Skip to main content

Advertisement

Log in

Altered Brain Reward Circuits in Eating Disorders: Chicken or Egg?

  • Eating Disorders (AS Kaplan, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

The eating disorders anorexia nervosa (AN) and bulimia nervosa (BN) are severe psychiatric disorders with high mortality. Our knowledge about the neurobiology of eating disorders is very limited, and the question remains whether alterations in brain structure or function in eating disorders are state related, remnants of the illness or premorbid traits. The brain reward system is a relatively well-characterized brain circuitry that plays a central role in the drive to eat and individuals with current or past eating disorders showed alterations in those pathways compared to controls. Here we propose that structural and functional alterations in the insula and frontal cortex, including orbitofrontal and cingulate regions, areas that contribute to reward and anxiety processing, could predispose to developing an eating disorder and that adaptive changes in those circuits in response to malnutrition or repeated binge eating and purging could further promote illness behavior, hinder recovery and contribute to relapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Crow SJ, Peterson CB, Swanson SA, Raymond NC, Specker S, Eckert ED, et al. Increased mortality in bulimia nervosa and other eating disorders. Am J Psychiatry. 2009;166(12):1342–6.

    Article  PubMed  Google Scholar 

  2. American Psychiatric Association., American Psychiatric Association. DSM-5 Task Force. Diagnostic and statistical manual of mental disorders: DSM-5. 5th ed. Arlington: American Psychiatric Association; 2013.

  3. Becker AE, Grinspoon SK, Klibanski A, Herzog DB. Eating disorders. N Engl J Med. 1999;340(14):1092–8.

    Article  PubMed  CAS  Google Scholar 

  4. Bulik CM, Berkman ND, Brownley KA, Sedway JA, Lohr KN. Anorexia nervosa treatment: a systematic review of randomized controlled trials. Int J Eat Disord. 2007;40(4):310–20.

    Article  PubMed  Google Scholar 

  5. Shapiro JR, Berkman ND, Brownley KA, Sedway JA, Lohr KN, Bulik CM. Bulimia nervosa treatment: a systematic review of randomized controlled trials. Int J Eat Disord. 2007;40(4):321–36.

    Article  PubMed  Google Scholar 

  6. Fitzpatrick KK, Lock J. Anorexia nervosa. Clin Evid. (Online). 2011.

  7. Hay PJ, Claudino AM. Bulimia nervosa. Clin Evid. (Online). 2010.

  8. Lock J. Treatment of adolescent eating disorders: progress and challenges. Minerva Psichiatr. 2010;51(3):207–16.

    PubMed  Google Scholar 

  9. Agras WS, Crow S, Mitchell JE, Halmi KA, Bryson S. A 4-year prospective study of eating disorder NOS compared with full eating disorder syndromes. Int J Eat Disord. 2009;42(6):565–70.

    Article  PubMed  Google Scholar 

  10. •• Kaye WH, Wierenga CE, Bailer UF, Simmons AN, Bischoff-Grethe A. Nothing tastes as good as skinny feels: the neurobiology of anorexia nervosa. Trends Neurosci. 2013;36(2):110–20. This is an important review paper on the neurobiology of anorexia nervosa.

    Article  PubMed  CAS  Google Scholar 

  11. Rolls ET. Taste, olfactory and food texture reward processing in the brain and obesity. Int J Obes (Lond). 2010.

  12. Berridge KC, Ho CY, Richard JM, DiFeliceantonio AG. The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res. 2010;1350:43–64.

    Article  PubMed  CAS  Google Scholar 

  13. Magni P, Dozio E, Ruscica M, Celotti F, Masini MA, Prato P, et al. Feeding behavior in mammals including humans. Ann N Y Acad Sci. 2009;1163:221–32.

    Article  PubMed  CAS  Google Scholar 

  14. Carmichael ST, Price JL. Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol. 1996;371(2):179–207.

    Article  PubMed  CAS  Google Scholar 

  15. Kennerley SW, Walton ME, Behrens TE, Buckley MJ, Rushworth MF. Optimal decision making and the anterior cingulate cortex. Nat Neurosci. 2006;9(7):940–7.

    Article  PubMed  CAS  Google Scholar 

  16. Kringelbach ML, Rolls E. The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol. 2004;72(5):341–72.

    Article  PubMed  Google Scholar 

  17. Mazzeo SE, Bulik CM. Environmental and genetic risk factors for eating disorders: what the clinician needs to know. Child Adolesc Psychiatr Clin N Am. 2009;18(1):67–82.

    Article  PubMed  Google Scholar 

  18. Kaye WH, Fudge JL, Paulus M. New insights into symptoms and neurocircuit function of anorexia nervosa. Nat Rev Neurosci. 2009;10(8):573–84.

    Article  PubMed  CAS  Google Scholar 

  19. van Kuyck K, Gerard N, Van Laere K, Casteels C, Pieters G, Gabriels L, et al. Towards a neurocircuitry in anorexia nervosa: evidence from functional neuroimaging studies. J Psychiatr Res. 2009;43(14):1133–45.

    Article  PubMed  Google Scholar 

  20. Avena NM, Rada P, Hoebel BG. Underweight rats have enhanced dopamine release and blunted acetylcholine response in the nucleus accumbens while bingeing on sucrose. Neuroscience. 2008;156(4):865–71.

    Article  PubMed  CAS  Google Scholar 

  21. Carr KD. Chronic food restriction: enhancing effects on drug reward and striatal cell signaling. Physiol Behav. 2007;91(5):459–72.

    Article  PubMed  CAS  Google Scholar 

  22. Carr K, Tsimberg Y, Berman Y, Yamamoto N. Evidence of increased dopamine receptor signaling in food-restricted rats. Neuroscience. 2003;119:1157–67.

    Article  PubMed  CAS  Google Scholar 

  23. Johnson PM, Kenny PJ. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci. 2010;13(5):635–41.

    Article  PubMed  CAS  Google Scholar 

  24. Gearhardt AN, Yokum S, Orr PT, Stice E, Corbin WR, Brownell KD. Neural correlates of food addiction. Arch Gen Psychiatr. 2011;68(8):808–16.

    Article  PubMed  Google Scholar 

  25. Stice E, Yokum S, Blum K, Bohon C. Weight gain is associated with reduced striatal response to palatable food. J Neurosci. 2010;30(39):13105–9.

    Article  PubMed  CAS  Google Scholar 

  26. Volkow ND, Wang GJ, Telang F, Fowler JS, Thanos PK, Logan J, et al. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage. 2008;42(4):1537–43.

    Article  PubMed  Google Scholar 

  27. Opland DM, Leinninger GM, Myers Jr MG. Modulation of the mesolimbic dopamine system by leptin. Brain Res. 2010;1350:65–70.

    Article  PubMed  CAS  Google Scholar 

  28. Perello M, Sakata I, Birnbaum S, Chuang JC, Osborne-Lawrence S, Rovinsky SA, et al. Ghrelin increases the rewarding value of high-fat diet in an orexin-dependent manner. Biol Psychiatry. 2010;67(9):880–6.

    Article  PubMed  CAS  Google Scholar 

  29. Carr KD, Chau LS, Cabeza de Vaca S, Gustafson K, Stouffer M, Tukey DS, et al. AMPA receptor subunit GluR1 downstream of D-1 dopamine receptor stimulation in nucleus accumbens shell mediates increased drug reward magnitude in food-restricted rats. Neuroscience. 2010;165(4):1074–86.

    Article  PubMed  CAS  Google Scholar 

  30. Koizumi M, Cagniard B, Murphy NP. Endogenous nociceptin modulates diet preference independent of motivation and reward. Physiol Behav. 2009;97(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  31. Kelley AE. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev. 2004;27(8):765–76.

    Article  PubMed  Google Scholar 

  32. Kelley AE, Baldo BA, Pratt WE, Will MJ. Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav. 2005;86(5):773–95.

    Article  PubMed  CAS  Google Scholar 

  33. Schultz W. Getting formal with dopamine and reward. Neuron. 2002;36(2):241–63.

    Article  PubMed  CAS  Google Scholar 

  34. Daw ND, Doya K. The computational neurobiology of learning and reward. Curr Opin Neurobiol. 2006;16(2):199–204.

    Article  PubMed  CAS  Google Scholar 

  35. Jocham G, Klein TA, Ullsperger M. Dopamine-mediated reinforcement learning signals in the striatum and ventromedial prefrontal cortex underlie value-based choices. J Neurosci. 2011;31(5):1606–13.

    Article  PubMed  CAS  Google Scholar 

  36. Daw ND, Gershman SJ, Seymour B, Dayan P, Dolan RJ. Model-based influences on humans’ choices and striatal prediction errors. Neuron. 2011;69(6):1204–15.

    Article  PubMed  CAS  Google Scholar 

  37. de Araujo IE, Ren X, Ferreira JG. Metabolic sensing in brain dopamine systems. Results Probl Cell Differ. 2010;52:69–86.

    Article  PubMed  Google Scholar 

  38. Sutton RS, Barto AG, editors. Toward a modern theory of adaptive networks: expectation and prediction. Boston: MIT Press; 1998.

    Google Scholar 

  39. O’Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ. Temporal difference models and reward-related learning in the human brain. Neuron. 2003;38(2):329–37.

    Article  PubMed  Google Scholar 

  40. Kaye WH, Ebert MH, Raleigh M, Lake R. Abnormalities in CNS monoamine metabolism in anorexia nervosa. Arch Gen Psychiatry. 1984;41(4):350–5.

    Article  PubMed  CAS  Google Scholar 

  41. Barbato G, Fichele M, Senatore I, Casiello M, Muscettola G. Increased dopaminergic activity in restricting-type anorexia nervosa. Psychiatry Res. 2006;142(2–3):253–5.

    Article  PubMed  CAS  Google Scholar 

  42. Karson CN. Spontaneous eye-blink rates and dopaminergic systems. Brain. 1983;106(Pt 3):643–53.

    Article  PubMed  Google Scholar 

  43. Frank GK, Bailer UF, Henry SE, Drevets W, Meltzer CC, Price JC, et al. Increased dopamine D2/D3 receptor binding after recovery from anorexia nervosa measured by positron emission tomography and [11c]raclopride. Biol Psychiatry. 2005;58(11):908–12.

    Article  PubMed  CAS  Google Scholar 

  44. Fladung AK, Gron G, Grammer K, Herrnberger B, Schilly E, Grasteit S, et al. A neural signature of anorexia nervosa in the ventral striatal reward system. Am J Psychiatry. 2010;167(2):206–12.

    Article  PubMed  Google Scholar 

  45. Kaye W, Bailer U, Frank G, Henry S, Price J, Meltzer C, et al. Serotonin transporter binding after recovery from eating disorders. Psychopharmacology (Berl). 2008;197(3):521–2.

    Article  CAS  Google Scholar 

  46. Wagner A, Aizenstein H, Venkatraman VK, Fudge J, May JC, Mazurkewicz L, et al. Altered reward processing in women recovered from anorexia nervosa. Am J Psychiatry. 2007;164(12):1842–9.

    Article  PubMed  Google Scholar 

  47. Cowdrey FA, Park RJ, Harmer CJ, McCabe C. Increased neural processing of rewarding and aversive food stimuli in recovered anorexia nervosa. Biol Psychiatr. 2011.

  48. •• Frank GK, Reynolds JR, Shott ME, Jappe L, Yang TT, Tregellas JR, et al. Anorexia nervosa and obesity are associated with opposite brain reward response. Neuropsychopharmacology. 2012;37(9):2031–46. This is the first study that dircetly contrasts human over and underweight individuals and supports in those groups result from basic research animal studies.

    Article  PubMed  CAS  Google Scholar 

  49. Jappe LM, Frank GK, Shott ME, Rollin MD, Pryor T, Hagman JO, et al. Heightened sensitivity to reward and punishment in anorexia nervosa. Int J Eat Disord. 2011;44(4):317–24.

    Article  PubMed  Google Scholar 

  50. Goodman A. Neurobiology of addiction. An integrative review. Biochem Pharmacol. 2008;75(1):266–322.

    Article  PubMed  CAS  Google Scholar 

  51. Hyman SE, Malenka RC. Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci. 2001;2(10):695–703.

    Article  PubMed  CAS  Google Scholar 

  52. Corsica JA, Pelchat ML. Food addiction: true or false? Curr Opin Gastroenterol. 2010;26(2):165–9.

    Article  PubMed  Google Scholar 

  53. Koob GF, Le Moal M. Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nat Neurosci. 2005;8(11):1442–4.

    Article  PubMed  CAS  Google Scholar 

  54. Frank GK, Reynolds JR, Shott ME, O’Reilly RC. Altered temporal difference learning in bulimia nervosa. Biol Psychiatry. 2011;70(8):728–35.

    Article  PubMed  Google Scholar 

  55. Oberndorfer TA, Frank GK, Simmons AN, Wagner A, McCurdy D, Fudge JL, et al. Altered insula response to sweet taste processing after recovery from anorexia and bulimia nervosa. Am J Psychiatry. 2013. doi:10.1176/appi.ajp.2013.11111745.

    PubMed  Google Scholar 

  56. Frank GK, Shott ME, Hagman JO, Mittal VA. Alterations in brain structures related to taste reward circuitry in ill and recovered anorexia nervosa and in bulimia nervosa. Am J Psychiatry. 2013. doi:10.1176/appi.ajp.2013.12101294.

    Google Scholar 

  57. Devue C, Collette F, Balteau E, Degueldre C, Luxen A, Maquet P, et al. Here I am: the cortical correlates of visual self-recognition. Brain Res. 2007;1143:169–82.

    Article  PubMed  CAS  Google Scholar 

  58. Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ. Neural systems supporting interoceptive awareness. Nat Neurosci. 2004;7(2):189–95.

    Article  PubMed  CAS  Google Scholar 

  59. Konstantakopoulos G, Varsou E, Dikeos D, Ioannidi N, Gonidakis F, Papadimitriou G, et al. Delusionality of body image beliefs in eating disorders. Psychiatry Res. 2012;200(2–3):482–8.

    Article  PubMed  Google Scholar 

  60. Craig AD. How do you feel–now? The anterior insula and human awareness. Nat Rev Neurosci. 2009;10(1):59–70.

    Article  PubMed  CAS  Google Scholar 

  61. Wang GJ, Tomasi D, Backus W, Wang R, Telang F, Geliebter A, et al. Gastric distention activates satiety circuitry in the human brain. Neuroimage. 2008;39(4):1824–31.

    Article  PubMed  Google Scholar 

  62. Van den Eynde F, Suda M, Broadbent H, Guillaume S, Van den Eynde M, Steiger H, et al. Structural magnetic resonance imaging in eating disorders: a systematic review of voxel-based morphometry studies. Eur Eat Disord Rev. 2012;20(2):94–105.

    Article  PubMed  Google Scholar 

  63. Dellava JE, Thornton LM, Hamer RM, Strober M, Plotnicov K, Klump KL, et al. Childhood anxiety associated with low BMI in women with anorexia nervosa. Behav Res Ther. 2010;48(1):60–7.

    Article  PubMed  Google Scholar 

  64. Kaye WH, Bulik CM, Thornton L, Barbarich N, Masters K. Comorbidity of anxiety disorders with anorexia and bulimia nervosa. Am J Psychiatry. 2004;161(12):2215–21.

    Article  PubMed  Google Scholar 

  65. Strober M, Freeman R, Lampert C, Diamond J. The association of anxiety disorders and obsessive compulsive personality disorder with anorexia nervosa: evidence from a family study with discussion of nosological and neurodevelopmental implications. Int J Eat Disord. 2007;40(Suppl):S46–51.

    Article  PubMed  Google Scholar 

  66. Harrison A, Sullivan S, Tchanturia K, Treasure J. Emotional functioning in eating disorders: attentional bias, emotion recognition and emotion regulation. Psychol Med. 2010;1–11.

  67. Markey MA, Vander Wal JS. The role of emotional intelligence and negative affect in bulimic symptomatology. Compr Psychiatry. 2007;48(5):458–64.

    Article  PubMed  Google Scholar 

  68. Klump KL, Strober M, Bulik CM, Thornton L, Johnson C, Devlin B, et al. Personality characteristics of women before and after recovery from an eating disorder. Psychol Med. 2004;34(8):1407–18.

    Article  PubMed  Google Scholar 

  69. Frank GK, Roblek T, Shott ME, Jappe LM, Rollin MD, Hagman JO, et al. Heightened fear of uncertainty in anorexia and bulimia nervosa. Int J Eating Disord. 2012;45(2):227–32.

    Article  Google Scholar 

  70. Joos AA, Saum B, van Elst LT, Perlov E, Glauche V, Hartmann A, et al. Amygdala hyperreactivity in restrictive anorexia nervosa. Psychiatry Res. 2011;191(3):189–95.

    Article  PubMed  Google Scholar 

  71. Uher R, Murphy T, Brammer MJ, Dalgleish T, Phillips ML, Ng VW, et al. Medial prefrontal cortex activity associated with symptom provocation in eating disorders. Am J Psychiatry. 2004;161(7):1238–46.

    Article  PubMed  Google Scholar 

  72. Kazlouski D, Rollin MD, Tregellas J, Shott ME, Jappe LM, Hagman JO, et al. Altered fimbria-fornix white matter integrity in anorexia nervosa predicts harm avoidance. Psychiatry Res. 2011;192(2):109–16.

    Article  PubMed  Google Scholar 

  73. Holliday J, Tchanturia K, Landau S, Collier D, Treasure J. Is impaired set-shifting an endophenotype of anorexia nervosa? Am J Psychiatry. 2005;162(12):2269–75.

    Article  PubMed  Google Scholar 

  74. Blasel S, Pilatus U, Magerkurth J, von Stauffenberg M, Vronski D, Mueller M, et al. Metabolic gray matter changes of adolescents with anorexia nervosa in combined MR proton and phosphorus spectroscopy. Neuroradiology. 2012;54(7):753–64.

    Article  PubMed  Google Scholar 

Download references

Compliance with ethics Guidelines

Conflict of Interest

Guido K.W. Frank has received research support from National Institute of Mental Health, has served on the scientific advisory board for Eating Disorder Center of Denver, and has provided expert testimony for Senter Goldfarb & Rice.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido K. W. Frank.

Additional information

This article is part of the Topical Collection on Eating Disorders

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank, G.K.W. Altered Brain Reward Circuits in Eating Disorders: Chicken or Egg?. Curr Psychiatry Rep 15, 396 (2013). https://doi.org/10.1007/s11920-013-0396-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-013-0396-x

Keywords

Navigation