Skip to main content

Advertisement

Log in

Convergent Lines of Evidence Support LRP8 as a Susceptibility Gene for Psychosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Reelin (RELN) is identified as a risk gene for major psychiatric disorders such as schizophrenia (SCZ) and bipolar disorder (BPD). However, the role of its downstream signaling molecule, the low-density lipoprotein receptor-related protein 8 (LRP8) in these illnesses is still unclear. To detect whether LRP8 is a susceptibility gene for SCZ and BPD, we analyzed the associations of single nucleotide polymorphisms (SNPs) in LRP8 in a total of 47,187 subjects (including 9379 SCZ patients; 6990 BPD patients; and 12,556 controls in a screening sample, and 1397 SCZ families, 3947 BPD patients, and 8387 controls in independent replications), and identified a non-synonymous SNP rs5174 in LRP8 significantly associated with SCZ and BPD as well as the combined psychosis phenotype (P meta = 1.99 × 10−5, odds ratio (OR) = 1.066, 95 % confidence interval (CI) = 1.035–1.098). The risk SNP rs5174 was also associated with LRP8 messenger RNA (mRNA) expression in multiple brain tissues across independent samples (lowest P = 0.00005). Further exploratory analysis revealed that LRP8 was preferentially expressed in fetal brain tissues. Protein-protein interaction (PPI) analysis demonstrated that LRP8 significantly participated in a highly interconnected PPI network build by top risk genes for SCZ and BPD (P = 7.0 × 10−4). Collectively, we confirmed that LRP8 is a risk gene for psychosis, and our results provide useful information toward a better understanding of genetic mechanism involving LRP8 underlying risk of complex psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Craddock N, Jones I (1999) Genetics of bipolar disorder. J Med Genet 36:585–594

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Jablensky A, Sartorius N, Korten A, Ernberg G, Anker M et al (1987) Incidence worldwide of schizophrenia. Br J Psychiatry 151:408–409

    CAS  PubMed  Google Scholar 

  3. Lichtenstein P, Yip BH, Bjork C, Pawitan Y, Cannon TD et al (2009) Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373:234–239

    Article  CAS  PubMed  Google Scholar 

  4. Shi Y, Li Z, Xu Q, Wang T, Li T et al (2011) Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nat Genet 43:1224–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Muhleisen TW, Leber M, Schulze TG, Strohmaier J, Degenhardt F et al (2014) Genome-wide association study reveals two new risk loci for bipolar disorder. Nat Commun 5:3339

    Article  CAS  PubMed  Google Scholar 

  6. Psychiatric Genomics Consortium Bipolar Disorder Working Group (2011) Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet 43:977–983

    Article  CAS  Google Scholar 

  7. Cichon S, Muhleisen TW, Degenhardt FA, Mattheisen M, Miro X et al (2011) Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder. Am J Hum Genet 88:372–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427

    Article  CAS  PubMed Central  Google Scholar 

  9. Green EK, Grozeva D, Jones I, Jones L, Kirov G et al (2010) The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol Psychiatry 15:1016–1022

    Article  CAS  PubMed  Google Scholar 

  10. Williams HJ, Craddock N, Russo G, Hamshere ML, Moskvina V et al (2011) Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries. Hum Mol Genet 20:387–391

    Article  CAS  PubMed  Google Scholar 

  11. Steinberg S, de Jong S, Mattheisen M, Costas J, Demontis D et al (2012) Common variant at 16p11.2 conferring risk of psychosis. Mol Psychiatry 19:108–114

    Article  CAS  PubMed  Google Scholar 

  12. Steinberg S, Mors O, Borglum AD, Gustafsson O, Werge T et al (2011) Expanding the range of ZNF804A variants conferring risk of psychosis. Mol Psychiatry 16:59–66

    Article  CAS  PubMed  Google Scholar 

  13. International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL, Visscher PM et al (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460:748–752

    PubMed Central  Google Scholar 

  14. Bergen SE, O'Dushlaine CT, Ripke S, Lee PH, Ruderfer DM et al (2012) Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder. Mol Psychiatry 17:880–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shifman S, Johannesson M, Bronstein M, Chen SX, Collier DA et al (2008) Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women. PLoS Genet 4, e28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li M, Luo XJ, Xiao X, Shi L, Liu XY et al (2013) Analysis of common genetic variants identifies RELN as a risk gene for schizophrenia in Chinese population. World J Biol Psychiatry 14:91–99

    Article  PubMed  Google Scholar 

  17. Liu Y, Chen PL, McGrath J, Wolyniec P, Fallin D et al (2010) Replication of an association of a common variant in the Reelin gene (RELN) with schizophrenia in Ashkenazi Jewish women. Psychiatr Genet 20:184–186

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wedenoja J, Loukola A, Tuulio-Henriksson A, Paunio T, Ekelund J et al (2008) Replication of linkage on chromosome 7q22 and association of the regional Reelin gene with working memory in schizophrenia families. Mol Psychiatry 13:673–684

    Article  CAS  PubMed  Google Scholar 

  19. Wedenoja J, Tuulio-Henriksson A, Suvisaari J, Loukola A, Paunio T et al (2010) Replication of association between working memory and Reelin, a potential modifier gene in schizophrenia. Biol Psychiatry 67:983–991

    Article  CAS  PubMed  Google Scholar 

  20. Goes FS, Willour VL, Zandi PP, Belmonte PL, MacKinnon DF et al (2009) Sex-specific association of the Reelin gene with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 153B:549–553

    Google Scholar 

  21. Fatemi SH, Earle JA, McMenomy T (2000) Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol Psychiatry 5(654–663):571

    Article  PubMed  Google Scholar 

  22. Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y et al (2000) Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 57:1061–1069

    Article  CAS  PubMed  Google Scholar 

  23. Tamura Y, Kunugi H, Ohashi J, Hohjoh H (2007) Epigenetic aberration of the human REELIN gene in psychiatric disorders. Mol Psychiatry 12(519):593–600

    Article  CAS  Google Scholar 

  24. Knuesel I (2010) Reelin-mediated signaling in neuropsychiatric and neurodegenerative diseases. Prog Neurobiol 91:257–274

    Article  CAS  PubMed  Google Scholar 

  25. Suzuki K, Nakamura K, Iwata Y, Sekine Y, Kawai M et al (2008) Decreased expression of reelin receptor VLDLR in peripheral lymphocytes of drug-naive schizophrenic patients. Schizophr Res 98:148–156

    Article  PubMed  Google Scholar 

  26. Cross-Disorder Group of the Psychiatric Genomics Consortium (2013) Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381:1371–1379

    Article  CAS  PubMed Central  Google Scholar 

  27. Aberg KA, Liu Y, Bukszar J, McClay JL, Khachane AN et al (2013) A comprehensive family-based replication study of schizophrenia genes. JAMA Psychiatry 70:573–581

    Article  CAS  PubMed  Google Scholar 

  28. Alkelai A, Lupoli S, Greenbaum L, Giegling I, Kohn Y et al (2011) Identification of new schizophrenia susceptibility loci in an ethnically homogeneous, family-based, Arab-Israeli sample. FASEB J 25:4011–4023

    Article  CAS  PubMed  Google Scholar 

  29. Alkelai A, Lupoli S, Greenbaum L, Kohn Y, Kanyas-Sarner K et al (2011) DOCK4 and CEACAM21 as novel schizophrenia candidate genes in the Jewish population. Int J Neuropsychopharmacol 15:459–469

    Article  CAS  PubMed  Google Scholar 

  30. Li M, Luo XJ, Rietschel M, Lewis CM, Mattheisen M et al (2014) Allelic differences between Europeans and Chinese for CREB1 SNPs and their implications in gene expression regulation, Hippocampal structure and function, and bipolar disorder susceptibility. Mol Psychiatry 19:452–461

    Article  CAS  PubMed  Google Scholar 

  31. Li M, Luo XJ, Landen M, Bergen SE, Hultman CM et al (2015) Impact of a cis-associated gene expression SNP on chromosome 20q11.22 on bipolar disorder susceptibility, Hippocampal structure and cognitive performance. Br J Psychiatry. doi:10.1192/bjp.bp.114.156976

    Google Scholar 

  32. Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo MA et al (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65

    Article  CAS  Google Scholar 

  33. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kazeem GR, Farrall M (2005) Integrating case–control and TDT studies. Ann Hum Genet 69:329–335

    Article  CAS  PubMed  Google Scholar 

  35. Colantuoni C, Lipska BK, Ye T, Hyde TM, Tao R et al (2011) Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 478:519–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. GTEx Consortium (2013) The genotype-tissue expression (GTEx) project. Nat Genet 45:580–585

    Article  CAS  Google Scholar 

  37. Benita Y, Cao Z, Giallourakis C, Li C, Gardet A et al (2010) Gene enrichment profiles reveal T-cell development, differentiation, and lineage-specific transcription factors including ZBTB25 as a novel NF-AT repressor. Blood 115:5376–5384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X et al (2011) Spatio-temporal transcriptome of the human brain. Nature 478:483–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guo AY, Sun J, Riley BP, Thiselton DL, Kendler KS et al (2009) The dystrobrevin-binding protein 1 gene: features and networks. Mol Psychiatry 14:18–29

    Article  CAS  PubMed  Google Scholar 

  40. Oti M, Brunner HG (2007) The modular nature of genetic diseases. Clin Genet 71:1–11

    Article  CAS  PubMed  Google Scholar 

  41. Oti M, Snel B, Huynen MA, Brunner HG (2006) Predicting disease genes using protein-protein interactions. J Med Genet 43:691–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jia P, Zhao Z (2014) Network.assisted analysis to prioritize GWAS results: principles, methods and perspectives. Hum Genet 133:125–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moreau Y, Tranchevent LC (2012) Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nat Rev Genet 13:523–536

    Article  CAS  PubMed  Google Scholar 

  44. Luo X, Huang L, Jia P, Li M, Su B et al (2014) Protein-protein interaction and pathway analyses of top schizophrenia genes reveal schizophrenia susceptibility genes converge on common molecular networks and enrichment of nucleosome (chromatin) assembly genes in schizophrenia susceptibility loci. Schizophr Bull 40:39–49

    Article  PubMed  Google Scholar 

  45. Luo XJ, Huang L, Li M, Gan L (2013) Protein-protein interaction analysis reveals common molecular processes/pathways that contribute to risk of schizophrenia. Schizophr Res 143:390–392

    Article  PubMed  Google Scholar 

  46. Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B et al (2012) Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry 17:887–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Niculescu AB 3rd, Segal DS, Kuczenski R, Barrett T, Hauger RL et al (2000) Identifying a series of candidate genes for mania and psychosis: a convergent functional genomics approach. Physiol Genomics 4:83–91

    CAS  PubMed  Google Scholar 

  48. Le-Niculescu H, Patel SD, Bhat M, Kuczenski R, Faraone SV et al (2009) Convergent functional genomics of genome-wide association data for bipolar disorder: comprehensive identification of candidate genes, pathways and mechanisms. Am J Med Genet B Neuropsychiatr Genet 150B:155–181

    Article  CAS  PubMed  Google Scholar 

  49. Bertsch B, Ogden CA, Sidhu K, Le-Niculescu H, Kuczenski R et al (2005) Convergent functional genomics: a Bayesian candidate gene identification approach for complex disorders. Methods 37:274–279

    Article  CAS  PubMed  Google Scholar 

  50. Le-Niculescu H, Kurian SM, Yehyawi N, Dike C, Patel SD et al (2009) Identifying blood biomarkers for mood disorders using convergent functional genomics. Mol Psychiatry 14:156–174

    Article  CAS  PubMed  Google Scholar 

  51. Ogden CA, Rich ME, Schork NJ, Paulus MP, Geyer MA et al (2004) Candidate genes, pathways and mechanisms for bipolar (manic-depressive) and related disorders: an expanded convergent functional genomics approach. Mol Psychiatry 9:1007–1029

    Article  CAS  PubMed  Google Scholar 

  52. Rossin EJ, Lage K, Raychaudhuri S, Xavier RJ, Tatar D et al (2011) Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genet 7, e1001273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ferreira MA, O'Donovan MC, Meng YA, Jones IR, Ruderfer DM et al (2008) Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 40:1056–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schizophrenia Psychiatric Genome-Wide Association Study Consortium (2011) Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43:969–976

    Article  CAS  Google Scholar 

  55. Chen X, Lee G, Maher BS, Fanous AH, Chen J et al (2011) GWA study data mining and independent replication identify cardiomyopathy-associated 5 (CMYA5) as a risk gene for schizophrenia. Mol Psychiatry 16:1117–1129

    Article  CAS  PubMed  Google Scholar 

  56. O'Donovan MC, Norton N, Williams H, Peirce T, Moskvina V et al (2009) Analysis of 10 independent samples provides evidence for association between schizophrenia and a SNP flanking fibroblast growth factor receptor 2. Mol Psychiatry 14:30–36

    Article  CAS  PubMed  Google Scholar 

  57. Luo XJ, Li M, Huang L, Steinberg S, Mattheisen M et al (2014) Convergent lines of evidence support CAMKK2 as a schizophrenia susceptibility gene. Mol Psychiatry 19:774–783

    Article  CAS  PubMed  Google Scholar 

  58. Huffaker SJ, Chen J, Nicodemus KK, Sambataro F, Yang F et al (2009) A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia. Nat Med 15:509–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tao R, Cousijn H, Jaffe AE, Burnet PW, Edwards F et al (2014) Expression of ZNF804A in human brain and alterations in schizophrenia, bipolar disorder, and major depressive disorder: a novel transcript fetally regulated by the psychosis risk variant rs1344706. JAMA Psychiatry 71:1112–1120

    Article  CAS  PubMed  Google Scholar 

  60. Law AJ, Lipska BK, Weickert CS, Hyde TM, Straub RE et al (2006) Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5' SNPs associated with the disease. Proc Natl Acad Sci U S A 103:6747–6752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li M, Luo XJ, Xiao X, Shi L, Liu XY et al (2011) Allelic differences between Han Chinese and Europeans for functional variants in ZNF804A and their association with schizophrenia. Am J Psychiatry 168:1318–1325

    Article  PubMed  Google Scholar 

  63. Haukvik UK, Westlye LT, Morch-Johnsen L, Jorgensen KN, Lange EH et al (2015) In vivo Hippocampal subfield volumes in schizophrenia and bipolar disorder. Biol Psychiatry 77:581–588

    Article  PubMed  Google Scholar 

  64. Mamah D, Wang L, Csernansky JG, Rice JP, Smith M et al (2010) Morphometry of the hippocampus and amygdala in bipolar disorder and schizophrenia. Bipolar Disord 12:341–343

    Article  PubMed  PubMed Central  Google Scholar 

  65. Birnbaum R, Jaffe AE, Chen Q, Hyde TM, Kleinman JE et al (2015) Investigation of the prenatal expression patterns of 108 schizophrenia-associated genetic loci. Biol Psychiatry 77:e43–e51

    Article  CAS  PubMed  Google Scholar 

  66. Jaffe AE, Shin J, Collado-Torres L, Leek JT, Tao R et al (2015) Developmental regulation of human cortex transcription and its clinical relevance at single base resolution. Nat Neurosci 18:154–161

    Article  CAS  PubMed  Google Scholar 

  67. Gilman SR, Chang J, Xu B, Bawa TS, Gogos JA et al (2012) Diverse types of genetic variation converge on functional gene networks involved in schizophrenia. Nat Neurosci 15:1723–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gibbons AS, Udawela M, Jeon WJ, Seo MS, Brooks L et al (2011) The neurobiology of APOE in schizophrenia and mood disorders. Front Biosci (Landmark Ed) 16:962–979

    Article  CAS  Google Scholar 

  69. Kavanagh DH, Tansey KE, O'Donovan MC, Owen MJ (2015) Schizophrenia genetics: emerging themes for a complex disorder. Mol Psychiatry 20:72–76

    Article  CAS  PubMed  Google Scholar 

  70. Fatemi SH, Folsom TD (2009) The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr Bull 35:528–548

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to all the voluntary donors of DNA samples in this study. We thank members of Psychiatric Genomics Consortium, who shared the PGC GWAS data. This work was supported by the German Federal Ministry of Education and Research (BMBF) through the Integrated Genome Research Network (IG) MooDS (Systematic Investigation of the Molecular Causes of Major Mood Disorders and Schizophrenia; grant 01GS08144 to SC and MMN, grant 01GS08147 to MR), under the auspices of the National Genome Research Network plus (NGFNplus), and through the Integrated Network IntegraMent (Integrated Understanding of Causes and Mechanisms in Mental Disorders), under the auspices of the e: Med Programme (grant 01ZX1314A to SC and MMN, grant 01ZX1314G to MR). MMN is a member of the DFG-funded Excellence-Cluster ImmunoSensation. The Romanian sample recruitment and genotyping was funded by UEFISCDI, Bucharest, Romania, grant no. 89/2012 to M.G.S. and by the German Federal Ministry of Education and Research (BMBF), MooDS Project, grant no. 01GS08144 to M.M.N. Funding for the Swedish collection was provided by the Stanley Center for Psychiatric Research, Broad Institute from a grant from Stanley Medical Research Institute. We also wish to thank the BBMRI.se and KI Biobank at Karolinska Institutet for professional biobank service.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Ming Li or Maria Grigoroiu-Serbanescu.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Additional Members from the Bipolar Disorder Group of the MooDS Consortium

Thomas W. Mühleisen,1,2,3 Markus Leber,4 Thomas G. Schulze,5 Franziska Degenhardt,1,2 Jens Treutlein,6 Manuel Mattheisen,7,8 Andrea Hofmann,1,2 René Breuer,6 Sandra Meier,6,9 Stefan Herms,1,2,10 Per Hoffmann,1,2,3,10 André Lacour,11 Stephanie H. Witt,6 Fabian Streit,6 Susanne Lucae,12 Wolfgang Maier,13 Markus Schwarz,14 Helmut Vedder,14 Jutta Kammerer-Ciernioch,14 Andrea Pfennig,15 Michael Bauer,15 Martin Hautzinger,16 Adam Wright,17,18 Janice M. Fullerton,19,20 Peter R. Schofield,19,20 Grant W. Montgomery,21 Sarah E. Medland,21 Scott D. Gordon,21 Tim Becker,4,11 Johannes Schumacher,1,2 Peter Propping. 1

1Institute of Human Genetics, University of Bonn, Germany

2Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany

3Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, Germany

4Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Germany

5Institute of Psychiatric Phenomics and Genomics, Ludwig Maximilian University Munich, Munich, Germany

6Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Germany

7Department of Biomedicine, Aarhus University, Denmark

8Institute for Genomics Mathematics, University of Bonn, Germany

9National Centre Register-Based Research, Aarhus University, Denmark

10Division of Medical Genetics and Department of Biomedicine, University of Basel, Switzerland

11German Center for Neurodegenerative Diseases DZNE, Bonn, Germany

12Max Planck Institute of Psychiatry, Munich, Germany

13Department of Psychiatry, University of Bonn, Germany

14Psychiatric Center Nordbaden, Wiesloch, Germany

15Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Dresden, Germany

16Department of Psychology, Clinical Psychology and Psychotherapy, Eberhard Karls University Tübingen, Germany

17School of Psychiatry, University of New South Wales Randwick, Australia

18Black Dog Institute, Prince of Wales Hospital Randwick, Australia

19Neuroscience Research Australia, Sydney, Australia

20School of Medical Sciences Faculty of Medicine, University of New South Wales Sydney, Australia

21Queensland Institute of Medical Research QIMR, Brisbane, Australia

Members of the Swedish Bipolar Study Group

Lena Backlund,1 Louise Frisén,1 Catharina Lavebratt,2 Martin Schalling,2 Urban Ösby.1

1Department of Clinical Neuroscience Neurogenetics Unit, Stockholm, Sweden

2Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

Ming Li and Liang Huang contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 577 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Huang, L., Grigoroiu-Serbanescu, M. et al. Convergent Lines of Evidence Support LRP8 as a Susceptibility Gene for Psychosis. Mol Neurobiol 53, 6608–6619 (2016). https://doi.org/10.1007/s12035-015-9559-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9559-6

Keywords

Navigation