Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dark-rearing delays the loss of NMDA-receptor function in kitten visual cortex

Abstract

SOME features of the visual cortex develop postnatally in mammals1,2. For example, geniculocortical axons that initially overlap throughout cortical layer IV segregate postnatally into two sets of interleaved eye-specific bands3,4. NMDA (N-methyl-D-aspartate) receptors are necessary for eye-specific axon-segregation in the frog tectum5, and as NMDA receptors play a greater part in synaptic transmission in early life6,7 and decrease in function during the period of axon segregation, they may be involved in the segregation of geniculocortical axons: they are well placed to do so as they transduce8 retinally derived signals essential for segregation9. Rearing animals in the dark in early life delays segregation10,11 and prolongs the critical period for plasticity12. We now report that dark-rearing of kittens also delays the loss of NMDA receptor function in the visual cortex, supporting the view that they play an important part in neuronal development and plasticity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shatz, C. J., Chun, J. J. M. & Luskin, M. B. Cerebral Cortex Vol. 7, 35–58 (Plenum, New York, 1988).

    Book  Google Scholar 

  2. Mitchell, D. E. & Timney, B. Handbook of Physiology Section I, Vol. 3, 507–555 (Am. Physiol. Soc., Bethesda, MD, 1984).

    Google Scholar 

  3. LeVay, S., Stryker, M. P. & Shatz, C. J. J. comp. Neurol. 179, 223–244 (1978).

    Article  CAS  Google Scholar 

  4. LeVay, S., Wiesel, T. N. & Hubel, D. H. J. comp. Neurol. 191, 1–51 (1980).

    Article  CAS  Google Scholar 

  5. Cline, H. T., Debski, E. A. & Constantine-Paton, M. Proc. natn. Acad. Sci. U.S.A. 84, 4342–4345 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Tsumoto, T., Hagihara, K., Sato, H. & Hata, Y. Nature 327, 513–514 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Fox, K., Sato, H. & Daw, N. J. Neurosci. 9, 2443–2454 (1989).

    Article  CAS  Google Scholar 

  8. Hagihara, K., Tsumoto, T., Sato, H. & Hata, Y. Expl Brain Res. 69, 407–416 (1988).

    Article  CAS  Google Scholar 

  9. Stryker, M. P. & Harris, W. A. J. Neurosci. 6, 2117–2133 (1986).

    Article  CAS  Google Scholar 

  10. Swindale, N. V. J. comp. Neurol. 267, 47–48 (1988).

    Article  Google Scholar 

  11. Mower, G. D., Caplan, C. J., Christen, W. G. & Duffy, F. H. J. comp. Neurol. 235, 448–466 (1985).

    Article  CAS  Google Scholar 

  12. Cynader, M. & Mitchell, D. E. J. Neurophysiol. 43, 1026–1040 (1980).

    Article  CAS  Google Scholar 

  13. Fox, K., Sato, H. & Daw, N. J. Neurophysiol. 64, 1413–1428 (1990).

    Article  CAS  Google Scholar 

  14. Cline, H. T. & Constantine-Paton, M. J. Neurosci. 10, 1197–1216 (1990).

    Article  CAS  Google Scholar 

  15. Flatman, J. A., Schwindt, P. C. & Crill, W. E. Brain Res. 363, 62–77 (1986).

    Article  CAS  Google Scholar 

  16. Miller, K. D., Keller, J. B. & Stryker, M. P. Science 245, 605–615 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Reynolds, I. J. & M. F. Bear, Expl Brain Res. (in the press).

  18. Gordon, B., Parkinson, D. & Daw, N. W. Soc. Neurosci. Abstr. 17, 986 (1990).

    Google Scholar 

  19. Bode-Greuel, K. M. & Singer, W. Devl Brain Res. 46, 197–204 (1989).

    Article  CAS  Google Scholar 

  20. MacDonald, J. F., Mody, I. & Salter, M. W. J. Physiol. 414, 17–34 (1989).

    Article  CAS  Google Scholar 

  21. Kleckner, N. W. & Dingledine, R. Science 241, 835–837 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Freeman, R. D. & Bonds, A. B. Science 206, 1093–1095 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, K., Daw, N., Sato, H. et al. Dark-rearing delays the loss of NMDA-receptor function in kitten visual cortex. Nature 350, 342–344 (1991). https://doi.org/10.1038/350342a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/350342a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing