Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A rare mutation of CACNA1C in a patient with bipolar disorder, and decreased gene expression associated with a bipolar-associated common SNP of CACNA1C in brain

Abstract

Timothy Syndrome (TS) is caused by very rare exonic mutations of the CACNA1C gene that produce delayed inactivation of Cav1.2 voltage-gated calcium channels during cellular action potentials, with greatly increased influx of calcium into the activated cells. The major clinical feature of this syndrome is a long QT interval that results in cardiac arrhythmias. However, TS also includes cognitive impairment, autism and major developmental delays in many of the patients. We observed the appearance of bipolar disorder (BD) in a patient with a previously reported case of TS, who is one of the very few patients to survive childhood. This is most interesting because the common single-nucleotide polymorphism (SNP) most highly associated with BD is rs1006737, which we show here is a cis-expression quantitative trait locus for CACNA1C in human cerebellum, and the risk allele (A) is associated with decreased expression. To combine the CACNA1C perturbations in the presence of BD in this patient and in patients with the common CACNA1C SNP risk allele, we would propose that either increase or decrease in calcium influx in excitable cells can be associated with BD. In treatment of BD with calcium channel blocking drugs, we would predict better response in patients without the risk allele, because they have increased CACNA1C expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Splawski I, Timothy KW, Decher N, Kumar P, Sachse FB, Beggs AH et al. Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci USA 102: 8089–8096 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ferreira MA, O’Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 2008; 40: 1056–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cross-Disorder Group of the Psychiatric Genomics Consortium Smoller JW, Craddock N, Kendler K, Lee PH, Neale BM et al. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 2013; 381: 1371–1379.

    Article  PubMed Central  Google Scholar 

  4. Psychiatric GWAS Consortium Bipolar Disorder Working Group Sklar P, Ripke S, Scott LJ, Andreassen OA, Cichon S et al. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet 2011; 43: 977–983.

    Article  Google Scholar 

  5. Jacobs A, Knight BP, McDonald KT, Burke MC . Verapamil decreases ventricular tachyarrhythmias in a patient with Timothy syndrome (LQT8). Heart Rhythm 3: 967–970 2006.

    Article  PubMed  Google Scholar 

  6. Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Proc Natl Acad Sci USA 119: 19–31 2004.

    CAS  Google Scholar 

  7. Gillis J, Burashnikov E, Antzelevitch C, Blaser S, Gross G, Turner L et al. Long QT, syndactyly, joint contractures, stroke and novel CACNA1C mutation: expanding the spectrum of Timothy syndrome. Am J Med Genet A 2012; 158A: 182–187.

    Article  PubMed  Google Scholar 

  8. Barrett CF, Tsien RW . The Timothy syndrome mutation differentially affects voltage- and calcium-dependent inactivation of CaV1.2 L-type calcium channels. Proc Natl Acad Sci USA 2008; 105: 2157–2162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thiel WH, Chen B, Hund TJ, Koval OM, Purohit A, Song LS et al. Proarrhythmic defects in Timothy syndrome require calmodulin kinase II. Circulation 2008; 118: 2225–2234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Erxleben C, Liao Y, Gentile S, Chin D, Gomez-Alegria C, Mori Y et al. Cyclosporin and Timothy syndrome increase mode 2 gating of CaV1.2 calcium channels through aberrant phosphorylation of S6 helices. Proc Natl Acad Sci USA 2006; 103: 3932–3937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Depil K, Beyl S, Stary-Weinzinger A, Hohaus A, Timin E, Hering S . Timothy mutation disrupts the link between activation and inactivation in Ca(V)1.2 protein. J Biol Chem 2011; 286: 31557–31564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pasca SP, Portmann T, Voineagu I, Yazawa M, Shcheglovitov A, Paşca AM et al. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med 2011; 17: 1657–1662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yarotskyy V, Gao G, Peterson BZ, Elmslie KS . The Timothy syndrome mutation of cardiac CaV1.2 (L-type) channels: multiple altered gating mechanisms and pharmacological restoration of inactivation. J Physiol 2009; 587: 551–565.

    Article  CAS  PubMed  Google Scholar 

  14. Rosati B, Yan Q, Lee MS, Liou SR, Ingalls B, Foell J et al. Robust L-type calcium current expression following heterozygous knockout of the Cav1.2 gene in adult mouse heart. 2011 J Physiol 589: 3275–3288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goonasekera SA, Hammer K, Auger-Messier M, Bodi I, Chen X, Zhang H et al. Decreased cardiac L-type Ca(2)(+) channel activity induces hypertrophy and heart failure in mice. 2012 J Clin Invest 122: 280–290.

    Article  CAS  PubMed  Google Scholar 

  16. Nakayama H, Chen X, Baines CP, Klevitsky R, Zhang X, Zhang H et al. Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest 2007; 117: 2431–2444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu Y, Blackwood DH, Caesar S, de Geus EJ, Farmer A, Ferreira MA et al. Meta-analysis of genome-wide association data of bipolar disorder and major depressive disorder. Mol Psychiatry 2011; 16: 2–4.

    Article  CAS  PubMed  Google Scholar 

  18. Knable MB, Barci BM, Webster MJ, Meador-Woodruff J, Torrey EF . Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem findings from the Stanley Neuropathology Consortium. Mol Psychiatry 2004; 9: 609–620,, 544.

    Article  CAS  PubMed  Google Scholar 

  19. Torrey EF, Webster M, Knable M, Johnston N, Yolken RH . The stanley foundation brain collection and neuropathology consortium. Schizophr Res 2000; 44: 151–155.

    Article  CAS  PubMed  Google Scholar 

  20. Torrey EF, Barci BM, Webster MJ, Bartko JJ, Meador-Woodruff JH, Knable MB et al. Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol Psychiatry 2005; 57: 252–260.

    Article  CAS  PubMed  Google Scholar 

  21. Johnson WE, Li C, Rabinovic A . Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007; 8: 118–127.

    Article  PubMed  Google Scholar 

  22. Leek JT, Storey JD . Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet 2007; 3: 1724–1735.

    Article  CAS  PubMed  Google Scholar 

  23. Konarski JZ, McIntyre RS, Grupp LA, Kennedy SH . Is the cerebellum relevant in the circuitry of neuropsychiatric disorders? J Psychiatry Neurosci 2005; 30: 178–186.

    PubMed  PubMed Central  Google Scholar 

  24. Andreasen NC, Pierson R . The role of the cerebellum in schizophrenia. Biol Psychiatry 2008; 64: 81–88.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schmitt A, Koschel J, Zink M, Bauer M, Sommer C, Frank J et al. Gene expression of NMDA receptor subunits in the cerebellum of elderly patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2010; 260: 101–111.

    Article  PubMed  Google Scholar 

  26. Smolin B, Karry R, Gal-Ben-Ari S, Ben-Shachar D . Differential expression of genes encoding neuronal ion-channel subunits in major depression, bipolar disorder and schizophrenia: implications for pathophysiology. Int J Neuropsychopharmacol 2012; 15: 869–882.

    Article  CAS  PubMed  Google Scholar 

  27. Chen C, Cheng L, Grennan K, Pibiri F, Zhang C, Badner JA et al. Two gene co-expression modules differentiate psychotics and controls. Mol Psychiatry 2013 (e-pub ahead of print).

  28. Filiou MD, Teplytska L, Otte DM, Zimmer A, Turck CW . Myelination and oxidative stress alterations in the cerebellum of the G72/G30 transgenic schizophrenia mouse model. J Psychiatr Res. 2012; 46: 1359–1365.

    Article  PubMed  Google Scholar 

  29. Schlick B, Flucher BE, Obermair GJ . Voltage-activated calcium channel expression profiles in mouse brain and cultured hippocampal neurons. Neuroscience 2010; 167: 786–798.

    Article  CAS  PubMed  Google Scholar 

  30. Gibbs JR, van der Brug MP, Hernandez DG, Traynor BJ, Nalls MA, Lai SL et al. Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet 2010; 6: e1000952.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M et al. Spatio-temporal transcriptome of the human brain. Nature 2011; 478: 483–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bigos KL, Mattay VS, Callicott JH, Straub RE, Vakkalanka R, Kolachana B et al. Genetic variation in CACNA1C affects brain circuitries related to mental illness. Arch Gen Psychiatry 2010; 67: 939–945.

    Article  Google Scholar 

  33. Colantuoni C, Lipska BK, Ye T, Hyde TM, Tao R, Leek JT et al. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 2011; 478: 519–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bader PL, Faizi M, Kim LH, Owen SF, Tadross MR, Alfa RW et al. Mouse model of Timothy syndrome recapitulates triad of autistic traits. Proc Natl Acad Sci USA 2011; 108: 15432–15437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Panagiotou OA, Evangelou E, Ioannidis JP . Genome-wide significant associations for variants with minor allele frequency of 5% or less—an overview: a HuGE review. Am J Epidemiol 2010; 172: 869–889.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Calache MJ, Bourgeois M . Bipolar affective disorder and anoxic brain damage. Br J Psychiatry 1990; 157: 458–459.

    Article  CAS  PubMed  Google Scholar 

  37. Jorge R, Robinson RG . Mood disorders following traumatic brain injury. Int Rev Psychiatry 2003; 15: 317–327.

    Article  PubMed  Google Scholar 

  38. Shukla D, Devi BI, Agrawal A . Outcome measures for traumatic brain injury. Clin Neurol Neurosurg. 2011; 113: 435–441.

    Article  PubMed  Google Scholar 

  39. May A . The importance of the heart in cluster headache treatment. Nat Clin Pract Neurol 2008; 4: 182–183.

    Article  PubMed  Google Scholar 

  40. van Assema DM, Lubberink M, Boellaard R, Schuit RC, Windhorst AD, Scheltens P et al. P-glycoprotein function at the blood-brain barrier: effects of age and gender. Mol Imaging Biol 2012; 14: 771–776.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Levy NA, Janicak PG . Calcium channel antagonists for the treatment of bipolar disorder. Bipolar Disord 2000; 2: 108–119.

    Article  CAS  PubMed  Google Scholar 

  42. Kamide K, Yang J, Matayoshi T, Takiuchi S, Horio T, Yoshii M et al. Genetic polymorphisms of L-type calcium channel alpha1C and alpha1D subunit genes are associated with sensitivity to the antihypertensive effects of L-type dihydropyridine calcium-channel blockers. Circ J 2009; 73: 732–740.

    Article  CAS  PubMed  Google Scholar 

  43. Bremer T, Man A, Kask K, Diamond C . CACNA1C polymorphisms are associated with the efficacy of calcium channel blockers in the treatment of hypertension. Pharmacogenomics 2006; 7: 271–279.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIMH 1R01MH094483-01 (Dr Gershon) and NIH 1R01MH080425 (Dr Liu), Geraldi Norton Memorial Foundation, Eklund family.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Liu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gershon, E., Grennan, K., Busnello, J. et al. A rare mutation of CACNA1C in a patient with bipolar disorder, and decreased gene expression associated with a bipolar-associated common SNP of CACNA1C in brain. Mol Psychiatry 19, 890–894 (2014). https://doi.org/10.1038/mp.2013.107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.107

Keywords

This article is cited by

Search

Quick links