Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons

Abstract

Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. Synaptic vesicles are loaded with neurotransmitter by means of specific vesicular transporters. Here we show that expression of BNPI, a vesicle-bound transporter associated with sodium-dependent phosphate transport1,2,3, results in glutamate uptake by intracellular vesicles. Substrate specificity and energy dependence are very similar to glutamate uptake by synaptic vesicles. Stimulation of exocytosis—fusion of the vesicles with the cell membrane and release of their contents—resulted in quantal release of glutamate from BNPI-expressing cells. Furthermore, we expressed BNPI in neurons containing GABA (γ-aminobutyric acid) and maintained them as cultures of single, isolated neurons that form synapses to themselves. After stimulation of these neurons, a component of the postsynaptic current is mediated by glutamate as it is blocked by a combination of the glutamate receptor antagonists, but is insensitive to a GABAA receptor antagonist. We conclude that BNPI functions as vesicular glutamate transporter and that expression of BNPI suffices to define a glutamatergic phenotype in neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BNPI is exclusively present on glutamatergic synaptic vesicles.
Figure 2: BNPI functions as a vesicular glutamate transporter.
Figure 3: Quantal release of glutamate from BNPI expressing BON cells detected by AMPA-receptor-expressing reporter cells.
Figure 4: Co-release of GABA and glutamate from BNPI-expressing GABA-containing hippocampal neurons in autaptic culture.

Similar content being viewed by others

References

  1. Ni, B., Rosteck, P. R. Jr., Nadi, N. S. & Paul, S. M. Cloning and expression of a cDNA encoding a brain-specific Na(+)-dependent inorganic phosphate cotransporter. Proc. Natl Acad. Sci. USA 91, 5607–5611 ( 1994).

    Article  ADS  CAS  Google Scholar 

  2. Ni, B. et al. Molecular cloning, expression, and chromosomal localization of a human brain-specific Na+-dependent inorganic phosphate cotransporter. J. Neurochem. 66, 2227– 2238 (1996).

    Article  CAS  Google Scholar 

  3. Bellocchio, E. E. et al. The localization of the brain-specific inorganic phosphate transporter suggests a specific presynaptic role in glutamatergic transmission. J. Neurosci. 18, 8648– 8659 (1998).

    Article  CAS  Google Scholar 

  4. Reimer, R. J., Fon, E. A. & Edwards, R. H. Vesicular neurotransmitter transport and the presynaptic regulation of quantal size. Curr. Opin. Neurobiol. 8, 405–412 (1998).

    Article  CAS  Google Scholar 

  5. Hartinger, J., Stenius, K., Hogemann, D. & Jahn, R. 16-BAC/SDS-PAGE: a two-dimensional gel electrophoresis system suitable for the separation of integral membrane proteins. Anal. Biochem. 240, 126–133 (1996).

    Article  CAS  Google Scholar 

  6. Dent, J. A., Davis, M. W. & Avery, L. avr-15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in Caenorhabditis elegans. EMBO J. 16, 5867–5879 (1997).

    Article  CAS  Google Scholar 

  7. Takamori, S., Riedel, D. & Jahn, R. Immunoisolation of GABA-specific synaptic vesicles defines a functionally distinct subset of synaptic vesicles. J. Neurosci. 20, 4904–4911 ( 2000).

    Article  CAS  Google Scholar 

  8. Parekh, D. et al. Characterization of a human pancreatic carcinoid in vitro : morphology, amine and peptide storage, and secretion. Pancreas 9, 83–90 (1994 ).

    Article  CAS  Google Scholar 

  9. Naito, S. & Ueda, T. Adenosine triphosphate-dependent uptake of glutamate into protein I-associated synaptic vesicles. J. Biol. Chem. 258, 696–699 ( 1983).

    CAS  PubMed  Google Scholar 

  10. Maycox, P. R., Hell, J. W. & Jahn, R. Amino acid neurotransmission: spotlight on synaptic vesicles. Trends Neurosci. 13, 83– 87 (1990).

    Article  CAS  Google Scholar 

  11. Maycox, P. R., Deckwerth, T., Hell, J. W. & Jahn, R. Glutamate uptake by brain synaptic vesicles. Energy dependence of transport and functional reconstitution in proteoliposomes. J. Biol. Chem. 263 , 15423–15428 (1988).

    CAS  PubMed  Google Scholar 

  12. Hell, J. W., Maycox, P. R. & Jahn, R. Energy dependence and functional reconstitution of the gamma-aminobutyric acid carrier from synaptic vesicles. J. Biol. Chem. 265, 2111–2117 ( 1990).

    CAS  PubMed  Google Scholar 

  13. Stern-Bach, Y., Russo, S., Neuman, M. & Rosenmund, C. A point mutation in the glutamate binding site blocks desensitization of AMPA receptors. Neuron 21, 907–918 ( 1998).

    Article  CAS  Google Scholar 

  14. Raizen, D. M. & Avery, L. Electrical activity and behavior in the pharynx of Caenorhabditis elegans. Neuron 12, 483–495 (1994).

    Article  CAS  Google Scholar 

  15. Lee, R. Y., Sawin, E. R., Chalfie, M., Horvitz, H. R. & Avery, L. EAT-4, a homolog of a mammalian sodium-dependent inorganic phosphate cotransporter, is necessary for glutamatergic neurotransmission in Caenorhabditis elegans. J. Neurosci. 19, 159–167 (1999).

    Article  CAS  Google Scholar 

  16. Aihara, Y. et al. Molecular cloning of a novel brain-type Na(+)-dependent inorganic phosphate cotransporter. J. Neurochem. 74, 2622–2625 (2000).

    Article  CAS  Google Scholar 

  17. Ashery, U., Betz, A., Xu, T., Brose, N. & Rettig, J. An efficient method for infection of adrenal chromaffin cells using the Semliki Forest virus gene expression system. Eur. J. Cell Biol. 78, 525–532 (1999).

    Article  CAS  Google Scholar 

  18. Chen, C. & Okayama, H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2745–2752 (1987).

    Article  CAS  Google Scholar 

  19. Hell, J. W., Maycox, P. R., Stadler, H. & Jahn, R. Uptake of GABA by rat brain synaptic vesicles isolated by a new procedure. EMBO J. 7, 3023–3029 ( 1988).

    Article  CAS  Google Scholar 

  20. Bekkers, J. M. & Stevens, C. F. Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture. Proc. Natl Acad. Sci. USA 88, 7834–7838 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Rosenmund, C., Feltz, A. & Westbrook, G. L. Synaptic NMDA receptor channels have a low open probability. J. Neurosci. 15, 2788– 2795 (1995).

    Article  CAS  Google Scholar 

  22. Hell, J. W. & Jahn, R. in Cell Biology: a Laboratory Handbook 1st edn (ed. Celis, J. E.) 567–574 (Academic, New York, 1994).

    Google Scholar 

  23. Lombard-Platet, G. & Jalinot, P. Funnel-well SDS-PAGE: a rapid technique for obtaining sufficient quantities of low-abundance proteins for internal sequence analysis. Biotechniques 15, 668–670, 672 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Rettig for discussions and the help in the viral infection technique; D. Pommereit and Y. Stern-Bach for providing the non-desensitizing AMPA-receptor vectors GluR1L497Y and GluR2QL504Y–IRES–DsRed; M. Druminski, D. Diezmann, A. Bührmann, I. Herfort and N. Narajagan for their technical assistance; P. Holroyd for critical reading of this manuscript. We also thank The HHMI Biopolymer/W.M. Keck Foundation, Biotechnology Resource Laboratory at Yale University for amino-acid sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Jahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takamori, S., Rhee, J., Rosenmund, C. et al. Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407, 189–194 (2000). https://doi.org/10.1038/35025070

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35025070

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing