Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

BDNF Val66Met genotype modulates the effect of childhood adversity on subgenual anterior cingulate cortex volume in healthy subjects

Abstract

According to the neurotrophic hypothesis of depression, stress can lead to brain atrophy by modifying brain-derived neurotrophic factor (BDNF) levels. Given that BDNF secretion is affected by a common polymorphism (rs6265, Val66Met), which also is associated with depression, we investigated whether this polymorphism modifies the effect of childhood adversity (CA) on local gray matter (GM) volume in depression-relevant brain regions, using data from two large cohorts of healthy subjects. We included 568 healthy volunteers (aged 18–50 years, 63% female) in our study, for whom complete data were available, with magnetic resonance imaging data at 1.5 Tesla (N=275) or 3 Tesla (N=293). We used a whole brain optimized voxel-based morphometry (VBM) approach assessing genotype-dependent GM differences, with focus on the amygdala, hippocampus and medial prefrontal cortex (PFC; including anterior cingulate cortex (ACC) and orbitomedial PFC). CA was assessed using a validated questionnaire. In both cohorts, we found that BDNF methionine (Met)-allele carriers with a history of CA had significantly less GM in subgenual ACC (P<0.05) compared with Met-allele carriers without CA and Val/Val homozygotes with CA. No differences were found in hippocampus, amygdala and orbitomedial PFC. On the basis of our findings, we conclude that BDNF Met-allele carriers are particularly sensitive to CA. Given the key role of the subgenual ACC in emotion regulation, this finding provides an important mechanistic link between stress and BDNF on one hand and mood impairments on the other hand.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Kessler RC, Davis CG, Kendler KS . Childhood adversity and adult psychiatric disorder in the US National Comorbidity Survey. Psychol Med 1997; 27: 1101–1119.

    Article  CAS  Google Scholar 

  2. Cohen RA, Grieve S, Hoth KF, Paul RH, Sweet L, Tate D et al. Early life stress and morphometry of the adult anterior cingulate cortex and caudate nuclei. Biol Psychiatry 2006; 59: 975–982.

    Article  Google Scholar 

  3. Frodl T, Reinhold E, Koutsouleris N, Reiser M, Meisenzahl EM . Interaction of childhood stress with hippocampus and prefrontal cortex volume reduction in major depression. J Psychiatr Res 2010; 44: 799–807.

    Article  Google Scholar 

  4. McEwen BS, Gianaros P . Plasticity of the brain in relationship to stress. Annu Rev Med 2010; 62: 431–445.

    Article  Google Scholar 

  5. Calabrese F, Molteni R, Racagni G, Riva MA . Neuronal plasticity: a link between stress and mood disorders. Psychoneuroendocrinology 2009; 34 (Suppl 1): S208–S216.

    Article  CAS  Google Scholar 

  6. Roceri M, Cirulli F, Pessina C, Peretto P, Racagni G, Riva MA . Postnatal repeated maternal deprivation produces age-dependent changes of brain-derived neurotrophic factor expression in selected rat brain regions. Biol Psychiatry 2004; 55: 708–714.

    Article  CAS  Google Scholar 

  7. Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN . Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry 2003; 60: 804–815.

    Article  CAS  Google Scholar 

  8. Kozicz T, Tilburg-Ouwens D, Faludi G, Palkovits M, Roubos E . Gender-related urocortin 1 and brain-derived neurotrophic factor expression in the adult human midbrain of suicide victims with major depression. Neuroscience 2008; 152: 1015–1023.

    Article  CAS  Google Scholar 

  9. Cousijn H, Rijpkema M, Qin S, van Marle HJ, Franke B, Hermans EJ et al. Acute stress modulates genotype effects on amygdala processing in humans. Proc Natl Acad Sci USA 2010; 107: 9867–9872.

    Article  CAS  Google Scholar 

  10. Macqueen G, Frodl T . The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research? Mol Psychiatry 2011; 16: 252–264.

    Article  CAS  Google Scholar 

  11. Caspi A, Hariri AR, Holmes A, Uher R, Moffitt TE . Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am J Psychiatry 2010; 167: 509–527.

    Article  Google Scholar 

  12. El Hage W, Powell JF, Surguladze SA . Vulnerability to depression: what is the role of stress genes in gene x environment interaction? Psychol Med 2009; 39: 1407–1411.

    Article  CAS  Google Scholar 

  13. Xie P, Kranzler HR, Poling J, Stein MB, Anton RF, Farrer LA et al. Interaction of FKBP5 with childhood adversity on risk for post-traumatic stress disorder. Neuropsychopharmacology 2010; 35: 1684–1692.

    Article  CAS  Google Scholar 

  14. Frodl T, Reinhold E, Koutsouleris N, Donohoe G, Bondy B, Reiser M et al. Childhood stress, serotonin transporter gene and brain structures in major depression. Neuropsychopharmacology 2010; 35: 1383–1390.

    Article  CAS  Google Scholar 

  15. Wermter AK, Laucht M, Schimmelmann BG, Banaschweski T, Sonuga-Barke EJ, Rietschel M et al. From nature versus nurture, via nature and nurture, to gene x environment interaction in mental disorders. Eur Child Adolesc Psychiatry 2010; 19: 199–210.

    Article  Google Scholar 

  16. Hasler G . Pathophysiology of depression: do we have any solid evidence of interest to clinicians? World Psychiatry 2010; 9: 155–161.

    Article  Google Scholar 

  17. Gatt JM, Nemeroff CB, Dobson-Stone C, Paul RH, Bryant RA, Schofield PR et al. Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Mol Psychiatry 2009; 14: 681–695.

    Article  CAS  Google Scholar 

  18. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003; 112: 257–269.

    Article  CAS  Google Scholar 

  19. Verhagen M, van der MA, van Deurzen PA, Janzing JG, rias-Vasquez A, Buitelaar JK et al. Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity. Mol Psychiatry 2010; 15: 260–271.

    Article  CAS  Google Scholar 

  20. Joffe RT, Gatt JM, Kemp AH, Grieve S, Dobson-Stone C, Kuan SA et al. Brain derived neurotrophic factor Val66Met polymorphism, the five factor model of personality and hippocampal volume: Implications for depressive illness. Hum Brain Mapp 2009; 30: 1246–1256.

    Article  Google Scholar 

  21. Franke B, Vasquez AA, Veltman JA, Brunner HG, Rijpkema M, Fernandez G . Genetic variation in CACNA1C, a gene associated with bipolar disorder, influences brainstem rather than gray matter volume in healthy individuals. Biol Psychiatry 2010; 68: 586–588.

    Article  CAS  Google Scholar 

  22. Brugha T, Bebbington P, Tennant C, Hurry J . The List of Threatening Experiences: a subset of 12 life event categories with considerable long-term contextual threat. Psychol Med 1985; 15: 189–194.

    Article  CAS  Google Scholar 

  23. Isgor C, Kabbaj M, Akil H, Watson SJ . Delayed effects of chronic variable stress during peripubertal-juvenile period on hippocampal morphology and on cognitive and stress axis functions in rats. Hippocampus 2004; 14: 636–648.

    Article  Google Scholar 

  24. Ashburner J, Friston KJ . Voxel-based morphometry—the methods. Neuroimage 2000; 11 (6 Pt 1): 805–821.

    Article  CAS  Google Scholar 

  25. Cuadra MB, Cammoun L, Butz T, Cuisenaire O, Thiran JP . Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images. IEEE Trans Med Imaging 2005; 24: 1548–1565.

    Article  Google Scholar 

  26. Ashburner J . A fast diffeomorphic image registration algorithm. Neuroimage 2007; 38: 95–113.

    Article  Google Scholar 

  27. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH . An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 2003; 19: 1233–1239.

    Article  Google Scholar 

  28. Maldjian JA, Laurienti PJ, Burdette JH . Precentral gyrus discrepancy in electronic versions of the Talairach atlas. Neuroimage 2004; 21: 450–455.

    Article  Google Scholar 

  29. Amodio DM, Frith CD . Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci 2006; 7: 268–277.

    Article  CAS  Google Scholar 

  30. Lemogne C, Delaveau P, Freton M, Guionnet S, Fossati P . Medial prefrontal cortex and the self in major depression. J Affect Disord 2010; doi: 10.106/j.jad.2010.11.034.

  31. Brett M, Anton J-L, Valabregue R, Poline JB . Region of interest analysis using an SPM toolbox (abstract). NeuroImage 2002; 16: 1140–1141. Ref Type: Abstract.

    Google Scholar 

  32. Jovicich J, Czanner S, Han X, Salat D, van der KA, Quinn B et al. MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. Neuroimage 2009; 46: 177–192.

    Article  Google Scholar 

  33. Lenroot RK, Giedd JN . Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev 2006; 30: 718–729.

    Article  Google Scholar 

  34. Arnsten AF . Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci 2009; 10: 410–422.

    Article  CAS  Google Scholar 

  35. Ladd ME . High-field-strength magnetic resonance: potential and limits. Top Magn Reson Imaging 2007; 18: 139–152.

    Article  Google Scholar 

  36. Campbell-Sills L, Simmons AN, Lovero KL, Rochlin AA, Paulus MP, Stein MB . Functioning of neural systems supporting emotion regulation in anxiety-prone individuals. NeuroImage 2011; 54: 689–696.

    Article  Google Scholar 

  37. Hsu DT, Langenecker SA, Kennedy SE, Zubieta JK, Heitzeg MM . fMRI BOLD responses to negative stimuli in the prefrontal cortex are dependent on levels of recent negative life stress in major depressive disorder. Psychiatry Res 2010; 183: 202–208.

    Article  Google Scholar 

  38. Drevets WC, Price JL, Simpson Jr JR, Todd RD, Reich T, Vannier M et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997; 386: 824–827.

    Article  CAS  Google Scholar 

  39. van Harmelen AL, van Tol MJ, van der Wee NJ, Veltman DJ, Aleman A, Spinhoven P et al. Reduced medial prefrontal cortex volume in adults reporting childhood emotional maltreatment. Biol Psychiatry 2010; 68: 832–838.

    Article  Google Scholar 

  40. Drevets WC, Savitz J, Trimble M . The subgenual anterior cingulate cortex in mood disorders. CNS Spectr 2008; 13: 663–681.

    Article  Google Scholar 

  41. Radley JJ, Williams B, Sawchenko PE . Noradrenergic innervation of the dorsal medial prefrontal cortex modulates hypothalamo-pituitary-adrenal responses to acute emotional stress. J Neurosci 2008; 28: 5806–5816.

    Article  CAS  Google Scholar 

  42. Phillips ML, Drevets WC, Rauch SL, Lane R . Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiatry 2003; 54: 504–514.

    Article  Google Scholar 

  43. Bueller JA, Aftab M, Sen S, Gomez-Hassan D, Burmeister M, Zubieta JK . BDNF Val66Met allele is associated with reduced hippocampal volume in healthy subjects. Biol Psychiatry 2006; 59: 812–815.

    Article  CAS  Google Scholar 

  44. Pezawas L, Verchinski BA, Mattay VS, Callicott JH, Kolachana BS, Straub RE et al. The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J Neurosci 2004; 24: 10099–10102.

    Article  CAS  Google Scholar 

  45. Frodl T, Schule C, Schmitt G, Born C, Baghai T, Zill P et al. Association of the brain-derived neurotrophic factor Val66Met polymorphism with reduced hippocampal volumes in major depression. Arch Gen Psychiatry 2007; 64: 410–416.

    Article  CAS  Google Scholar 

  46. Ho BC, Andreasen NC, Dawson JD, Wassink TH . Association between brain-derived neurotrophic factor Val66Met gene polymorphism and progressive brain volume changes in schizophrenia. Am J Psychiatry 2007; 164: 1890–1899.

    Article  Google Scholar 

  47. Jessen F, Schuhmacher A, von Widdern O, Guttenthaler V, Hofels S, Suliman H et al. No association of the Val66Met polymorphism of the brain-derived neurotrophic factor with hippocampal volume in major depression. Psychiatr Genet 2009; 19: 99–101.

    Article  Google Scholar 

  48. Benjamin S, McQuoid DR, Potter GG, Payne ME, MacFall JR, Steffens DC et al. The brain-derived neurotrophic factor Val66Met polymorphism, hippocampal volume, and cognitive function in geriatric depression. Am J Geriatr Psychiatry 2010; 18: 323–331.

    Article  Google Scholar 

  49. Szeszko PR, Lipsky R, Mentschel C, Robinson D, Gunduz-Bruce H, Sevy S et al. Brain-derived neurotrophic factor val66met polymorphism and volume of the hippocampal formation. Mol Psychiatry 2005; 10: 631–636.

    Article  CAS  Google Scholar 

  50. Duman RS, Monteggia LM . A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006; 59: 1116–1127.

    Article  CAS  Google Scholar 

  51. Lu B, Chow A . Neurotrophins and hippocampal synaptic transmission and plasticity. J Neurosci Res 1999; 58: 76–87.

    Article  CAS  Google Scholar 

  52. Hasler G, Drevets WC, Manji HK, Charney DS . Discovering endophenotypes for major depression. Neuropsychopharmacology 2004; 29: 1765–1781.

    Article  CAS  Google Scholar 

  53. Barnes J, Foster J, Boyes RG, Pepple T, Moore EK, Schott JM et al. A comparison of methods for the automated calculation of volumes and atrophy rates in the hippocampus. Neuroimage 2008; 40: 1655–1671.

    Article  CAS  Google Scholar 

  54. Andersen SL, Teicher MH . Stress, sensitive periods and maturational events in adolescent depression. Trends Neurosci 2008; 31: 183–191.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Gerritsen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerritsen, L., Tendolkar, I., Franke, B. et al. BDNF Val66Met genotype modulates the effect of childhood adversity on subgenual anterior cingulate cortex volume in healthy subjects. Mol Psychiatry 17, 597–603 (2012). https://doi.org/10.1038/mp.2011.51

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.51

Keywords

This article is cited by

Search

Quick links