Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The genomic clone G-21 which resembles a β-adrenergic receptor sequence encodes the 5-HT1A receptor

Abstract

The recent cloning of the complementary DNAs and/or genes for several receptors linked to guanine nucleotide regulatory proteins including the adrenergic receptors (α1, α2A, α2B, β1, β2)1–7 several subtypes of the muscarinic cholinergic receptors8,9, and the visual 'receptor' rhodopsin10 has revealed considerable similarity in the primary structure of these proteins. In addition, all of these proteins contain seven putative transmembrane α-helices. We have previously described a genomic clone, G-21, isolated by cross-hybridization at reduced stringency with a full length β2- adrenergic receptor probe11. This clone contains an intronless gene which, because of its striking sequence resemblance to the adrenergic receptors, is presumed to encode a G-protein-coupled receptor. Previous attempts to identify this putative receptor by expression studies have failed. We now report that the protein product of the genomic clone, G21, transiently expressed in monkey kidney cells has all the typical ligand-binding characteristics of the 5-hydroxytryptamine (5-HT1A) receptor.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dixon, R. A. F. et al. Nature 321, 75–79 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Yarden, Y. et al. Proc. natn. Acad. Sci. U.S.A. 83, 6795–6799 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Kobilka, B. K. et al. Proc. natn. Acad. Sci. U.S.A. 84, 46–50 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Frielle, T. et al. Proc. natn. Acad. Sci. U.S.A. 84, 7920–7924 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Kobilka, B. K. et al. Science 238, 650–656 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Cotecchia S. et al. Proc. natn. Acad. Sci. U.S.A. (in the press).

  7. Regan, J. W. et al. Proc. natn. Acad. Sci. U.S.A. (in the press).

  8. Kubo, T. et al. Nature 323, 411–416 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Kubo, T. et al. FEBS Lett. 209, 367–372 (1986).

    Article  CAS  Google Scholar 

  10. Nathans, J. & Hogness, D. S. Proc. natn. Acad. Sci. U.S.A. 81, 4851–4855 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Kobilka, B. K. et al. Nature 329, 75–79 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Bradley, P. B. et al. Neuropharmacol. 25, 563–575 (1987).

    Article  Google Scholar 

  13. Göthert, M. & Schlicker, E. J. Cardiovasc. Pharmacol 10(suppl. 10), S3–S7 (1987).

    Article  Google Scholar 

  14. Peroutka, S. J. ISI Atlas of Sei.: Pharmac. 2, 1–4 (1988).

    CAS  Google Scholar 

  15. Leysen, J. E. Neuromethods, Neuropharmacology II: Drugs as Tools in Neurotransmilter Research (eds Boulton, A. A., Baker, G. B. & Jourio, A. V.) (Humana, Clifton, in press).

  16. Cullen, B. R. Meth. Enzym. 152, 684–704 (1987).

    Article  CAS  Google Scholar 

  17. Hoyer, D., Engel, G. & Kalkman, H. O. Eur. J. Pharmac. 118, 1–12 (1985).

    Article  CAS  Google Scholar 

  18. Hoyer, D., Engel, G. & Kalkman, H. O. Eur. J. Pharmac. 118, 13–23 (1985).

    Article  CAS  Google Scholar 

  19. Gozlan, H., Mestikawy, S., Pichat, L., Glowinsky, G. & Hamon, M. Nature 305, 140–142 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Sills, M. A., Wolfe, B. B. & Frazer, A. Molec. Pharmac. 26, 10–18 (1984).

    CAS  Google Scholar 

  21. Hall, M. D. et al. J. Neurochem. 44, 1685–1696 (1985).

    Article  CAS  Google Scholar 

  22. Schlegel, J. R. & Peroutka, S. J. Biochem. Pharmac. 35, 1943–1949 (1986).

    Article  CAS  Google Scholar 

  23. Shenker, A. et al. Eur. J. Pharmac. 109, 427–429 (1985).

    Article  CAS  Google Scholar 

  24. Markstein, R., Hoyer, D. & Engel, G. Naunyn-Schmiedebergs Archs Pharmak. 333, 335–341 (1986).

    Article  CAS  Google Scholar 

  25. Weiss, S., Sebben, M., Kempe, D. & Bockaert, J. Eur. J. Pharmacol. 120, 227–230 (1986).

    Article  CAS  Google Scholar 

  26. De Vivo, M. & Maayani, S. J. Pharmac. exp. The. 238, 248–253 (1986).

    CAS  Google Scholar 

  27. Bockaert, J. A. et al. Naunyn-Schmiedebergs Arch. Pharmak. 335, 588–592 (1987).

    Article  CAS  Google Scholar 

  28. Colino, A. & Halliwell, J. V. Nature 328, 73–77 (1987).

    Article  ADS  CAS  Google Scholar 

  29. Andrade, R. & Nicoll, R. A. J. Physiol., Lond. 394, 99–124 (1987).

    Article  CAS  Google Scholar 

  30. Kobilka, B. K. et al. Science 240, 1310–1316 (1988).

    Article  ADS  CAS  Google Scholar 

  31. Sternberg, E. M., Wedner, J. H., Leung, M. K. & Parker, C. W. J. lmmun. 138, 4360–4365 (1987).

    CAS  Google Scholar 

  32. Hellstrand, K. & Hermodsson, S. J. Immun. 139, 869–875 (1987).

    CAS  PubMed  Google Scholar 

  33. DeLean, A., Hancock, A. A. & Lefkowitz, R. J. Molec. Pharmac. 21, 5–16 (1982).

    CAS  Google Scholar 

  34. Chirgwin, J. M., Przybyla, A. E., McDonald, R. J. & Rutter, W. J. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  Google Scholar 

  35. McMaster, G. K. & Carmichael, G. C. Proc. natn. Acad. Sci. U.S.A. 74, 4835–4838 (1977).

    Article  ADS  CAS  Google Scholar 

  36. Azis, N. & Munro, H. N. Nucleic Acids Res. 14, 915–927 (1986).

    Article  Google Scholar 

  37. Gozlan, H. et al. J. Receptor Res. 7, 195–221 (1987).

    Article  CAS  Google Scholar 

  38. Julius, D. et al. Science 241, 558–564 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fargin, A., Raymond, J., Lohse, M. et al. The genomic clone G-21 which resembles a β-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature 335, 358–360 (1988). https://doi.org/10.1038/335358a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335358a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing