Skip to main content

Advertisement

Log in

Novel Dopamine D2 Receptor Signaling through Proteins Interacting with the Third Cytoplasmic Loop

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The diverse activities of dopamine D2-like receptors, including D2, D3, and D4 receptors, are mediated by proteins that interact with the third cytoplasmic loop and regulate receptor signaling, receptor trafficking, and apoptosis. Such interacting proteins include calmodulin, the N-methyl-d-aspartate receptor 2B subunit, calcium/calmodulin-dependent protein kinase II, prostate apoptosis response-4, and β-arrestins, which regulate receptor signaling and the pharmacological action through D2 receptor. The gene encoding the D2 receptor gives rise to two isoforms, termed the dopamine D2 receptor long isoform (D2L) and the dopamine D2 receptor short isoform; the latter lacks 29 amino acids of the D2L receptor within the third cytoplasmic loop. In this review, we first focus on novel functions of the hetero-oligomeric D1/D2 and D2/adenosine A2A receptors. We next discuss novel signaling through proteins interacting with the D2 receptor third cytoplasmic loop and define the function of a novel binding protein, heart-type fatty acid binding protein, which interacts with the D2L third cytoplasmic loop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

CaM:

Calmodulin

CaMKII:

Calcium/calmodulin-dependent protein kinase II

DAT:

Dopamine transporter

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

Glu:

Glutamate

H-FABP:

Heart-type fatty acid binding protein

LCPUFA:

Long chain polyunsaturated fatty acid

LTP:

Long-term potentiation

MSN:

Medium-sized spiny neuron

NMDA:

N-methyl-d-aspartate

NR2B:

NMDA receptor 2B subunit

NSF:

N-ethylmaleimide-sensitive factor

Par-4:

Prostate apoptosis response-4

References

  1. Missale C, Nash R, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors from structure to function. Physiol Rev 78:189–225

    PubMed  CAS  Google Scholar 

  2. Sidhu A, Niznik HB (2000) Coupling of dopamine receptor subtypes to multiple and diverse G proteins. Int J Dev Neurosci 18:669–677

    Article  PubMed  CAS  Google Scholar 

  3. Rashid AJ, So CH, Kong MM, Furtak T, El-Ghundi M, Cheng R, O’Dowd BF, George SR (2007) D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci USA 104:654–659

    Article  PubMed  CAS  Google Scholar 

  4. So CH, Verma V, Alijaniaram M, Cheng R, Rashid AJ, O’Dowd BF, George SR (2009) Calcium signaling by dopamine D5 receptor and D5-D2 receptor hetero-oligomers occurs by a mechanism distinct from that for dopamine D1-D2 receptor hetero-oligomers. Mol Pharmacol 75:843–854

    Article  PubMed  CAS  Google Scholar 

  5. Oak JN, Lavine L, Van Tol HHM (2001) Dopamine D4 and D2L receptor stimulation of the mitogen-activated protein kinase pathway id dependent on trans-activation of the platelet-derived growth factor receptor. Mol Pharmacol 60:92–103

    PubMed  CAS  Google Scholar 

  6. Dal Toso R, Sommer B, Ewert M, Herb A, Pritchett DB, Bach A, Shivers BD, Seeburg PH (1989) The dopamine D2 receptor: two molecular forms generated by alternative splicing. EMBO J 8:4025–4034

    PubMed  CAS  Google Scholar 

  7. Itokawa M, Arinami T, Futamura N, Hamaguchi H, Toru M (1993) A structural polymorphism of human dopamine D2 receptor, D2 (Ser311→Cys). Biochem Biophys Res Commun 196:1369–1375

    Article  PubMed  CAS  Google Scholar 

  8. Arinami T, Itokawa M, Enguchi H, Tagaya H, Yano S, Shimizu H, Hamaguchi H, Toru M (1994) Association of dopamine D2 receptor molecular variant with schizophrenia. Lancet 343:703–704

    Article  PubMed  CAS  Google Scholar 

  9. Laurent C, Bodeau-Pean S, Campion D et al (1994) No major role for the dopamine D2 receptor Ser → Cys311 mutation in schizophrenia. Psychiatr Genet 4:229–230

    Article  PubMed  CAS  Google Scholar 

  10. Cravchik A, Sibley DR, Gejman PV (1996) Functional analysis of the human D2 dopamine receptor missense variants. J Biol Chem 271:26013–26017

    Article  PubMed  CAS  Google Scholar 

  11. Zhang Y, Bertolino A, Fazio L, Blasi G, Rampino A, Romano R et al (2007) Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory. Proc Natl Acad Sci USA 104:20552–20557

    Article  PubMed  CAS  Google Scholar 

  12. Zhang L, Yang H, Zhao H, Zhao C (2011) Calcium-related signaling pathways contributes to dopamine-induced cortical neuron apoptosis. Neurochem Internat 58:281–294

    Article  CAS  Google Scholar 

  13. Fiorentini C, Busi C, Spano P, Missale C (2010) Dimerization of dopamine D1 and D3 receptors in the regulation of striatal function. Curr Opin Phamacol 10:87–92

    Article  CAS  Google Scholar 

  14. Perreault ML, Hasbi A, Alijaniaram M, Fan T, Varghese G, Fletcher PJ, Seeman P, O’Dowd BF, George SR (2010) The dopamine D1–D2 receptor heteromer localizes in dynorphin/encephalin neurons. J Biol Chem 285:36625–36634

    Article  PubMed  CAS  Google Scholar 

  15. Ferré S, Woods AS, Navarro G, Aymerich M, Lluis C, Franco R (2010) Calcium-mediated modulation of the quaternary structure and function of adenosine A2A-dopamine D2 receptor heteromers. Curr Opin Pharmacol 10:67–72

    Article  PubMed  Google Scholar 

  16. Schiffmann SN, Fisone G, Moresco R, Cunha RA, Ferré S (2007) Adenosine A2A receptors and basal ganglia physiology. Prog Neurobiol 83:277–292

    Article  PubMed  CAS  Google Scholar 

  17. Azdad K, Gall D, Woods AS, Ledent C, Ferré S, Schiffmann SN (2009) Dopamine D2 and A2A receptors regulate NMDA-mediated excitation in accumbens neurons thorugh A2A-D2 receptor heteromerization. Neuropsychopharmacol 34:972–986

    Article  CAS  Google Scholar 

  18. Xu K, Bastia E, Schwarzschild M (2005) Therapeutic potential of adenosin2 A2A receptor antagonists in Parkinson’s disease. Pharmacol & Therapeutics 105:267–310

    Article  CAS  Google Scholar 

  19. Navarro G, Aymeric MS, Marcellino D, Cortes A, Casado V, Mallol J, Canela EI, Agnati LF, Woods AS, Fuxe K et al (2009) Interactions between calmodulin, adenosine A2A and dopamine D2 receptors. J Biol Chem 284:28058–28068

    Article  PubMed  CAS  Google Scholar 

  20. Bofill-Cardona E, Kudlacek O, Yang Q, Ahorn H, Freissmuth M, Nanoff C (2000) Binding of calmodulin to the D2-dopamine receptor reduces receptor signaling by arresting the G protein activation switch. J Biol Chem 275:32672–32680

    Article  PubMed  CAS  Google Scholar 

  21. Rhoads AR, Friedberg F (1997) Sequence motifs for calmodulin recognition. FASEB J 11:331–340

    PubMed  CAS  Google Scholar 

  22. Liu XY, Mao LM, Zhang GC, Papasian CJ, Fibuch EE, Lan HX, Zhou HF, Xu M, Wang JQ (2009) Activity-dependent modulation of limbic dopamine D3 receptors by CaMKII. Neuron 61:425–438

    Article  PubMed  CAS  Google Scholar 

  23. Collingridge GL, Singer W (1990) Excitatory amino acid receptors and synaptic plasticity. Trends Pharmacol Sci 11:290–296

    Article  PubMed  CAS  Google Scholar 

  24. Liu XY, Chu XP, Mao LM, Wang M, Lan HX, Li MH, Zhang GC, Parelkar NK, Fibuch EE, Haines M, Neve KA, Liu F, Xiong ZG, Wang JQ (2006) Modulation of D2R–NR2B interactions in response to cocaine. Neuron 52:897–909

    Article  PubMed  CAS  Google Scholar 

  25. Ouimet CC, McGuinness TL, Greengard P (1984) Immunocytochemical localization of calcium/calmodulin-dependent protein kinase II in rat brain. Proc Natl Acad Sci USA 81:5604–5608

    Article  PubMed  CAS  Google Scholar 

  26. Fukunaga K, Stoppini L, Miyamoto E, Muller D (1993) Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 268:7863–7867

    PubMed  CAS  Google Scholar 

  27. Ng J, Rashi AJ, So CH, O’Dowd BF, George SR (2010) Activation of CaMKIIα in the striatum by the heteromeric D1/D2 dopamine receptor complex. Neuroscience 165:535–541

    Article  PubMed  CAS  Google Scholar 

  28. Lee K-W, Kim Y, Kim AM, Helmin K, Nairn AC, Greengard P (2006) Cocaine-induced dendric spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens. Proc Natl Acad Sci USA 103:3399–3404

    Article  PubMed  CAS  Google Scholar 

  29. Shioda N, Beppu H, Fukuda T, Li E, Kitajima I, Fukunaga K (2011) Aberrant calcium/calmodulin-dependent protein kinase II (CaMKII) activity is associated with abnormal dendritic spine morphology in the ATRX mutant mouse brain. J Neurosci 31:346–358

    Article  PubMed  CAS  Google Scholar 

  30. Sells SF, Wood DP Jr, Joshi-Barve SS, Muthukumar S, Jacob RJ, Crist SA, Humphreys S, Rangnekar VM (1994) Commonality of the gene programs induced by effectors of apoptosis in androgen-dependent and -independent prostate cells. Cell Growth Differ 5:457–466

    PubMed  CAS  Google Scholar 

  31. Park SK, Nguyen MD, Fischer A, Luke MP, Affar el B, Dieffenbach PB, Tseng HC, Shi Y, Tsai LH (2005) Par-4 links dopamine signaling and depression. Cell 122:275–287

    Article  PubMed  CAS  Google Scholar 

  32. Glantz LA, Gilmore JH, Overstreet DH, Salimi K, Lieberman JA, Jarkog LF (2010) Pro-apoptotic Par-4 and dopamine D2 receptor in temporal cortex in schizophrenia, bipolar disorder and major depression. Schizophrenia Res 118:292–299

    Article  Google Scholar 

  33. Guiramand J, Montmayeur JP, Ceraline J, Bhatia M, Borrelli E (1995) Alternative splicing of the dopamine D2 receptor directs specificity of coupling to G-proteins. J Biol Chem 270:7354–7358

    Article  PubMed  CAS  Google Scholar 

  34. Prou D, Gu WJ, Le S, Vincent JD, Salamero J, Vernier P (2001) Intracellular retention of the two isoforms of the D(2) dopamine receptor promotes endoplasmic reticulum disruption. J Cell Sci 114:3517–3527

    PubMed  CAS  Google Scholar 

  35. Takeuchi Y, Fukunaga K (2003) Differential subcellular localization of two dopamine D2 receptor isoforms in transfected NG108-15 cells. J Neurochem 85:1064–1074

    Article  PubMed  CAS  Google Scholar 

  36. Takeuchi Y, Fukunaga K, Miyamoto E (2002) Activation of nuclear Ca2+/calmodulin-dependent protein kinase II and brain-derived neutropic factor gene expression by stimulation of dopamine D2 receptor in transfected NG108-15 cells. J Neurochem 82:316–328

    Article  PubMed  CAS  Google Scholar 

  37. Shioda N, Yamamoto Y, Watanabe M, Binas B, Owada Y, Fukunaga K (2010) Heart-type fatty acid binding protein regulates dopamine D2 receptor function in mouse brain. J Neurosci 30:3146–3155

    Article  PubMed  CAS  Google Scholar 

  38. Bertran-Gonzalez J, Bosch C, Maroteaux M, Matamales M, Hervé D, Valjent E, Girault JA (2008) Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J Neurosci 28:5671–5685

    Article  PubMed  CAS  Google Scholar 

  39. Welter M, Vallone D, Samad TA, Meziane H, Usiello A, Borrelli E (2007) Absence of dopamine D2 receptors unmasks an inhibitory control over the brain circuitries activated by cocaine. Proc Natl Acad Sci USA 104:6840–6845

    Article  PubMed  CAS  Google Scholar 

  40. Cepeda C, Hurst RS, Altemus KL, Flores-Hernández J, Calvert CR, Jokel ES, Grandy DK, Low MJ, Rubinstein M, Ariano MA, Levine MS (2001) Facilitated glutamatergic transmission in the striatum of D2 receptor-deficient mice. J Neurophysiol 85:659–670

    PubMed  CAS  Google Scholar 

  41. Gill RS, Hsiung MS, Sum CS, Lavine N, Clark SD, Van Tol HHM (2010) The dopamine D4 receptor activates intracellular platelet-derived growth factor receptor b to stimulate ERK1/2. Cell Signaling 22:285–290

    Article  CAS  Google Scholar 

  42. Robben JH, Kortenoeven ML, Sze M, Yae C, Milligan G, Oorschot VM, Klumperman J, Knoers NV, Deen PM (2009) Intracellular activation of vasopressin V2 receptor mutants in nephrogenic diabetes insipidus by nonpeptide agonists. Proc Natl Acad Sci U S A 106:12195–12200

    Article  PubMed  CAS  Google Scholar 

  43. Jean-Alphonse F, Hanyaloglu AC (2011) Regulation of GPCR signal networks via membrane trafficking. Mol Cell Endcrinol 331:205–214

    Article  CAS  Google Scholar 

  44. Maier O, Ehmsen E, Westermann P (1995) Trimetric G protein α subunits of the Gs and Gi families localized at the Golgi membrane. Biochem Biophy Res Commun 208:135–143

    Article  CAS  Google Scholar 

  45. Hanson PI, Otto H, Barton N, Jahn R (1995) The N-ethylmaleimide-sensitive fusion protein and alpha-SNAP induce a conformational change in syntaxin. J Biol Chem 270:16955–16961

    Article  PubMed  CAS  Google Scholar 

  46. Nishimune A, Isaac JT, Molnar E, Noel J, Nash SR, Tagaya M, Collingridge GL, Nakanishi S, Henley JM (1998) NSF binding to GluR2 regulates synaptic transmission. Neuron 21:87–97

    Article  PubMed  CAS  Google Scholar 

  47. Zou S, Li L, Pei L, Vukusic B, Van Tol HH, Lee FJ, Wan Q, Liu F (2005) Protein–protein coupling/uncoupling enables dopamine D2 receptor regulation of AMPA receptor-mediated excitotoxicity. J Neurosci 25:4385–4395

    Article  PubMed  CAS  Google Scholar 

  48. Lee FJ, Pei L, Moszczynska A, Vukusic B, Fletcher PJ, Liu F (2007) Dopamine transporter cell surface localization facilitated by a direct interaction with the dopamine D2 receptor. EMBO J 26:2127–2136

    Article  PubMed  CAS  Google Scholar 

  49. Smith FD, Oxford GS, Milgram SL (1999) Association of the D2 dopamine receptor third cytoplasmic loop with spinophilin, a protein phosphatase-1-interacting protein. J Biol Chem 274:19894–19900

    Article  PubMed  CAS  Google Scholar 

  50. Feng J, Yan Z, Ferreira A, Tomizawa K, Liauw JA, Zhou M, Allen PB, Ouimat CC, Greenfard P (2000) Spinophilin regulates the formation and function od dendritic spines. Proc Natl Acad Sci USA 97:9287–9292

    Article  PubMed  CAS  Google Scholar 

  51. Yao WD, Spealman RD, Zhang J (2008) Dopaminergic signaling in dendritic spines. Biochem Pharmacol 75:2055–2069

    Article  PubMed  CAS  Google Scholar 

  52. Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 27:107–144

    Article  PubMed  CAS  Google Scholar 

  53. Beaulieu JM, Sotnikova TD, Merion S, Lefkowitz RJ, Gainetdinov RR, Caron MG (2005) An Aktβ-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122:261–273

    Article  PubMed  CAS  Google Scholar 

  54. Kim K-M, Caron MG (2008) Complementary roles of the DRY motif and C-terminus tail of GPCRs for G protein coupling and β-arrestin interaction. Biochem Biophy Res Commun 366:42–47

    Article  CAS  Google Scholar 

  55. Li Y-C, Gao W-J (2011) GSK-3β activity and hyperdopamine-dependent behaviors. Neurosci Biobehav Reviews 35:645–654

    Article  CAS  Google Scholar 

  56. Peet M, Laugharne J, Rangarajan N, Horrobin D, Reynolds G (1995) Depleted red cell membrane essential fatty acids in drug-treated schizophrenic patients. J Psychiatr Res 29:227–232

    Article  PubMed  CAS  Google Scholar 

  57. Arvindakshan M, Ghate M, Ranjekar PK, Evans DR, Mahadik SP (2003) Supplementation with a combination of omega-3 fatty acids and antioxidants (vitamins E and C) improves the outcome of schizophrenia. Schizophr Res 62:195–204

    Article  PubMed  Google Scholar 

  58. Kotani S, Sakaguchi E, Warashina S, Matsukawa N, Ishikura Y, Kiso Y, Sakakibara M, Yoshimoto T, Guo J, Yamashima T (2006) Dietary supplementation of arachidonic and docosahexaenoic acids improves cognitive dysfunction. Neurosci Res 56:159–164

    Article  PubMed  CAS  Google Scholar 

  59. Horrocks LA, Yeo YK (1999) Health benefits of docosahexaenoic acid (DHA). Pharmacol Res 40:211–225

    Article  PubMed  CAS  Google Scholar 

  60. Owada Y, Yoshimoto T, Kondo H (1996) Spatio-temporally differential expression of genes for three members of fatty acid-binding proteins in developing and mature rat brains. J Chem Neuroanat 12:113–122

    Article  PubMed  CAS  Google Scholar 

  61. Murphy EJ, Owada Y, Kitanaka N, Kondo H, Glatz JFC (2005) Brain arachidonic acid incorporation is decreased in heart fatty acid binding protein gene-ablated mice. Biochemistry 44:6350–6360

    Article  PubMed  CAS  Google Scholar 

  62. Arai Y, Funatsu N, Numayama-Tsuruta K, Nomura T, Nakamura S, Osumi N (2005) Role of Fabp7, a downstream gene of Pax6, in the maintenance of neuroepithelial cells during early embryonic development of the rat cortex. J Neurosci 25:9752–9761

    Article  PubMed  CAS  Google Scholar 

  63. Watanabe A, Toyota T, Owada Y, Hayashi T, Iwayama Y, Matsumata M, Ishitsuka Y, Nakaya A, Maekawa M, Ohnishi T, Arai R, Sakurai K, Yamada K, Kondo H, Hashimoto K, Osumi N, Yoshikawa T (2007) Fabp7 maps to a quantitative trait locus for a schizophrenia endophenotype. PLoS Biol 5:e297

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohji Fukunaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukunaga, K., Shioda, N. Novel Dopamine D2 Receptor Signaling through Proteins Interacting with the Third Cytoplasmic Loop. Mol Neurobiol 45, 144–152 (2012). https://doi.org/10.1007/s12035-011-8227-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-011-8227-8

Keywords

Navigation