10687. doi:10.1523/JNEUROSCI.4793-12.2013.

    Article  CAS  PubMed  Google Scholar 

  • Cao, M., Shu, N., Cao, Q., Wang, Y., & He, Y. (2014). Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder. Molecular Neurobiology, 50(3), 1111–1123. doi:10.1007/s12035-014-8685-x.

    Article  CAS  PubMed  Google Scholar 

  • Castellanos, F. X., Giedd, J. N., Eckburg, P., Marsh, W. L., Vaituzis, A. C., Kaysen, D., et al. (1994). Quantitative morphology of the caudate nucleus in attention deficit hyperactivity disorder. American Journal of Psychiatry, 151(12), 1791–1796.

    Article  CAS  PubMed  Google Scholar 

  • Castellanos, F. X., Giedd, J. N., Marsh, W. L., Hamburger, S. D., Vaituzis, A. C., Dickstein, D. P., et al. (1996). Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Archives of General Psychiatry, 53(7), 607–616.

    Article  CAS  PubMed  Google Scholar 

  • Castellanos, F. X., Lee, P. P., Sharp, W., Jeffries, N. O., Greenstein, D. K., Clasen, L. S., et al. (2002). Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. Jama-Journal of the American Medical Association, 288(14), 1740–1748.

    Article  Google Scholar 

  • Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. Inter J Complex Syst, 1695.

  • Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53(1), 1–15. doi:10.1016/j.neuroimage.2010.06.010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fair, D. A., Cohen, A. L., Power, J. D., Dosenbach, N. U. F., Church, J. A., Miezin, F. M., et al. (2009). Functional brain networks develop from a “local to distributed” organization. PLoS Computational Biology, 5(5). doi:10.1371/journal.pcbi.1000381.

  • Filipek, P. A., SemrudClikeman, M., Steingard, R. J., Renshaw, P. F., Kennedy, D. N., & Biederman, J. (1997). Volumetric MRI analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls. Neurology, 48(3), 589–601.

    Article  CAS  PubMed  Google Scholar 

  • Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D. H., et al. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 11–22.

    Article  PubMed  Google Scholar 

  • Fornito, A., Zalesky, A., & Bullmore, E. T. (2010). Network scaling effects in graph analytic studies of human resting-state FMRI data. Frontiers in Systems Neuroscience, 4, 22. doi:10.3389/fnsys.2010.00022.

    PubMed  PubMed Central  Google Scholar 

  • Fornito, A., Zalesky, A., Pantelis, C., & Bullmore, E. T. (2012). Schizophrenia, neuroimaging and connectomics. NeuroImage, 62(4), 2296–2314. doi:10.1016/j.neuroimage.2011.12.090.

    Article  PubMed  Google Scholar 

  • Fornito, A., Zalesky, A., & Breakspear, M. (2013). Graph analysis of the human connectome: promise, progress, and pitfalls. NeuroImage, 80, 426–444. doi:10.1016/j.neuroimage.2013.04.087.

    Article  PubMed  Google Scholar 

  • Giedd, J. N., Castellanos, F. X., Casey, B. J., Kozuch, P., King, A. C., Hamburger, S. D., et al. (1994). Quantitative morphology of the corpus-callosum in attention-deficit hyperactivity disorder. American Journal of Psychiatry, 151(5), 665–669.

    Article  CAS  PubMed  Google Scholar 

  • Gong, G., Rosa-Neto, P., Carbonell, F., Chen, Z. J., He, Y., & Evans, A. C. (2009). Age- and gender-related differences in the cortical anatomical network. Journal of Neuroscience, 29(50), 15684–15693. doi:10.1523/JNEUROSCI.2308-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., et al. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6(7), e159. doi:10.1371/journal.pbio.0060159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong, S.-B., Zalesky, A., Fornito, A., Park, S., Yang, Y.-H., Park, M.-H., et al. (2014). Connectomic disturbances in attention-deficit/hyperactivity disorder: a whole-brain tractography analysis. Biological Psychiatry, 76(8), 656–663. doi:10.1016/j.biopsych.2013.12.013.

    Article  PubMed  Google Scholar 

  • Hynd, G. W., SemrudClikeman, M., Lorys, A., Novey, E. S., & Eliopulos, D. (1990). Brain morphology in developmental dyslexia and attention deficit disorder hyperactivity. Journal of Clinical and Experimental Neuropsychology, 12(1), 62–63.

    Google Scholar 

  • Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain images. Medical Image Analysis, 5(2), 143–156.

    Article  CAS  PubMed  Google Scholar 

  • King, J. A., Tenney, J., Rossi, V., Colamussi, L., & Burdick, S. (2003). Neural substrates underlying impulsivity. Annals of the New York Academy of Sciences, 1008(1), 160–169. doi:10.1196/annals.1301.017.

    Article  PubMed  Google Scholar 

  • Konrad, K., Neufang, S., Hanisch, C., Fink, G. R., & Herpertz-Dahlmann, B. (2006). Dysfunctional attentional networks in children with attention deficit/hyperactivity disorder: evidence from an event-related functional magnetic resonance imaging study. Biological Psychiatry, 59(7), 643–651. doi:10.1016/j.biopsych.2005.08.013.

    Article  PubMed  Google Scholar 

  • Krain, A. L., & Castellanos, F. X. (2006). Brain development and ADHD. Clinical Psychology Review, 26(4), 433–444. doi:10.1016/j.cpr.2006.01.005.

    Article  PubMed  Google Scholar 

  • Li, Y., Liu, Y., Li, J., Qin, W., Li, K., Yu, C., et al. (2009). Brain anatomical network and intelligence. PLoS Computational Biology, 5(5), e1000395. doi:10.1371/journal.pcbi.1000395.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, W., Mai, X., & Liu, C. (2014). The default mode network and social understanding of others: what do brain connectivity studies tell us. Frontiers in Human Neuroscience, 8, 74. doi:10.3389/fnhum.2014.00074.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long, Z., Duan, X., Wang, Y., Liu, F., Zeng, L., Zhao, J.-P., et al. (2015). Disrupted structural connectivity network in treatment-naive depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 56, 18–26. doi:10.1016/j.pnpbp.2014.07.007.

    Article  Google Scholar 

  • Maslov, S., & Sneppen, K. (2002). Specificity and stability in topology of protein networks. Science, 296(5569), 910–913. doi:10.1126/science.1065103.

    Article  CAS  PubMed  Google Scholar 

  • Mori, S., Crain, B. J., Chacko, V. P., & Van Zijl, P. C. M. (1999). Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology, 45(2), 265–269. doi:10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3.

    Article  CAS  PubMed  Google Scholar 

  • Mostofsky, S. H., Reiss, A. L., Lockhart, P., & Denckla, M. B. (1998). Evaluation of cerebellar size in attention-deficit hyperactivity disorder. Journal of Child Neurology, 13(9), 434–439.

    Article  CAS  PubMed  Google Scholar 

  • Mostofsky, S. H., Cooper, K. L., Kates, W. R., Denckla, M. B., & Kaufmann, W. E. (2002). Smaller prefrontal and premotor volumes in boys with attention-deficit/hyperactivity disorder. Biological Psychiatry, 52(8), 785–794.

    Article  PubMed  Google Scholar 

  • Newman, M. E. J. (2004). Fast algorithm for detecting community structure in networks. Physical Review E, 69(6), 066133. doi:10.1103/PhysRevE.69.066133.

    Article  CAS  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.

    Article  CAS  PubMed  Google Scholar 

  • Rubia, K., Smith, A. B., Woolley, J., Nosarti, C., Heyman, I., Taylor, E., et al. (2006). Progressive increase of frontostriatal brain activation from childhood to adulthood during event-related tasks of cognitive control. Human Brain Mapping, 27(12), 973–993. doi:10.1002/hbm.20237.

    Article  PubMed  Google Scholar 

  • Rubia, K., Halari, R., Cubillo, A., Mohammad, A.-M., Brammer, M., & Taylor, E. (2009). Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naïve children with ADHD during a rewarded continuous performance task. Neuropharmacology, 57(7–8), 640–652. doi:10.1016/j.neuropharm.2009.08.013.

    Article  CAS  PubMed  Google Scholar 

  • Schulz, K. P., Newcorn, J. H., Fan, J., Tang, C. Y., & Halperin, J. M. (2005). Brain activation gradients in ventrolateral prefrontal cortex related to persistence of ADHD in adolescent boys. Journal of the American Academy of Child and Adolescent Psychiatry, 44(1), 47–54. doi:10.1097/01.chi.0000145551.26813.f9.

    Article  PubMed  Google Scholar 

  • Seidman, L. J., Valera, E. M., & Makris, N. (2005). Structural brain imaging of attention-deficit/hyperactivity disorder. Biological Psychiatry, 57(11), 1263–1272. doi:10.1016/j.biopsych.2004.11.019.

    Article  PubMed  Google Scholar 

  • Shaw, P., Eckstrand, K., Sharp, W., Blumenthal, J., Lerch, J. P., Greenstein, D., et al. (2007). Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proceedings of the National Academy of Sciences of the United States of America, 104(49), 19649–19654. doi:10.1073/pnas.0707741104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw, P., Sharp, W. S., Morrison, M., Eckstrand, K., Greenstein, D. K., Clasen, L. S., et al. (2009). Psychostimulant treatment and the developing cortex in attention deficit hyperactivity disorder. American Journal of Psychiatry, 166(1), 58–63. doi:10.1176/appi.ajp.2008.08050781.

    Article  PubMed  Google Scholar 

  • Silk, T., Vance, A., Rinehart, N., Egan, G., O’Boyle, M., Bradshaw, J. L., et al. (2005). Fronto-parietal activation in attention-deficit hyperactivity disorder, combined type: functional magnetic resonance imaging study. The British Journal of Psychiatry: the Journal of Mental Science, 187(3), 282–283. doi:10.1192/bjp.187.3.282.

    Article  CAS  Google Scholar 

  • Sowell, E. R., Thompson, P. M., Welcome, S. E., Henkenius, A. L., Toga, A. W., & Peterson, B. S. (2003). Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder. Lancet, 362(9397), 1699–1707. doi:10.1016/S0140-6736(03)14842-8.

    Article  PubMed  Google Scholar 

  • Sporns, O., Chialvo, D. R., Kaiser, M., & Hilgetag, C. C. (2004). Organization, development and function of complex brain networks. Trends in Cognitive Sciences, 8(9), 418–425. doi:10.1016/j.tics.2004.07.008.

    Article  PubMed  Google Scholar 

  • Team, R. C (2014). A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Tournier, J.-D., Calamante, F., & Connelly, A. (2007). Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage, 35(4), 1459–1472. doi:10.1016/j.neuroimage.2007.02.016.

    Article  PubMed  Google Scholar 

  • Tournier, J.-D., Calamante, F., & Connelly, A. (2012). MRtrix: diffusion tractography in crossing fiber regions. International Journal of Imaging Systems and Technology, 22(1), 53–66. doi:10.1002/ima.22005.

    Article  Google Scholar 

  • van Ewijk, H., Heslenfeld, D. J., Zwiers, M. P., Buitelaar, J. K., & Oosterlaan, J. (2012). Diffusion tensor imaging in attention deficit/hyperactivity disorder: a systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 36(4), 1093–1106. doi:10.1016/j.neubiorev.2012.01.003.

    Article  PubMed  Google Scholar 

  • Vance, A., Silk, T. J., Casey, M., Rinehart, N. J., Bradshaw, J. L., Bellgrove, M. A., et al. (2007). Right parietal dysfunction in children with attention deficit hyperactivity disorder, combined type: a functional MRI study. Molecular Psychiatry, 12(9), 826–32– 793. doi:10.1038/sj.mp.4001999.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Zhu, C., He, Y., Zang, Y., Cao, Q., Zhang, H., et al. (2009). Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder. Human Brain Mapping, 30(2), 638–649. doi:10.1002/hbm.20530.

    Article  CAS  PubMed  Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393(6684), 440–442. doi:10.1038/30918.

    Article  CAS  PubMed  Google Scholar 

  • Wilkins, B., Lee, N., Gajawelli, N., Law, M., & Lepore, N. (2015). Fiber estimation and tractography in diffusion MRI: development of simulated brain images and comparison of multi-fiber analysis methods at clinical b-values. NeuroImage, 109, 341–356. doi:10.1016/j.neuroimage.2014.12.060.

    Article  PubMed  Google Scholar 

  • Yan, C., Gong, G., Wang, J., Wang, D., Liu, D., Zhu, C., et al. (2011). Sex- and brain size-related small-world structural cortical networks in young adults: a DTI tractography study. Cerebral Cortex, 21(2), 449–458. doi:10.1093/cercor/bhq111.

    Article  PubMed  Google Scholar 

  • Zalesky, A., Fornito, A., Harding, I. H., Cocchi, L., Yuecel, M., Pantelis, C., et al. (2010a). Whole-brain anatomical networks: does the choice of nodes matter? NeuroImage, 50(3), 970–983. doi:10.1016/j.neuroimage.2009.12.027.

    Article  PubMed  Google Scholar 

  • Zalesky, A., Fornito, A., & Bullmore, E. T. (2010b). Network-based statistic: identifying differences in brain networks. NeuroImage, 53(4), 1197–1207. doi:10.1016/j.neuroimage.2010.06.041.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research was conducted within the Academic Child Psychiatry Unit, University of Melbourne, Royal Children’s Hospital (clinical research assessments and scans) and the Developmental Imaging research group, Murdoch Childrens Research Institute and the Children’s MRI Centre, Royal Children’s Hospital, Melbourne, Victoria (imaging analyses). It was also supported by the Murdoch Childrens Research Institute, the Royal Children’s Hospital, The Royal Children’s Hospital Foundation, Department of Paediatrics The University of Melbourne and the Victorian Government’s Operational Infrastructure Support Program. TS was supported by a NHMRC Career Development Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Silk.

Ethics declarations

Funding

This work was supported by a Project Grant to MAB and AV (No. 569,533) and AV (No. 384,419) from the National Health and Medical Research Council of Australia.

Conflict of interest

Authors declare no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Approval was granted by the Royal Children’s Hospital Human Research Ethics Committee, Melbourne, Australia.

Informed consent

Informed consent was obtained from all individual participants’ parents/guardians included in the study.

Disclosures

All authors report no disclosures.

Electronic Supplementary Material

ESM 1

(DOCX 3779 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beare, R., Adamson, C., Bellgrove, M.A. et al. Altered structural connectivity in ADHD: a network based analysis. Brain Imaging and Behavior 11, 846–858 (2017). https://doi.org/10.1007/s11682-016-9559-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-016-9559-9

Keywords

Navigation